
ar
X

iv
:1

91
1.

00
74

5v
1 

 [
cs

.C
R

] 
 2

 N
ov

 2
01

9
This paper has been published in International Conference on Distributed Computing Systems (ICDCS) 2017.

Secure connectivity of wireless sensor networks

under key predistribution with on/off channels

Jun Zhao

junzhao@alumni.cmu.edu

Abstract — Security is an important issue in wireless sensor
networks (WSNs), which are often deployed in hostile environ-
ments. The q-composite key predistribution scheme has been
recognized as a suitable approach to secure WSNs. Although
the q-composite scheme has received much attention in the
literature, there is still a lack of rigorous analysis for secure
WSNs operating under the q-composite scheme in consideration
of the unreliability of links. One main difficulty lies in analyzing
the network topology whose links are not independent. Wireless
links can be unreliable in practice due to the presence of physical
barriers between sensors or because of harsh environmental
conditions severely impairing communications. In this paper,
we resolve the difficult challenge and investigate k-connectivity
in secure WSNs operating under the q-composite scheme with
unreliable communication links modeled as independent on/off
channels, where k-connectivity ensures connectivity despite the
failure of any (k − 1) sensors or links, and connectivity means
that any two sensors can find a path in between for secure
communication. Specifically, we derive the asymptotically exact
probability and a zero-one law for k-connectivity. We further use
the theoretical results to provide design guidelines for secure
WSNs. Experimental results also confirm the validity of our
analytical findings.

Keywords — Security, key predistribution, sensor networks, link
unreliability, connectivity.

I. INTRODUCTION

Since Eschenauer and Gligor [1] introduced the basic key
predistribution scheme to secure communication in wireless
sensor networks (WSNs), key predistribution schemes have
been studied extensively in the literature over the last decade
[2]–[7]. The idea of key predistribution is that cryptographic
keys are assigned before deployment to ensure secure sensor-
to-sensor communications.

Among many key predistribution schemes, the q-composite
scheme proposed by Chan et al. [8] as an extension of the
basic Eschenauer–Gligor scheme [1] (the q-composite scheme
in the case of q = 1) has received much interest [6], [9]–
[12]. The q-composite key predistribution scheme works as
follows. For a WSN with n sensors, prior to deployment, each
sensor is independently assigned Kn different keys which are
selected uniformly at random from a pool Pn of Pn distinct
keys. After deployment, any two sensors establish a secure
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link in between if and only if they have at least q key(s)
in common and the physical link constraint between them
is satisfied. Both Pn and Kn are both functions of n for
generality, with the natural condition 1 ≤ q < Kn < Pn.
Examples of physical link constraints include the reliability of
the transmission channel and the distance between two sensors
close enough for communication. The q-composite scheme
with q ≥ 2 outperforms the basic Eschenauer–Gligor scheme
with q = 1 in terms of the strength against small-scale network
capture attacks while trading off increased vulnerability in the
face of large-scale attacks [8].

In this paper, we investigate k-connectivity in secure WSNs
employing the q-composite key predistribution scheme with
general q under the on/off channel model as the physical link
constraint comprising independent channels which are either
on or off. A network is k-connected if it remains connected
despite the failure of at most (k − 1) nodes, where nodes can
fail due to adversarial attacks, battery depletion, or harsh en-
vironmental conditions [13]; connectivity ensures that any two
nodes can find a path in between [10]. Our results on secure
k-connectivity include the asymptotically exact probability and
also a zero–one law. The zero–one law means that the network
is securely k-connected with high probability under certain
parameter conditions and is not securely k-connected with high
probability under other parameter conditions, where an event
happens “with high probability” if its probability converges to
1 asymptotically. The zero–one law specifies the critical scal-
ing of the model parameters in terms of secure k-connectivity,
while the asymptotically exact probability result provides a
precise guideline for ensuring secure k-connectivity. Obtaining
such a precise guideline is particularly crucial in a WSN setting
as explained below. To increase the chance of (k-)connectivity,
it is often required to increase the number of keys kept in
each sensor’s memory. However, since sensors have limited
memory, it is desirable for practical key distribution schemes
to have low memory requirements [1], [14]. Therefore, it is
important to obtain the asymptotically exact probability as well
as the zero–one law to dimension the q-composite scheme.

Our approach to the analysis is to explore the induced ran-
dom graph models of the WSNs. As will be clear in Section II,
the graph modeling a studied WSN is an intersection of two
distinct types of random graphs. It is the intertwining [10],
[13] of these two graphs that makes our analysis challenging.

We organize the rest of the paper as follows. Section II
describes the system model. Afterwards, we detail the analyt-
ical results in Section III. We provide experiments in Section
IV to confirm our analytical results. Sections V through VIII
are devoted to proving the results. Section IX surveys related
work. Finally, we conclude the paper in Section X.
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II. SYSTEM MODEL

We elaborate the graph modeling of a WSN with n sensors,
which employs the q-composite key predistribution scheme
and works under the on/off channel model. We use a node set
Vn = {v1, v2, . . . , vn} to represent the n sensors (the terms
sensor and node are interchangeable in this paper). For each
vi ∈ Vn, the set of its Kn different keys is denoted by Si,
which is uniformly distributed among all Kn-size subsets of a
key pool Pn of Pn keys.

The q-composite key predistribution scheme is modeled
by a uniform q-intersection graph [9], [12] denoted by
Gq(n,Kn, Pn), which is defined on the node set Vn such that
any two distinct nodes vi and vj sharing at least q key(s)
(an event denoted by Γij) have an edge in between. Clearly,
event Γij is given by

[
|Si ∩ Sj | ≥ q

]
, with |A| denoting the

cardinality of a set A.

Under the on/off channel model, each node-to-node chan-
nel is independently on with probability pn and off with prob-
ability (1−pn), where pn is a function of n with 0 < pn ≤ 1.
Denoting by Cij the event that the channel between distinct
nodes vi and vj is on, we have P [Cij ] = pn, where P[E ]
denotes the probability that event E happens, throughout the
paper. The on/off channel model is represented by an Erdős-
Rényi graph G(n, pn) [15] defined on the node set Vn such
that vi and vj have an edge in between if event Cij occurs.

Finally, we denote by Gn,q(n,Kn, Pn, pn) the under-
lying graph of the n-node WSN operating under the q-
composite scheme and the on/off channel model. Graph
Gn,q(n,Kn, Pn, pn) is defined on the node set Vn such that
there exists an edge between nodes vi and vj if and only if
events Γij and Cij happen at the same time. We set event
Eij := Γij ∩ Cij . Then the edge set of Gn,q(n,Kn, Pn, pn)
is the intersection of the edge sets of Gq(n,Kn, Pn) and
G(n, pn), so Gn,q(n,Kn, Pn, pn) can be seen as the inter-
section of Gq(n,Kn, Pn) and G(n, pn), i.e.,

Gn,q(n,Kn, Pn, pn) = Gq(n,Kn, Pn) ∩G(n, pn), (1)

Throughout the paper, q is an arbitrary positive integer
and does not scale with n. We define s(Kn, Pn, q) as the
probability that two different nodes share at least q key(s)
and t(Kn, Pn, q, pn) as the probability that two distinct nodes
have a secure link in Gn,q(n,Kn,Pn, pn). We often write
s(Kn,Pn, q) and t(Kn,Pn, q,pn) as sn,q and tn,q respectively
for simplicity. Clearly, sn,q and tn,q are the edge probabilities
in graphs Gq(n,Kn, Pn) and Gn,q(n,Kn, Pn, pn), respec-
tively. From Eij = Γij ∩ Cij and the independence of Cij

and Γij , we obtain

tn,q = P[Eij ] = P[Cij ] · P[Γij ] = pn · sn,q. (2)

By definition, sn,q is determined through

sn,q = P[Γij ] =

Kn∑

u=q

P[|Si ∩ Sj | = u], (3)

where we derive P[|Si ∩ Sj| = u] as follows.

Note that Si and Sj are independently and uniformly
selected from all Kn-size subsets of a key pool with size

Pn. Under (|Si ∩ Sj | = u), after Si is determined, Sj is
constructed by selecting u keys out of Si and (Kn − u) keys
out of the key pool Pn. Hence, if Pn ≥ 2Kn and Kn ≥ q, we
have

P[|Si ∩ Sj| = u] =

(
Kn

u

)(
Pn−Kn

Kn−u

)
(
Pn

Kn

) , for u = 1, 2, . . . ,Kn,

(4)

which along with (2) and (3) yields

tn,q = pn ·

Kn∑

u=q

(
Kn

u

)(
Pn−Kn

Kn−u

)
(
Pn

Kn

) . (5)

Asymptotic expressions of sn,q and tn,q can also be given.

If Kn
2

Pn
= o(1), we obtain from Lemma 2 or [11, Lemma 1]

that sn,q ∼
1
q!

(
Kn

2

Pn

)q
, which with (2) leads to

tn,q ∼ pn ·
1

q!

(
Kn

2

Pn

)q

.

In the above results, for two positive sequences fn and gn, the
relation fn ∼ gn means lim

n→∞
(fn/gn) = 1; i.e., fn and gn are

asymptotically equivalent.

III. THE RESULTS

We present and discuss our results in this section. The
natural logarithm function is given by ln. All limits are under-
stood with n → ∞. We use the standard asymptotic notation
o(·), O(·),Ω(·), ω(·),Θ(·),∼; see [13, Page 2-Footnote 1].

Theorem 1 below presents the asymptotically exact prob-
ability and a zero–one law for connectivity in a graph
Gn,q(n,Kn, Pn, pn).

Theorem 1. For a graph Gn,q(n,Kn, Pn, pn), with a
sequence αn defined through

tn,q =
lnn+ (k − 1) ln lnn+ αn

n
, (6)

where tn,q is given by (5), then it holds under Kn = Ω(nǫ)

for a positive constant ǫ, Kn
2

Pn
= o

(
1

lnn

)
, and Kn

Pn
= o

(
1

n lnn

)

that

lim
n→∞

P
[
Gn,q(n,Kn, Pn, pn) is k-connected.

]

= e−
e
− limn→∞ αn

(k−1)! (7)

=





e−
e−α∗

(k−1)! , if lim
n→∞

αn = α∗ ∈ (−∞,∞), (8a)

1, if lim
n→∞

αn = ∞, (8b)

0, if lim
n→∞

αn = −∞. (8c)

For k-connectivity in Gn,q(n,Kn, Pn, pn), the result (7) of
Theorem 1 presents the asymptotically exact probability, while
(8c) and (8b) of Theorem 1 together constitute a zero–one law,
where a zero–one law means that the probability of a graph
having a certain property asymptotically converges to 0 under
some conditions and to 1 under some other conditions. The
result (7) compactly summarizes (8a)–(8c).
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Fig. 1. Empirical probability that Gn,q(n,K,P, p) is connected as a function
of K for q = 2, 3 and p = 0.2, 0.5, 1 with n = 1, 000 and P = 10, 000. In
each case, the empirical probability value is obtained by averaging over 500
experiments.

Theorem 1 shows that the critical scaling of tn,q for k-

connectivity in graph Gn,q(n,Kn, Pn, pn) is
lnn+(k−1) ln lnn

n
.

The conditions in Theorem 1 are enforced merely for technical
reasons, but they are practical and often hold in realistic wire-
less sensor network applications [1], [8], [16]. More specifi-
cally, the condition on Kn (i.e., Kn = Ω(nǫ)) is less appealing
but is not much a problem because ǫ can be arbitrarily small. In

addition, Kn
2

Pn
= o

(
1

lnn

)
and Kn

Pn
= o

(
1

n lnn

)
hold in practice

since the key pool size Pn grows at least linearly with n and
is expected to be several orders of magnitude larger than the
key ring size Kn (see [1, Section 2.1] and [10, Section III-B]).

Below, we first provide experimental results before proving
Theorem 1 in detail.

IV. EXPERIMENTAL RESULTS

We now present experiments to confirm Theorem 1.

In the experiments, we fix the number of nodes at n =
1, 000 and the key pool size at P = 10, 000. We specify
the required amount q of key overlap as q = 2, 3, and the
probability p of an channel being on as p = 0.2, 0.5, 1, while
varying the parameter K from 28 to 88. For each parameter
pair (q, p,K), we generate 500 independent samples of the
graph Gn,q(n,K, P, p) and count the number of times (out of a
possible 500) that the obtained graphs are connected. Dividing
the counts by 500, we obtain the empirical probabilities for
connectivity.

In Figure 1, we depict the resulting empirical probability of
connectivity in Gn,q(n,K, P, p) versus K . From Figure 1, the
threshold behavior of the probability of connectivity is evident
from the plots. Based on (5) and (6), we also compute the
minimum integer value of K∗ that satisfies

t(K∗, P, q, p) = p ·

K∗∑

u=q

(
K∗

u

)(
P−K∗

K∗−u

)
(

P
K∗

) >
lnn

n
. (9)

For the six curves in Figure 1, from leftmost to rightmost,
the corresponding K∗ values are 35, 41, 52, 60, 67 and 78,
respectively. Hence, we see that the connectivity threshold
prescribed by (9) is in agreement with the experimentally
observed curves for connectivity.

V. BASIC IDEAS FOR PROVING THEOREM 1

The basic ideas to show Theorem 1 are as follows. We
decompose the theorem results into lower and upper bounds,
where the lower bound is proved by associating our studied
graph intersection Gn,q (i.e., Gq(n,Kn, Pn) ∩G(n, pn)) with
an Erdős–Rényi graph, while the upper bound is obtained by
associating the studied k-connectivity property in Theorem 1
with minimum node degree.

A. Decomposing the results into lower and upper bounds

Note that in Theorem 1, the results (8a)–(8c) are compactly
summarized as (7); i.e., lim

n→∞
P [Gn,q is k-connected.] =

e−
e− limn→∞ αn

(k−1)! . To prove (7) via decomposition, we show
that the probability P[Gn,q is k-connected. ] has a lower

bound e−
e− limn→∞ αn

(k−1)! × [1 − o(1)] and an upper bound

e−
e− limn→∞ αn

(k−1)! × [1 + o(1)], where a sequence xn can be
written as o(1) if limn→∞ xn = 0. Afterwards, the obtained
(7) implies (8a)–(8c).

B. Proving the lower bound by showing that our graph inter-
section Gn,q contains an Erdős–Rényi graph

To prove the lower bound of k-connectivity in our studied
graph intersection Gn,q (i.e., Gq(n,Kn, Pn) ∩ G(n, pn)), we
will show that the studied graph Gn,q contains an Erdős–Rényi
graph as its spanning subgraph with probability 1 − o(1),
and show that the lower bound also holds for the Erdős–
Rényi graph. More specifically, the Erdős–Rényi graph under
the corresponding conditions is k-connected with probability

e−
e− limn→∞ αn

(k−1)! × [1− o(1)] .

We give more details for the above idea in Section VII.

C. Proving the upper bound by considering minimum node
degree

To prove the upper bound of k-connectivity in our studied
graph Gn,q, we leverage the necessary condition on the min-
imum (node) degree enforced by k-connectivity, and explain
that the upper bound also holds for the requirement of the
minimum degree. Specifically, because a necessary condition
for a graph to be k-connected is that the minimum degree
is at least k [17], P [Gn,q has a minimum degree at least k.]
provides an upper bound for P [Gn,q is k-connected.]. We
will prove that P [Gn,q has a minimum degree at least k.] is

upper bounded by e−
e− limn→∞ αn

(k−1)! × [1 + o(1)] so it becomes
immediately clear that P [Gn,q is k-connected.] is also upper

bounded by e−
e− limn→∞ αn

(k−1)! × [1 + o(1)].

We give more details for the above idea in Section VIII.

In addition to the arguments above, we also find it useful
to confine the deviation αn in Theorem 1. We discuss this idea
as follows.

D. Confining the deviation αn in Theorem 1

We will show that to prove Theorem 1, the deviation αn

in the theorem statement can be confined as ±o(lnn). More
specifically, if Theorem 1 holds under the extra condition

3
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|αn| = o(lnn), then Theorem 1 also holds regardless of the
extra condition. This extra condition will be useful for the
aforementioned steps in Sections V-B and V-C. We present
more details for the above idea in the next section.

VI. CONFINING THE DEVIATION |αn| AS o(lnn) IN

THEOREM 1

In this section, we show that the extra condition |αn| =
o(lnn) can be introduced in proving Theorem 1, where |αn|
is the absolute value of αn. Since αn measures the devi-
ation of the edge probability tn,q from the critical scaling
lnn+(k−1) ln lnn

n
, we call the extra condition |αn| = o(lnn)

as the confined deviation. Then our goal here is to show

Theorem 1 with the confined deviation ⇒ Theorem 1.
(10)

We write Gn,q back as Gq(n,Kn, Pn) ∩G(n, pn) based
on (1), and write tn,q (i.e., t(Kn, Pn, q, pn)) back as
s(Kn, Pn, q)× pn based on (2).

Lemma 1. For a graph Gq(n,Kn, Pn) ∩G(n, pn) on a prob-
ability space S under

Kn
2

Pn
= o

(
1

lnn

)
, Kn

Pn
= o

(
1

n lnn

)
and

Kn = Ω(nǫ) for a positive constant ǫ
(11)

(i.e., the conditions of Theorem 1),

with a sequence αn defined by s(Kn, Pn, q) × pn =
lnn+(k−1) ln lnn+αn

n
, the following results hold:

(i) If limn→∞ αn = ∞, there exists a graph
Gq(n,Kn, Pn) ∩G(n, p̃n) on the probability space
S such that Gq(n,Kn, Pn)∩G(n, pn) is a spanning

supergraph1 of Gq(n,Kn, Pn) ∩G(n, p̃n) for all n
sufficiently large, where a sequence α̃n defined by

s(Kn, Pn, q) × p̃n = lnn+(k−1) ln lnn+α̃n

n
satisfies

limn→∞ α̃n = ∞ and α̃n = o(lnn) .

(ii) If limn→∞ αn = −∞, there exists a graph

Gq(n, K̂n, Pn) ∩G(n, p̂n) on the probability space S such
that Gq(n,Kn, Pn) ∩G(n, pn) is a spanning subgraph

of Gq(n, K̂n, Pn) ∩G(n, p̂n) for all n sufficiently large,
where

K̂n
2

Pn
= o

(
1

lnn

)
, K̂n

Pn
= o

(
1

n lnn

)
and

K̂n = Ω(nǫ) for a positive constant ǫ
(12)

and a sequence α̂n defined by

s(K̂n, Pn, q) × p̂n = lnn+(k−1) ln lnn+α̂n

n
satisfies

limn→∞ α̂n = −∞ and α̂n = −o(lnn) .

Proof of (10) using Lemma 1:

We now prove (10) using Lemma 1. Namely, assuming
that Theorem 1 holds with the confined deviation, we use
Lemma 1 to show that Theorem 1 also holds regardless of the
confined deviation. To prove Theorem 1, we discuss the two
cases below: ① limn→∞ αn = ∞, and ② limn→∞ αn = −∞.

1A graph Ga is a spanning supergraph (resp., spanning subgraph) of a
graph Gb if Ga and Gb have the same node set, and the edge set of Ga is
a superset (resp., subset) of the edge set of Gb.

① Under limn→∞ αn = ∞, we use the property (i)
of Lemma 1, where we have graph Gn,q(n,Kn, Pn, p̃n) =
Gq(n,Kn, Pn) ∩G(n, p̃n) with Kn = Ω(nǫ) for a posi-

tive constant ǫ, Kn
2

Pn
= o

(
1

lnn

)
, Kn

Pn
= o

(
1

n lnn

)
, and

t(Kn, Pn, q, p̃n) = s(Kn, Pn, q) × p̃n = lnn+(k−1) ln lnn+α̃n

n
.

Then given limn→∞ α̃n = ∞ and α̃n = o(lnn), we use
Theorem 1 with the confined deviation to derive

lim
n→∞

P [Gn,q(n,Kn, Pn, p̃n) is k-connected. ] = 1. (13)

As given in the property (i) of Lemma 1, Gn,q(n, Kn, Pn, pn)
is a spanning supergraph of Gn,q(n, Kn, Pn, p̃n). Then since
k-connectivity is a monotone increasing graph property, we
obtain from (13) that

P [Gn,q(n,Kn, Pn, pn) is k-connected. ]

≥ P [Gn,q(n,Kn, Pn, p̃n) is k-connected. ] → 1. as n → ∞.
(14)

(14) provides the desired result (8b).

② Under limn→∞ αn = −∞, we use the property (ii)

of Lemma 1, where we have graph Gn,q(n, K̂n, Pn, p̂n) =

Gq(n, K̂n, Pn) ∩G(n, p̂n) withK̂n = Ω(nǫ) for a posi-

tive constant ǫ, K̂n
2

Pn
= o

(
1

lnn

)
, K̂n

Pn
= o

(
1

n lnn

)
, and

t(K̂n, Pn, q, p̂n) = s(K̂n, Pn, q) × p̂n = lnn+(k−1) ln lnn+α̂n

n
.

Then given limn→∞ α̂n = −∞ and α̂n = −o(lnn), we use
Theorem 1 with the confined deviation to derive

lim
n→∞

P
[
Gn,q(n, K̂n, Pn, p̂n) is k-connected.

]
= 0. (15)

As given in the property (ii) of Lemma 1, Gn,q(n,Kn, Pn, pn)

is a spanning subgraph of Gn,q(n, K̂n, Pn, p̂n). Then since
k-connectivity is a monotone increasing graph property, we
obtain from (15) that

P [Gn,q(n,Kn, Pn, pn) is k-connected. ]

≤ P
[
Gn,q(n, K̂n, Pn, p̂n) is k-connected.

]
→ 0. as n → ∞.

(16)

(16) provides the desired result (8c).

Summarizing ① and ②, we have established (10). Hence,
in proving Theorem 1, we can always assume |αn| = o(lnn).

Proof of Lemma 1:

We prove Properties (i) and (ii) of Lemma 1, respectively.

Establishing Property (i) of Lemma 1:

We define

α̃n = min{αn, ln lnn}, (17)

and define p̃n such that

s(Kn, Pn, q)× p̃n =
lnn+ (k − 1) ln lnn+ α̃n

n
. (18)

Given the condition limn→∞ αn = ∞ in Property (i) of
Lemma 1, we have αn ≥ 0 for all n sufficiently large, which
with (17) implies

0 ≤ α̃n ≤ ln lnn for all n sufficiently large. (19)

4
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Thus, it holds that

α̃n = o(lnn). (20)

In addition, limn→∞ αn = ∞ and (17) together induce

lim
n→∞

α̃n = ∞. (21)

Clearly, (17) implies α̃n ≤ αn. Given α̃n ≤ αn, (18) and

s(Kn, Pn, q) × pn = lnn+(k−1) ln lnn+αn

n
, we obtain p̃n ≤

pn. In addition, we know from (18) and (19) that p̃n ≥ 0
for all n sufficiently large. For all n sufficiently large, given
0 ≤ p̃n ≤ pn ≤ 1, p̃n is indeed a probability, and we can
define Erdős–Rényi graphs G(n, pn) and G(n, p̃n) on the same
probability space such that G(n, pn) is a spanning supergraph
of G(n, p̃n). Then we can define Gq(n,Kn, Pn) ∩G(n, pn)
and Gq(n,Kn, Pn) ∩G(n, p̃n) on the same probability space
such that

Gq(n,Kn, Pn) ∩G(n, pn) is a spanning supergraph of
Gq(n,Kn, Pn) ∩G(n, p̃n).

(22)

Summarizing (20) (21) and (22), we have established
Lemma 1.

Establishing Property (ii) of Lemma 1:

To establish Property (ii) of Lemma 1, we may attempt
to use a proof similar to that of Property (i) of Lemma 1, by
defining α̂n as max{αn, − ln lnn}, and defining p̂n such that

s(Kn, Pn, q)× p̂n equals
lnn+(k−1) ln lnn+α̂n

n
. However, such

approach does not work because p̂n defined in this way may
exceed 1 so it is not a probability. Hence, more fine-grained
arguments are needed. In view of the above, we consider two
cases for each n:

➊ s(Kn, Pn, q) ≥
lnn+(k−1) ln lnn+max{αn,− ln lnn}

n
,

➋ s(Kn, Pn, q) <
lnn+(k−1) ln lnn+max{αn,− ln lnn}

n
.

In the above case ➊, we can define p̂n in the above way
since we can show p̂n ≤ 1 for all n sufficiently large. In
the above case ➋, since p̂n defined in the above way may
exceed 1, we will define p̂n differently. More specifically, in

case ➋, we will find suitable p̂n ≥ pn and K̂n ≥ Kn such

that s(K̂n, Pn, q)×p̂n equals
lnn+(k−1) ln lnn+α̂n

n
for some α̂n

satisfying limn→∞ α̂n = −∞ and |α̂n| = o(lnn). We will
carefully choose the term α̂n in case ➋ rather than simply
setting α̂n as max{αn, − ln lnn}. We provide the details
below.

➊ In this case, we consider

s(Kn, Pn, q) ≥
lnn+ (k − 1) ln lnn+max{αn,− ln lnn}

n
.

(23)

Then we define

K̂n = Kn in case ➊, (24)

α̂n = max{αn,− ln lnn} in case ➊, (25)

and define p̂n such that

p̂n · s(Kn, Pn, q) =
lnn+ (k − 1) ln lnn+ α̂n

n
in case ➊.

(26)

From (26) and the condition (23) in case ➊ here, we have

p̂n ≤ 1 in case ➊. (27)

Clearly, (25) implies α̂n ≥ αn. Given α̂n ≥ αn, (26) and

s(Kn, Pn, q)× pn = lnn+(k−1) ln lnn+αn

n
, we obtain

p̂n ≥ pn in case ➊. (28)

Given the condition limn→∞ αn = −∞ in Property (ii) of
Lemma 1, we have αn ≤ 0 for all n sufficiently large, which
with (25) implies

− ln lnn ≤ α̂n ≤ 0 for all n sufficiently large in case ➊.
(29)

➋ In this case, we consider

s(Kn, Pn, q) <
lnn+ (k − 1) ln lnn+max{αn,− ln lnn}

n
.

(30)

Then we define

p̂n = 1 in case ➋, (31)

define that

in case ➋, K̂n is the maximal integer K#
n such that

sn,q(K
#
n , Pn) is no greater than

lnn+(k−1) ln lnn+max{αn,− ln lnn}
n

,

(32)

and define α̂n such that

s(K̂n, Pn, q) =
lnn+ (k − 1) ln lnn+ α̂n

n
in case ➋.

(33)

From (31) and pn ≤ 1 since pn is a probability, it holds that

p̂n ≥ pn in case ➋. (34)

From (30) and (32), it holds that

K̂n ≥ Kn in case ➋. (35)

Combining (24) for case ➊ and (35) for case ➋, we have

K̂n ≥ Kn for all n. (36)

From (36) and the condition Kn = ω(1) of Lemma 1-Property
(ii) here, we have

K̂n = ω(1). (37)

Combining (28) for case ➊ and (34) for case ➋, we have

p̂n ≥ pn for all n. (38)

Combining (27) for case ➊ and (31) for case ➋, we have

p̂n ≤ 1 for all n. (39)

Then given (36) (i.e., K̂n ≥ Kn for each n), from the

definitions of graphs Gq(n,Kn, Pn) and Gq(n, K̂n, Pn), we
can construct them on the same probability space such that

Gq(n,Kn, Pn) is a spanning subgraph of Gq(n, K̂n, Pn).
Given (38) and (39) (i.e., pn ≤ p̂n ≤ 1 for each n), p̂n is
indeed a probability, and we can define Erdős–Rényi graphs
G(n, pn) and G(n, p̂n) on the same probability space such

5
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that G(n, pn) is a spanning subgraph of G(n, p̂n). Summariz-
ing the above, we can define Gq(n,Kn, Pn)∩G(n, pn) and

Gq(n, K̂n, Pn) ∩G(n, p̂n) on the same probability space such
that

Gq(n,Kn, Pn) ∩G(n, pn) is a spanning subgraph of

Gq(n, K̂n, Pn) ∩G(n, p̂n).
(40)

Given (40), we now show the results on K̂n and α̂n to
complete the proof of Lemma 1-Property (ii).

From the condition Kn
2

Pn
= o(1) of Lemma 1 here, we have

Kn < Pn for all n sufficiently large. Then from (24), we get

K̂n < Pn for all n sufficiently large, in case ➊,

so that we can evaluate sn,q(K̂n+1, Pn) for all n sufficiently

large, in case ➊ here. From sn,q(K̂n +1, Pn) ≥ s(Kn, Pn, q)
and (23), it follows that

sn,q(K̂n + 1, Pn)

≥
lnn+ (k − 1) ln lnn+max{αn,− ln lnn}

n
for all n sufficiently large, in case ➊. (41)

Clearly, it holds that
lnn+(k−1) ln lnn+max{αn,− ln lnn}

n
< 1

for all n sufficiently large. Given this, (32), and sn,q(Pn, Pn) =
1, we obtain

K̂n < Pn for all n sufficiently large, in case ➋

so that we can evaluate sn,q(K̂n+1, Pn) for all n sufficiently
large, in case ➊ here. Then (32) implies

sn,q(K̂n + 1, Pn)

>
lnn+ (k − 1) ln lnn+max{αn,− ln lnn}

n
)

for all n sufficiently large, in case ➋. (42)

Combining (41) and (42), we have

sn,q(K̂n + 1, Pn)

≥
lnn+ (k − 1) ln lnn+max{αn,− ln lnn}

n
for all n sufficiently large. (43)

From (23), it follows that

s(K̂n, Pn, q)

≤ max

{
s(Kn, Pn, q),
lnn+(k−1) ln lnn+max{αn,− ln lnn}

n

}
for all n,

which implies

s(K̂n, Pn, q) = o(1). (44)

Given (37) and (44), we use Lemma 2-Property (i) to obtain

K̂n

2

Pn

= o(1). (45)

Given (37) and (45), we use Lemma 2-Property (i) to obtain

s(K̂n, Pn, q) =
1

q!

(
K̂n

2

Pn

)q

× [1± o(1)]. (46)

Given (37) and (45), we also have K̂n + 1 = ω(1) and
(K̂n+1)

2

Pn
= o(1). Then we use Lemma 2-Property (i) to obtain

sn,q(K̂n + 1, Pn) =
1

q!

(
(K̂n + 1)

2

Pn

)q

× [1± o(1)]. (47)

From (46) (47) and (37) , it follows that

sn,q(K̂n + 1, Pn)

s(K̂n, Pn, q)
∼

(K̂n + 1)
2

Pn

/
K̂n

2

Pn

=

(
1 +

1

K̂n

)2

→ 1, as n → ∞, (48)

where the expression an ∼ bn for two positive sequences an
and bn means limn→∞(an/bn) = 1.

Combining (43) and (48), we have

s(K̂n, Pn, q)

≥
lnn+ (k − 1) ln lnn+max{αn,− ln lnn}

n
× [1− o(1)]

=
lnn+ (k − 1) ln lnn+max{αn,− ln lnn} − o(lnn)

n
,

(49)

where the last step uses

max{αn,− ln lnn} = −o(lnn). (50)

The result (50) follows because we have − ln lnn ≤
max{αn,− ln lnn} < 0 given αn < 0 for all n sufficiently
large from the condition limn→∞ αn = −∞ of Lemma 1-
Property (ii) here.

Then (49) means that α#
n defined by

s(K̂n, Pn, q) =
lnn+ (k − 1) ln lnn+ α#

n

n
(51)

satisfies

α#
n ≥ −o(lnn). (52)

From (25) (33) and (51), we have

α̂n =

{
max{αn,− ln lnn} in case ➊,

α#
n in case ➋.

Then it holds that

α̂n ≥ min{max{αn,− ln lnn}, α#
n } ≥ −o(lnn), (53)

where the last step uses (50) and (52).

From (25) (30) and (33), we have

α̂n ≤ max{αn,− ln lnn}, (54)

which along with (50) will imply

α̂n ≤ −o(lnn). (55)

Combining (53) and (55), we have

α̂n = −o(lnn). (56)

6
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From (54) and the condition limn→∞ αn = −∞ of Lemma
1-Property (ii), it holds that

lim
n→∞

α̂n = −∞. (57)

Summarizing (37) (45) (40) (56) and (57), we have com-
pleted showing Lemma 1-Property (ii).

Given the above, we have proved both properties of
Lemma 1. �

Lemma 2. The following two properties hold, where sn,q
denotes the probability that two nodes in graph Gq share at
least q keys:

(i) If Kn = ω(1) and Kn
2

Pn
= o(1), then

sn,q =
1
q!

(
Kn

2

Pn

)q
× [1± o(1)]; i.e., sn,q ∼

1
q!

(
Kn

2

Pn

)q
.

(ii) If Kn = ω(lnn) and Kn
2

Pn
= o

(
1

lnn

)
, then

sn,q =
1
q!

(
Kn

2

Pn

)q
× [1± o

(
1

lnn

)
].

Lemma 2 can be proved in a way similar to that of [11,
Lemma 1]. We omit the details due to space limitation.

VII. PROVING THE LOWER BOUND OF SECTION V-A

The idea to prove the lower bound e−
e− limn→∞ αn

(k−1)! ×
[1− o(1)] for P[Gn,q is k-connected. ] has been explained in
Section V-B. As explained, we associate the studied graph Gn,q

with an Erdős–Rényi graph G(n, zn). The result is presented
as Lemma 4 below.

Lemma 3 relates our graph Gn,q with an Erdős–Rényi
graph.

Lemma 3. If Kn = Ω(nǫ) for a positive constant ǫ, Kn
2

Pn
=

o
(

1
lnn

)
, Kn

Pn
= o

(
1

n lnn

)
, and Kn

2

Pn
= ω

( (lnn)6

n2

)
, then there

exists a sequence zn satisfying

zn = tn,q ×
[
1− o

(
1

lnn

)]
(58)

such that graph Gn,q contains an Erdős–Rényi graph G(n, zn)
as a spanning subgraph with probability 1 − o(1) (when we
couple the two graphs on the same probability space and define
them on the same node set), where we note that tn,q is the edge
probability of Gn,q, and zn is the edge probability of G(n, zn).

Remark 1. From [18], since k-connectivity is a monotone
increasing graph property, (58) further implies

P [Gn,q is k-connected.] ≥ P [G(n, zn) is k-connected.]− o(1).
(59)

Recall from (1) that Gn,q is the intersection of a uniform
q-intersection graph Gq(n,Kn, Pn) and an Erdős-Rényi graph
G(n, pn). To prove Lemma 3 which associates Gn,q with
an Erdős-Rényi graph, we establish Lemma 4 below which
associates Gq(n,Kn, Pn) with another Erdős-Rényi graph.

Lemma 4. If Kn = Ω(nǫ) for a positive constant ǫ, Kn
2

Pn
=

o
(

1
lnn

)
, Kn

Pn
= o

(
1

n lnn

)
, and Kn

2

Pn
= ω

( (lnn)6

n2

)
, then there

exists a sequence yn satisfying

yn = sn,q ×
[
1− o

(
1

lnn

)]
(60)

such that a uniform q-intersection graph Gq(n,Kn, Pn) con-
tains an Erdős–Rényi graph G(n, yn) as a spanning subgraph
with probability 1− o(1) (when we couple the two graphs on
the same probability space and define them on the same node
set), where sn,q is the edge probability of Gq(n,Kn, Pn).

We will discuss the proof of Lemma 4 later. Below we
show that Lemma 3 follows from Lemma 4.

Proof of Lemma 3 using Lemma 4:

As noted in Lemmas 3 and 4, we will couple different
random graphs together. The goal is to convert a problem in
one random graph to the corresponding problem in another
random graph, in order to solve the original problem. Formally,
a coupling [18]–[20] of two random graphs G1 and G2 means
a probability space on which random graphs G′

1 and G′
2 are

defined such that G′
1 and G′

2 have the same distributions as
G1 and G2, respectively. For notation brevity, we simply say
G1 is a spanning subgraph (resp., spanning supergraph) of G2

if G′
1 is a spanning subgraph, where the notions of spanning

subgraph and supergraph have been defined in Footnote (1).

Following Rybarczyk’s notation [18], we write

G1 �G2 (resp., G1 �1−o(1) G2) (61)

if there exists a coupling under which G2 is a spanning
subgraph of G1 with probability 1 (resp., 1−o(1)); i.e., G1 is a
spanning supergraph of G2 with probability 1 (resp., 1−o(1)).
Then the conclusion in Lemma 3 means

Gn,q �1−o(1) G(n, zn), (62)

while the conclusion in Lemma 4 means

Gq(n,Kn, Pn) �1−o(1) G(n, yn). (63)

We recall from (1) that

Gn,q = Gq(n,Kn, Pn) ∩G(n, pn). (64)

After intersecting Gq(n,Kn, Pn) (resp., G(n, yn)) with
G(n, pn), we obtain Gq(n,Kn, Pn) ∩ G(n, pn) (resp.,
G(n, yn)∩G(n, pn)), where Gq(n,Kn, Pn)∩G(n, pn) is Gn,q

from (64), and G(n, yn)∩G(n, pn) becomes an Erdős–Rényi
graph G(n, ynpn). From (63) (i.e., Lemma 4), Gq(n,Kn, Pn)
contains an Erdős–Rényi graph G(n, yn) as a spanning sub-
graph with probability 1−o(1) for yn in (60) (when we couple
the two graph intersections on the same probability space and
define them on the same node set). Then Gn,q contains an
Erdős–Rényi graph G(n, ynpn) as a spanning subgraph with
probability 1 − o(1) for yn in (60) (when we couple the two
graph intersections on the same probability space and define
them on the same node set); i.e.,

Gn,q �1−o(1) G(n, ynpn). (65)

Hence, the proof of Lemma 3 will be completed once we show
zn in (58) can be set as ynpn. From (58) and tn,q = sn,qpn,
it follows that

ynpn = sn,q ×
[
1− o

(
1

lnn

)]
× pn = tn,q ×

[
1− o

(
1

lnn

)]
.

Hence, zn in (58) can be set as ynpn. Then as explained above,
we have proved Lemma 3 using Lemma 4. �

Basic Ideas of Proving Lemma 4:

7
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We now discuss the proof of Lemma 4. The proof of
Lemma 4 is quite involved, since uniform q-intersection graph
Gq(n,Kn, Pn) and Erdős–Rényi graph G(n, yn) associated
by Lemma 4 are very different. For instance, while edges in
G(n, yn) are all independent, not all edges in Gq(n,Kn, Pn)
are independent with each other, since the event that nodes v1
and v2 share at least q objects, and the event that nodes v1
and v3 share at least q objects, may induce higher chance for
the event that nodes v2 and v3 share at least q objects.

To prove Lemma 4, we introduce an auxiliary graph called
the binomial q-intersection graph Hq(n, xn, Pn) [9], [21],
[22], which can be defined on n nodes by the following
process. There exists an object pool of size Pn. Each object in
the pool is added to each node independently with probability
xn. After each node obtains a set of objects, two nodes
establish an edge in between if and only if they share at least
q objects. Clearly, the only difference between binomial q-
intersection graph Hq(n, xn, Pn) and uniform q-intersection
graph Gq(n,Kn, Pn) is that in the former, the number of
objects assigned to each node obeys a binomial distribution
with Pn as the number of trials, and with xn as the success
probability in each trial, while in the latter graph, such number
equals Kn with probability 1.

To prove Lemma 4, we present Lemmas 5 and 6 be-
low. Lemma 5 shows that a uniform q-intersection graph
Gq(n,Kn, Pn) contains a binomial q-intersection graph
Hq(n, xn, Pn) as a spanning subgraph with probability 1−o(1)
(when we couple the two graphs on the same probability space
and define them on the same node set). Lemma 6 shows
that a binomial q-intersection graph Hq(n, xn, Pn) contains
an Erdős–Rényi graph G(n, yn) as a spanning subgraph with
probability 1 − o(1) (when we couple the two graphs on the
same probability space and define them on the same node set).
Then via a transitive argument, a uniform q-intersection graph
Gq(n,Kn, Pn) contains an Erdős–Rényi graph G(n, yn) as a
spanning subgraph with probability 1− o(1) (when we couple
the two graphs on the same probability space and define them
on the same node set). Of course, we still need to show that (i)
given the conditions of Lemma 4, all conditions in Lemmas 5
and 6 hold; and (ii) yn defined in (72) satisfies (60). Since the
proofs are straightforward, we omit the details for simplicity.

Lemma 5. If Kn = Ω(nǫ) for a positive constant ǫ, Kn
2

Pn
=

o
(

1
lnn

)
, and Kn

Pn
= o

(
1

n lnn

)
, with xn set by

xn = Kn

Pn

(
1−

√
3 lnn
Kn

)
, (66)

then it holds that

Gq(n,Kn, Pn) �1−o(1) Hq(n, xn, Pn). (67)

Lemma 6. If

xnPn = Ω(nǫ) for a positive constant ǫ, (68)

xn = o
(

1
n lnn

)
, (69)

xn
2Pn = o

(
1

lnn

)
, and (70)

xn
2Pn = ω

( (lnn)6

n2

)
, (71)

then there exits some yn satisfying

yn = (Pnxn
2)q

q! ·
[
1− o

(
1

lnn

) ]
(72)

such that Erdős–Rényi graph G(n, yn) obeys

Hq(n, xn, Pn) �1−o(1) G(n, yn). (73)

We can establish Lemmas 5 and 6 in a way similar to that
in [23]. After establishing Lemmas 5 and 6 to obtain Lemma 4
and then using Lemma 4 to get Lemma 3, we evaluate zn given
by (58) under the conditions of Theorem 1. First, as explained
in Section V-D, to prove Theorem 1, we can introduce the
extra condition |αn| = o(lnn). Then under the conditions of
Theorem 1 with the extra condition |αn| = o(lnn), we can
show that all conditions of Lemma 4 hold, and zn given by
(58) satisfies

zn = lnn+(k−1) ln lnn+αn−o(1)
n

. (74)

For zn satisfying (74), we obtain from Lemma 7 below that
probability of G(n, zn) being k-connected can be written as

e−
e− limn→∞ αn

(k−1)! ·[1±o(1)], where we use limn→∞[αn−o(1)] =
limn→∞ αn. This result and (59) further induce that Gn,q

under the conditions of Theorem 1 with |αn| = o(lnn) is k-

connected with probability at least e−
e− limn→∞ αn

(k−1)! ×[1−o(1)].
This proves the lower bound in Section V-A.

Lemma 7 (k-Connectivity in an Erdős–Rényi graph by [24,
Theorem 1]). For an Erdős–Rényi graph G(n, zn), if there is
a sequence αn with limn→∞ αn ∈ [−∞,∞] such that zn =
lnn+(k−1) ln lnn+αn

n
, then it holds that

lim
n→∞

P[G(n, zn) is k-connected.] = e−
e− limn→∞ αn

(k−1)! .

VIII. PROVING THE UPPER BOUND OF SECTION V-A

The idea to prove the upper bound e−
e− limn→∞ αn

(k−1)! ×
[1 + o(1)] for P[Gn,q is k-connected. ] has been explained in
Section V-C. As explained, we derive the asymptotically exact
probability for the property of minimum degree being at least
k in the studied graph Gn,q. The result is presented as Lemma
8 below, where t(Kn, Pn, q, pn) (i.e., tn,q in short) is the edge
probability of Gn,q. Note that the conditions of Lemma 8 all
hold under the conditions of Theorem 1.

Lemma 8 (Property of minimum degree being at least k in
graph Gn,q). For a graph Gn,q(n,Kn, Pn, pn), if there exists
a sequence αn with limn→∞ αn ∈ [−∞,+∞] such that

t(Kn, Pn, q, pn) =
lnn+ (k − 1) ln lnn+ αn

n
, (75)

then it holds under Kn = Ω(nǫ) for a positive constant ǫ,
Kn

2

Pn
= o

(
1

lnn

)
, and Kn

Pn
= o

(
1

n lnn

)
that

lim
n→∞

P [Gn,q has a minimum degree at least k.]

= e−
e
− limn→∞ αn

(k−1)! (76)

=





e−
e−α∗

(k−1)! , if lim
n→∞

αn = α∗ ∈ (−∞,∞), (77a)

1, if lim
n→∞

αn = ∞, (77b)

0, if lim
n→∞

αn = −∞. (77c)

We establish Lemma 8 for minimum degree in graph
Gn,q by analyzing the asymptotically exact distribution for the

8
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number of nodes with a fixed degree, for which we present
Lemma 9 below.

The details of using Lemma 9 to prove Lemma 8 are
given in [25]. We show that to prove Lemma 9, the deviation
αn in the lemma statement can be confined as ±o(lnn).
More specifically, if Lemma 9 holds under the extra condition
|αn| = o(lnn), then Lemma 9 also holds regardless of the
extra condition. For constant k and |αn| = o(lnn), clearly
t(Kn, Pn, q, pn) in (75) satisfies (78).

Lemma 9 (Possion distribution for number of nodes with
a fixed degree in graph Gn,q). For graph Gn,q with Kn =

Ω(nǫ) for a positive constant ǫ, Kn
2

Pn
= o

(
1

lnn

)
, and Kn

Pn
=

o
(

1
n lnn

)
, if

t(Kn, Pn, q, pn) =
lnn± o(lnn)

n
, (78)

then for a non-negative constant integer h, the number of
nodes in Gn,q with degree h is in distribution asymptoti-
cally equivalent to a Poisson random variable with mean
λn,h := n(h!)−1(ntn,q)

he−ntn,q , where tn,q is short for
t(Kn, Pn, q, pn); i.e., as n → ∞,

P

[
The number of nodes in Gn,q

with degree h equals ℓ.

]/[
(ℓ!)−1λn,h

ℓe−λn,h

]
→1,

for ℓ = 0, 1, . . . (79)

Lemma 9 for graph Gn,q shows that the number of nodes
with a fixed degree follows a Poisson distribution asymptoti-
cally. Lemma 9 is established in [25].

IX. RELATED WORK

Graph Gq(n,Kn, Pn) models the topology of a secure sen-
sor network with the q-composite key predistribution scheme
under full visibility, where full visibility means that any
pair of nodes have active channels in between so the only
requirement for secure communication is the sharing of at least
q keys. For graph Gq(n,Kn, Pn), Bloznelis and Łuczak [26]
(resp., Bloznelis and Rybarczyk [27]) have recently derived
the asymptotically exact probability for k-connectivity (resp.,
connectivity). The result of [27] is also obtained by Zhao et
al. [12] under more general conditions.

Zhao et al. [12] have recently derived a zero–one law
for k-connectivity in Gq(n,Kn, Pn). With s(Kn, Pn, q) be-
ing the edge probability of Gq(n,Kn, Pn), they show that
under Pn = Ω(n), with αn defined through s(Kn, Pn, q) =
lnn+(k−1) ln lnn+αn

n
, then Gq(n,Kn, Pn) is k-connected with

probability e−
e−α∗

(k−1)! if lim
n→∞

αn = α∗, is not k-connected with

high probability if limn→∞ αn = −∞, and is k-connected
with high probability if limn→∞ αn = ∞. Other properties
of Gq(n,Kn, Pn) are also considered in the literature. For
example, Bloznelis et al. [21] demonstrate that a connected
component with at at least a constant fraction of n emerges
with high probability when the edge probability s(Kn, Pn, q)
exceeds 1/n. Nikoletseas et al. [28] investigate Hamilton
cycles in Gq(n,Kn, Pn), where a Hamilton cycle in a graph
is a closed loop that visits each node once. When q = 1, graph
G1(n,Kn, Pn) models the topology of a secure sensor network
with the Eschenauer–Gligor key predistribution scheme under

full visibility. For G1(n,Kn, Pn), its connectivity has been
investigated extensively [14], [16], [29], [30]. In particular, Di
Pietro et al. [16] show that under Kn = 2 and Pn = n

lnn
,

graph G1(n,Kn, Pn) is connected with high probability; Di

Pietro et al. [31] establish that under Pn ≥ n and Kn
2

Pn
∼ lnn

n
,

G1(n,Kn, Pn) is connected with high probability; and Yağan
and Makowski [14] prove that under Pn = Ω(n), with αn de-

fined by Kn
2

Pn
= lnn+αn

n
, then G1(n,Kn, Pn) is disconnected

with high probability if limn→∞ αn = −∞ and connected
with high probability if limn→∞ αn = ∞. For k-connectivity
in G1(n,Kn, Pn), Rybarczyk [18] implicitly shows a zero–one
law, and we [32] derive the asymptotically exact probability.

Erdős and Rényi [15] introduce the random graph model
G(n, pn) defined on a node set with size n such that an edge
between any two nodes exists with probability pn indepen-
dently of all other edges. Graph G(n, pn) models the topology
induces by a sensor network under the on/off channel model of
this paper. Erdős and Rényi [15] (resp., [24]) derive a zero–one
law for connectivity (resp., k-connectivity) in graph G(n, pn);
specifically, the result of [24] is that with αn defined through

pn = lnn+(k−1) ln lnn+αn

n
, then G(n, pn) is not k-connected

with high probability if limn→∞ αn = −∞ and k-connected
with high probability if limn→∞ αn = ∞.

As detailed in Section II, the graph model
Gn,q(n,Kn, Pn, pn) = Gq(n,Kn, Pn) ∩ G(n, pn) studied
in this paper represents the topology of a secure sensor
network employing the q-composite key predistribution
scheme [1] under the on/off channel model. For graph
Gn,q(n,Kn, Pn, pn), Zhao et al. [11], [25] have recently
studied its node degree distribution, but not connectivity.
When q = 1, graph Gn,q(n,Kn, Pn, pn) reduces to
G1(n,Kn, Pn, pn), which models the topology of a secure
sensor network employing the Eschenauer–Gligor key
predistribution scheme under the on/off channel model. For
graph G1(n,Kn, Pn, pn), Yağan [10] presents a zero–one law
for connectivity. With s(Kn, Pn, 1) being the edge probability
of G1(n,Kn, Pn) and hence s(Kn, Pn, 1) · pn being the edge
probability of G1(n,Kn, Pn, pn) = G1(n,Kn, Pn)∩G(n, pn),

Yağan [10] shows that under Pn = Ω(n), Kn
2

Pn
= o(1), the

existence of limn→∞(pn lnn) and s(Kn, Pn, 1) · pn ∼ c lnn
n

for a positive constant c, then graph G1(n,Kn, Pn) is
disconnected with high probability if c < 1 and connected
with high probability if c > 1. Zhao et al. [13] extend
Yağan’s result [10] on connectivity to k-connectivity with a
more fine-grained scaling. Graph Gn,q(n,Kn, Pn, pn) with
general q has also recently been studied in the literature:
[33] presents the exact probability result of connectivity,
while [34] derives a zero–one law for k-connectivity. This
paper provides the exact probability result of k-connectivity
in Gn,q(n,Kn, Pn, pn). Obtaining the exact probability
result rather than just a zero–one law provides more precise
guidelines for the design of secure sensor networks employing
q-composite key predistribution with on/off channels.

The analysis of secure sensor networks has also been con-
sidered under physical link constraints different with the on/off
channel model, where one example is the popular disk model
[35]–[37]. In the disk model, nodes are distributed over a
bounded region of a Euclidean plane, and two nodes have to be
within a certain distance for communication. Although several
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studies [16], [20], [37]–[40] have investigated connectivity in
secure sensor networks under the disk model, a zero–one law
(that is similar to our result under the on/off channel model)
for k-connectivity in secure sensor networks employing the
q-composite key predistribution scheme under the disk model
remains an open question. However, a zero–one law similar to
our result here is expected to hold in view of the similarity
in (k-)connectivity between the random graphs induces by the
disk model [36] and the on/off channel model [10].

X. CONCLUSION

In this paper, we present the asymptotically exact prob-
ability and a zero–one law for k-connectivity in a secure
wireless sensor network operating under the q-composite key
predistribution scheme with on/off channels. The network is
modeled by composing a uniform q-intersection graph with
an Erdős-Rényi graph, where the uniform q-intersection graph
characterizes the q-composite key predistribution scheme and
the Erdős-Rényi graph captures the on/off channel model.
Experimental results are shown to be in agreement with our
theoretical findings.
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[14] O. Yağan and A. M. Makowski, “Zero–one laws for connectivity in
random key graphs,” IEEE Transactions on Information Theory, vol. 58,
pp. 2983–2999, May 2012.
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