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SUMMARY

Modern distributed systems are often considered to be black-boxes that greatly limit the

potential to understand behaviors at the level of detail necessary to diagnose some of the

most important types of performance problems. Recently researchers have found abnormal

response time delay, one to two order of magnitude longer time than the average response

time, exists in short period and causes economical loss for service providers. These milliBot-

tlenecks are hard to detect due to its short live span and its variety of possible reasons. In

this thesis, we propose milliScope (mScope), the first millisecond-granularity software-based

resource and event monitoring for distributed systems that achieves both performance, low

overhead at high frequency, and high accuracy matched with other firmware monitoring

tool. More specifically, milliScope is a fine-grained monitoring framework to collaborate

multiple mScopeMonitors for event and resource monitoring to reconstruct the flow of each

client request and profile execution performance in a distributed system. We utilize the

resource mScopeMonitors for system resource monitoring, and we develop our own event

mScopeMonitors to identify the execution boundary in a lightweight, precise and systematic

methodology. The semantic and syntactic of these monitoring logs with arbitrary formats

are enriched by our multi-stage data transformation tool, mScopeDataTransformer, which

unifies the diverse monitoring logs into a dynamic data warehouse, mScopeDB, for advanced

analysis. We conduct several illustrative scenarios in which milliScope successfully diagnoses

the response time anomalies caused by milliBottlenecks using a representative web applica-

tion benchmark (RUBBoS). Besides, we validate the accuracy of our event mScopeMonitors

and demonstrate availability and flexibility of milliScope through several evaluations.
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CHAPTER I

INTRODUCTION

Tracing tools play key roles in performance debugging and optimization of complex dis-

tributed systems like Figure 1. However, existing tracing tools either are designed with

specific system models in mind or have operational constraints, which limit their utility.

For example, monitoring tools might have limitations such as: incurring high overhead that

causes broader system performance degradation [67], lack scale due to particular configu-

ration requirements [41], or lack precision because of an overreliance on machine learning

techniques [86].

Recently researchers have found that milliBottlenecks (also called very short bottlenecks

or transient bottlenecks) can cause very long response time (VLRT) requests, which have

one to two orders of magnitude longer response times than average [76] [79]. The milliBot-

tlenecks appear and disappear during a very short period of time, typically on the order

of hundreds of milliseconds. Consequently, the VLRT requests also appear and disappear

during these very short time periods. For example, Figure 2 shows the requests during this

short interval have Point-In-Time response times that are more than twenty times longer

than the average. These VLRT requests are often masked by the normal requests that

only take a few milliseconds, particularly when the response time of requests is averaged

over (typical) measurement periods of minutes. Current monitoring tools cannot capture

and isolate VLRT requests, since they cannot provide fine-grained monitoring data without

degrading overall system performance.

Furthermore, diagnosing the root cause of VLRT requests is challenging because of the

variety of system resources that are potential candidates. As previous works have shown,

VLRT requests can have very different causes which span different system levels, including

1



Figure 1: An example of a four tier Web-App-Middleware-DB architecture with a possible
causal path denoted as a thick line.

CPU dynamic voltage and frequency scaling (DVFS) control at the architectural layer [80],

Java garbage collection (GC) at the system software layer [79], virtual machine (VM) con-

solidation at the VM layer [78], and performance interference of memory thrashing [59]. As

such, multiple resource monitoring tools have to be applied for measuring different system

resources. For instance, we might simultaneously use SAR for CPU utilization, IOstat for

IO activities, and Perf for memory bus usage.

Research has shown that system performance might quickly degrade due to the inap-

propriate allocation of soft resource, such as server thread pool size; hence, a bottleneck

cannot be detected using hardware utilization alone [82]. To study milliBottlenecks and

their associated VLRT requests, we need an infrastructure capable of linking the monitor-

ing data from resource monitoring tools to information about requests dependencies and

causality at fine-grained time scales. Such infrastructure can avoid the sampling meth-

ods since the sort of peaks shown in Figure 2 can then be missed. Moreover, the method

has to impose minimal overhead on the system-under-study to prevent overall system per-

formance degradation. Previous end-to-end tracing implementations inserted metadata

to create correlation among individual system behaviors, and they relied on sampling to

2



Figure 2: The maximal Point-In-Time response time is more than twenty times larger than
the average response time in the same period. If a monitoring tool samples at 1 second
intervals, it would miss the response time fluctuations.

reduce overhead [63] [16] [26] [71] [5] [51]. To avoid misunderstanding the reason for short-

lived bottlenecks, a fine-grained framework that captures the entire request execution map

without the need to sample is extremely important. Moreover, these objectives cannot be

achieved by black-box implementations which use statistical regression analyses to recon-

struct causality without modifying traced systems [12] [35] [39] [70] [20] [86]. Although this

method incurs low-overhead and does not require software modification, it is limited to the

specific workflows as it relies on a pre-built analytical model.

Fugitsu SysViz [41], which is also used to validate the accuracy of the event mScope-

Monitors in this dissertation, can reconstruct the entire trace for each transaction at sub-

second levels by connecting its server to network switches that support passive network

tracing in order to make milliBottleneck detection possible [77]. Dislike the hardware-based

solutions that can provide the fine-grained monitoring functionality, milliScope provides

the first software-based, millisecond granularity resource and event monitoring solution for

distributed systems. Our results show that milliScope not only achieves high degrees of

accuracy at high frequencies without sampling, but also has better scalability than the

hardware-based tracing tools.
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Each of the mScopeMonitors might support different log formats. For example, SAR

mScopeMonitor outputs monitoring data in pure text format by default, while Collectl

mScopeMonitor is able to log its data in both plain text and csv file formats. The log

format for these monitors is also affected by the resources a user chooses to monitor. These

arbitrary log formats bring another issue that is how to provide a unified interface across

various monitoring logs used for analysis. Researchers have proposed different methods for

automatically parsing logs generated by servers and file systems [7] [84] [14]. Specifically,

ExAlg constructs “templates” which are token strings that form equivalence classes; how-

ever, the templates are not used to create a schema or relations [10]. While this approach is

similar to ours, the domain, semi-structured web-pages, is quite different in terms of both

structure and related assumptions. In milliScope, we adopt a multi-stage data transformer

which is not tied to a specific document structure, nor does it require meaningful user input

in the form of regular expression creation.

1.1 Dissertation Statement and Contributions

The dissertation statement is formulated as follows:

Thesis Statement: The impact of milliBottlenecks for n-tier application on modern com-

pute cloud present the challenges of quality of service that can be detected, analyzed, and

understood through an fine-grained monitoring software that achieves both performance,

low overhead at high frequency, and high accuracy.

In summary, our contributions is the fine-grained monitoring framework for performance

debugging of n-tier web service, milliScope. To the best of our knowledge, milliScope is the

first millisecond granularity software-based resource and event monitor for distributed sys-

tems. It provides a fine-grained monitoring framework composed of different mScopeMoni-

tors, mScopeDataTransformer and mScopeDB, which used together can provide a complete

system performance profile. More specifically, our contributions are as follows:
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• We present a framework that provides fine-grained monitoring data and distributed

event correlation across a variety of native logs. The framework contains resource mon-

itoring tools, which help researchers check the utilization level of system resources,

and the event monitoring tools that would be able to show the synchronicity of events

and correlating variables. Inferring these properties from pre-existing logs or by mak-

ing simplifying assumptions about the workflow model are not applicable, since these

techniques would limit the effectiveness and usefulness of the monitoring framework.

Besides, we provide an interface that is able to easily reconstruct the causal path and

profile the execution performance for each request. Such an interface should relate the

execution time the resource consumption of each node, thus enabling researchers to

account for a significant fraction of the system’s latency and to identify the component

of a system bottleneck. Previous research has shown that a bottleneck cannot be

detected using hardware utilization alone [82].

• We conduct several illustrative scenarios in which our fine-grained monitoring tool

successfully diagnoses the response time anomalies caused by milliBottlenecks. With

our framework, we are able to “scale the mountain” of data to look for the root cause of

observed performance anomalies. In these scenarios, we discover the milliBottlenecks

that cause the very long response time requests, but they occur for different reasons,

database I/O activities and memory thrashing respectively.

• We demonstrate our event monitoring tools achieve low overhead and high accuracy

simultaneously. As the first step, we validate the accuracy by comparing the request

queue length for each system component between the event monitoring tools we im-

plement and a commercial request tracing firmware, Fujitsu SysViz [41]. The results

are very similar, which prove the accuracy of our monitoring tool.

As the second step, we show the overhead comparison between the system components

equipped with our monitoring tools and unmodified system components. The result

shows our monitoring tools add about 1% to 3% cpu utilization only. The overhead

caused by the monitoring tool has to be negligible to prevent performance degradation.

5



Table 1: The list of milliBottecks discovered by milliScope through multiple mScopeMoni-
tors.

Memory Thrashing Apache mScopeMonitor
Tomcat mScopeMonitor
Collectl mScopeMonitor

Database IO Apache mScopeMonitor
Tomcat mScopeMonitor
C-JDBC mScopeMonitor
Collectl mScopeMonitor

Dirty Pages in Memory Apache mScopeMonitr
Tomcat mScopeMonitor
Collectl mScopeMonitor

Container Cross-Tier Overflow Nginx mScopeMonitor
Tomcat mScopeMonitor
Collectl mScopeMonitor
Lockstat mScopeMonitor

Meanwhile, the monitoring tool also has to record the execution history for each

request. Reducing the overhead by instituting sampling is not an option, because

the milliBottleneck could appear and disappear between sampling intervals due to its

extremely short lifespan.

We have successfully discovered several milliBottlenecks as listed in Table 1 though

milliScope.

Portions of this research were previously published and presented. milliScope, which is

the first millisecond granularity software-based resource and event monitor for distributed

systems, in the 37th International Conference on Distributed Computing Systems (ICDCS’17) [42].

Besides, milliScope has been applied on performance debugging of complex n-tier applica-

tions in cloud environments, and it has been successfully made contribution towards fine-

grained system researches [60] [81] [88].

1.2 Outline

This dissertation is organized as follows. In Chapter 2, we present “milliScope” which is the

first millisecond-granularity software-based resource and event monitoring for distributed

systems. We discuss the components of milliScope, including the resource mScopeMonitors,

the event mScopeMonitors, the data transformation platform mScopeDataTransfromer, and

6



our dynamic data warehouse mScopeDB. Chapter 3 conducts several illustrative scenarios

in which milliScope successfully diagnoses the response time anomalies caused by milli-

Bottlenecks. Chpater 4 demonstrates more evaluations to validate the accuracy and the

low oveerhead of our mScopeMonitors. In Chapter 5, we provide background on end-to-

end tracing among the components of a distributed system. We conclude with some final

remarks in Chapter 6.

7



CHAPTER II

MILLISCOPE

milliScope [42] is a monitoring framework for n-tier applications which is built to document

system phenomenon at millisecond granularity. It enables researchers to systematically

reason about the relationships among individual component servers and corresponding re-

sources. Section 2.1 introduces the past and the challenges of milliBottleneck research and

Section 2.2 shows the data flow of milliScope. We present both resource mScopeMonitors

(Section 2.3) and event mScopeMonitors (Section 2.4). We conclude that milliScope pro-

vides a unified interface for researchers to perform advanced analysis on these data more

easily in Section 2.6.

2.1 Introduction

Previous researchers [76] [79] have found short-lived bottlenecks can introduce abnormal

latency, i.e., system response times growing to 1 to 2 orders of magnitude greater than

their average. According to an Amazon report [1], an increase of 100 milliseconds in system

latency can lead to a 1% loss in sales. Isolating the root cause of these bottlenecks is

challenging because of their fleeting nature and the large number of potential causes [80] [78].

Diagnosing very short bottlenecks in complex distributed systems necessitates researchers

collecting measurements on many different system resources from potentially different mon-

itors. For instance, individual, system-level monitors like SAR and IOstat can provide im-

portant system resource metrics at an individual node level [32]. Consequently, researchers

need a framework to integrate and correlate these different monitors’ measurements. More-

over, these measurements need to occur at very fine-grained timescales on the order of tens

of milliseconds. The fact that no single, comprehensive utility exists speaks to the difficulty

in diagnosing short-lived performance anomalies in large-scale systems.

In this chapter, we present milliScope, the first millisecond granularity software-based

8



Figure 3: The data transformation flow of milliScope. The event mScopeMonitors capture
timestamps, as shown in Figure 4, in the component logs, while the resource mScope-
Monitors record the system resource utilization. mScopeDataTranformer converts these
unstructured data to structured tuples and loads them into a dynamic data warehouse,
mScopeDB, for advanced analysis.

resource and event monitor for distributed systems, which has both acceptable perfor-

mance (low overhead at high measurement frequency) and high accuracy when compared

to other firmware monitors, such as SysViz [41]. milliScope utilizes other, widely available

monitoring tools, such as SAR, IOstat, Collectl, to monitor system resources at extremely

fine-grained timescales. To capture each request’s complete execution path and each node’s

complete execution profile in a complex distributed system, we develop our own lightweight

event mScopeMonitors. These event monitors identify the execution boundaries of the re-

quests. Our methodology is most similar to some other previous, excellent instrumentation

techniques, such as Dapper [67], Magpie [12] and X-Trace [28]. Compared with these other

approaches, our event mScopeMonitors impose negligible overhead by leveraging the native

logging infrastructure accompanying each component server. Each request receives a unique

identifier that accompanies the request as it propagates across the system. As system com-

ponents process requests, the corresponding unique identifiers are recorded at millisecond

granularity in the components’ logs, creating a composite of the components’ execution

boundaries.

Researchers need to be able to connect the critical points in a system’s infrastructure

to components’ intact performance profiles to successfully debug performance anomalies.
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Constructing complete performance profiles requires a large number of measurements dis-

tributed over disparate monitoring logs to be merged and integrated. milliScope’s fine-

grained monitoring framework supports joining monitoring records generated by multiple

mScopeMonitors. This integration enables researchers to analyze the distributed system

performance across a wide variety of use cases. Concretely, milliScope contains its own

data transformation tool, mScopeDataTransformer, which adopts a multi-stage parsing ap-

proach for enriching the semantics and syntax of ambiguous log messages. At the end of the

pipeline, these semi-structured data are transformed into structured tuples and loaded into

a dynamic data warehouse, mScopeDB. By encapsulating the diversity of monitoring tools

through a uniform interface, milliScope is capable of correlating information across several

system components at ideal granularity. Researchers are then able to use the collected and

integrated information to more easily diagnose the root cause of performance anomalies.

The monitoring facility needs to capture each request while minimizing the amount

of overhead it imposes on the system-under-study to prevent overall system performance

degradation. A lightweight, fine-grained monitoring tool needs to achieve the following

objectives in order for it be considered “complete:”

• Reconstruct the causal path for each request by reviewing the execution time spent

on each nodeenabling an administrator to account for a significant fraction of the

systems latency and identify the location of a system bottleneck. Previous Research

has shown that a bottleneck cannot be detected using hardware utilization alone.

• The overhead caused by the monitoring tool has to be negligible to prevent per-

formance degradation. On the other hand, the monitoring tool has to record the

execution history for each request. Reducing the overhead by instituting sampling is

not an option, because the very short bottleneck could appear and disappear between

sampling intervals due to its extremely short lifespan.

• The monitoring tool can be applied in a general workflow. Knowledge of the specific

middleware or applications can be acquired in order to do instrumentation, but in-

ferring causality by using the synchronicity of events, by correlating variables from
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pre-existing logs or by making simplifying assumptions about the workflow model are

not applicable, since these techniques would limit the effectiveness and usefulness of

the monitoring tool.

We present two illustrative scenarios in which milliScope successfully diagnoses the re-

sponse time anomalies caused by very short bottlenecks. These two scenarios look similar at

first glance. They both exhibit requests with very long response times occurring over short

time spans, but these long-running requests materialize due to different circumstances. In

the first scenario, IO activities on the database server induce very long requests while the

number of dirty page reaches a critical threshold on the web and application servers in

the second situation. By integrating the tracing results from the resource mScopeMonitors

and the event mScopeMonitors, milliScope provides the requisite monitoring data resolu-

tion to successfully diagnose response time anomalies caused by very short bottlenecks.

Thus, the case studies demonstrate the benefits of milliScope: (1) it is able to zoom into

the specific system components at fine-grained timescale granularity and (2) it can iden-

tify the root causes of very short bottlenecks, which provide opportunities for performance

improvement.

2.2 milliScope Data Flow

The main data flow of milliScope is presented in Figure 3. The resource mScopeMonitors

record the system resource utilization, while the event mScopeMonitors capture timestamps

as shown in Figure 4. While the details of the resource mScopmonitors and the event

mScopeMonitors would be discussed later in Section 2.3 and Section 2.4 respectively, we

would like to describe the data transformation in milliScope mainly here.

mScopeDataTransformer makes several passes over specified log files to transform the

monitoring data into structured tuples, which can be loaded later into our dynamic data

warehouse, mScopeDB. With each pass, additional semantics are added to the files to

support a uniform downstream parsing activity. mScopeDataTransformer contains mul-

tiple customized parsers, converters and data importers to handle each of the different

mScopeMonitors in the infrastructure. For example, SAR mScopeMonitors log files might
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be enriched over several passes with SAR-specific semantics, or files might be transformed

directly through a one-pass customized parser like Collectl mScopeMonitors.

mScopeDB is a dynamic data warehouse for persisting performance data generated by

milliScope. Concretely, it uses four static tables to store data loading-metadata like en-

vironmental configuration and dynamically created tables to persist the data like CPU,

Memory, Network and I/O originating from resource mScopeMonitors. The event mScope-

Monitor data and the component boundary timestamps are also treated as another type

of resource. As mentioned in the previous section, mScopeDataTransformer creates and

populates these dynamic tables on-the-fly. Our dynamic data warehousing approach aims

to hide some of the complexity associated with analyzing a large amount of performance

data collected from a variety of sources. For instance, researchers might wonder if any disk

activities happen during the period when Point-In-Time response time fluctuates heavily as

in Figure 2. With mScopeDB, researchers are able to explore the disk utilization scenario

across different component nodes, and observe in this case that the disk of the database

node has reached full utilization during this short span.

Analyzing the performance and scalability measurements of n-tier applications is a te-

dious process. Researchers often do not know prior to doing an analysis which resource is

responsible for creating a particular bottleneck. For example, an issue might be caused by

CPU at first glance, but after more detailed data analysis, researchers might find most of

the CPU utilization is attributed to waiting for I/O activities. This small example high-

lights some of the performance diagnosis challenges. First, it demonstrates the need to

collect data from a variety of data sources. It also demonstrates the need to integrate this

data across space and time to correctly isolate and diagnose performance anomalies. Our

flexible, dynamic approach to data warehouse schema creation addresses both of these re-

quirements. The dynamically created tables provide the flexibility for storing the variety of

data coming from many different mScopeMonitors, such as SAR mScopeMonitor or Apache

mScopeMonitor. Secondly, the necessary relationships for integrating the data can be built

as the tables are constructed, since the data warehouse schema is built from the bottom-up

one table at a time. With mScopeDB, users have the necessary tools to identify abnormal
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patterns in system performance and debug accordingly.

2.3 Resource mScopeMonitors

Applications produce a variety of resource consumption situations. To understand these

usage and capability scenarios, milliScope uses several resource mScopeMonitors to monitor

the utilization of targeted resources on specific system components. Currently, resource

mScopeMonitors support a variety of resource monitoring tools such as SAR, IOstat and

Collectl.

Different mScopeMonitors use different log formats. For example, SAR mScopeMonitor

reports monitoring data in pure text format by default, while Collectl mScopeMonitor is

able to log monitoring data in both plain text and csv file formats. The number of possible

monitoring variables that users can arbitrarily add to the variability of the log file format

and structure. Users might decide to monitor CPU-related variables, or they might want to

only monitor overall CPU and IO utilization. The variety of log format and the volume of

data increase the difficulty of analysis. milliScope manages the sundry file structures and

data formats through mScopeDataTransformer.

2.4 Event mScopeMonitors

2.4.1 Distributed Event Monitoring & Logging

In addition to the data transformation utility described in Section 2.2, we have developed

event mScopeMonitors–lightweight, scalable, and precise request flow tracing tools that

can identify the execution boundary of each request. This comprehensive utility, which

leverages existing logging infrastructure to minimize overhead, provides complete system

component coverage. This enables these tools to reveal request dependencies and correlate

events (generated by request activity) with resource mScopeMonitor data.

Each event mScopeMonitor modifies the component source code to collect request-

specific execution information. Generally, it makes three types of code modifications using

code specialization techniques: generating request-specific timestamps, adding logging to

output timestamps and inserting unique identifiers into requests. The event mScopeMonitor
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Figure 4: Each event mScopeMonitor records four timestamps for each request on each
component, which can be used to rebuild the causal relationship.

has dual objectives: detect abnormal phenomena, like the one presented in the Point-in-

Time response time graph in Figure 2, and provide sufficient information to support a

detailed diagnosis of the problem. For example, to identify the server causing VLRT re-

quests and contributing to queue amplification, we need to know the contribution of each

server to the response time of each request.

2.4.2 Event of Interest

The first question is deciding how much information an event-logging monitoring tool needs

to capture in order to re-create a request’s set of related activities across a distributed

system. Removing any unnecessary data also helps to reduce a monitoring tool’s overhead–

another goal of the event mScopeMonitors.

To accomplish this end, our approach records only four timestamps for each request on

each component server that the request touches. These timestamps are as follows:

• Upstream Arrival timestamp: the timestamp when the request arrives at the compo-

nent server from an upstream tier.

• Upstream Departure timestamp: the timestamp when the request is returned to an
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upstream server.

• Downstream Sending timestamp: the timestamp when the request leaves the compo-

nent server for a downstream server.

• Downstream Receiving timestamp: the timestamp when the request is returned from

a downstream server.

To identify a specific request’s causally-related activities occurring across an n-tier sys-

tem, Apache mScopeMonitor inserts a static, fixed-width request ID into the URL, and this

request ID propagates to downstream tiers as a URL parameter or as part of a comment to

a SQL query. By joining the tracing records containing the same request ID located in the

event mScopeMonitor log files, milliScope is able to reconstruct the execution path explic-

itly, as Figure 4 shows. This enables milliScope to establish happens-before relationships

among component servers in the system without making any assumptions about the inter-

actions among servers. This data can also be used to calculate metrics useful for filtering

potential bottlenecks. For example, once we calculate the instantaneous number of queued

requests for each tier for the same period as Figure 2, we find the pushback phenomena

occurs when the database tier’s queue length increases concurrently with the other tiers’,

as shown in Figure 7.

2.4.3 Specialized Logging Facilities

Logging activities have been known to cause a dramatic reduction in performance by in-

troducing significant overhead, since they involve a lot of CPU and IO operations [72].

Previous monitoring tools such as Dapper [67] and Zipkin [5] have used sampling to reduce

their overhead. However, as we saw in Figure 2, VSBs (very short bottlenecks) probably

only endure for tens or hundreds of milliseconds, and would not have been detectable with

sampling intervals of seconds or minutes [77].

The event mScopeMonitors by design trace all request activities, so our tool needs to

intelligently manage logging to limit its overhead. An intuitive and common approach for

handling the IO associated with logging is to leverage the existing logging facility of a host,
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since it enables runtime logging without modifying the application binary. Concretely, the

event mScopeMonitors modify the source code of software components to integrate the

previously mentioned timestamps into existing log files. Using deliberate specification in

the source code, the overhead can be reduced to 1% to 3% CPU utilization. We illustrate

the detail of specialization using Apache as an example in Section 2.4.4.

2.4.4 Specialized Apache Logging Facilities

We use Figure 4 to illustrate the sequence of events to log a request with Apache mScope-

Monitor.

Since Apache is the first-tier among n-tier systems, it would insert a unique request ID

into the URL and propagate it to downstream tiers. For example, the original request was:

http://rubbos/StoriesOfTheDay

Under Apache mScopeMonitor, the web server would generate a unique ID and attach

it at the end of the url:

http://rubbos/StoriesOfTheDay?ID=XXX

The application server will retrieve the ID (by simple instrumentation) and send it to

the corresponding SQL statement to retrieve related data, and the ID is included as part

of a comment to the SQL statement:

SELECT id,title FROM stories /*ID=XXX*/

In terms of timestamps, the original Apache source code inherently records the Upstream

Arrival and Upstream Departure timestamps for each request that it receives. These can

be used to calculate the response time of each request; however, obtaining the intermediate

Downstream Sending and Downstream Receiving timestamps for requests associated with

Apache/Tomcat communication via ModJK, an Apache plugin for connecting to Tomcat,

is non-trivial. First, we extend the response data structure request rec in the standard

header template include/httpd.h by adding variables for storing the Downstream Sending

and Downstream Receiving timestamps as follows:
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apr time t connector stime;

Then, we modify mod jk.c, the module responsible for communicating with Tomcat,

by adding calls to the Apache Portable Runtime (APR) library to record the Downstream

Sending timestamp and Downstream Receiving timestamp as follows:

r→connector stime = apr time now();

Lastly, to output this added information (i.e., the Downstream Sending timestamp and

Downstream Receiving timestamp variables added to request rec) in the Apache log files,

we modify modules/loggers/mod log config.c to log timestamps as follows:

apr psprintf(” %” APR TIME T FMT,

(r→connector stime));

2.4.5 Specialized Nginx Logging Facilities

The code specialization of Nginx follows the same methodology as shown in Figure 4. Nginx

as well as Apache is the first-tier among n-tier systems, it would insert a unique request ID

into the URL and propagate it to downstream tiers. The detail of request ID retrieve and

insertion has been illustrated in Section 2.4.4.

Again, In terms of timestamps, like Apache, the original Nginx source code inherently

records the Upstream Arrival and Upstream Departure timestamps for each request that

it receives. These can be used to calculate the response time of each request; however,

obtaining the intermediate Downstream Sending and Downstream Receiving timestamps

for requests associated with Nginx/Tomcat communication is non-trivial. First, we ex-

tend the response data structure ngx http upstream state t in the standard header template

http/ngx http upstream.h by adding variables for storing the Downstream Sending and

Downstream Receiving timestamps as follows:

time t TCST sec;

ngx uint t TCST msec;
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time t TCET sec;

ngx uint t TCET msec;

The time t type variables would be responsible for up to second level granularity, while

the ngx uint t type variable would store the millisecond part for the corresponding times-

tamps. Then, we modify http/ngx http upstream.c. When nginx is ready to forward the

request to the component nodes at the downstream tier, it records the Downstream Sending

timestamp from ngx time t data structure as follows:

u→state→TCST sec = tp→sec;

u→state→TCST msec = tp→msec;

, while Nginx receives the response from downstream tier node, it records the Down-

stream Receiving timestamp as follows:

u→state→TCET sec = tp→sec;

u→state→TCET msec = tp→msec;

These timestamps have to be encompassed into a string that would be logged into log file

eventually. To achieve that, we add one line of source code in function ngx http upstream response time variable

as follows:

p = ngx sprintf(p, ”TCST(ms)=%03M TCET(ms)=%T%03M”,

state[i].TCST sec, state[i].TCST msec,

state[i].TCET sec, state[i].TCET msec);

Lastly, to output this added information (i.e., the Downstream Sending timestamp and

Downstream Receiving timestamp variables in the string variable p) in the Nginx log files, we

modify the function ngx http log request time in the file http/modules/ngx http log module.c

to log timestamps as follows:

return ngx sprintf(buf, ”ST(ms)=%T%03M ET(ms)=%T%03M”,

r→start sec, r→start msec, tp→sec, tp→msec);
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Figure 5: The work flow of milliBottleneck discovery. Users define the configuration file at
first, and the script generator generates scripts which set up the experiment environment
and deploy milliScope as well as other softwares. mScopeDataTransformer converts these
unstructured data to structured tuples in mScopeDB as described in Figure 3 for advanced
analysis.

2.5 Open-source milliScope

We have released the source code of the milliScope as well as related scripts of the experi-

ments on our website [3], and we aim to help researchers detect the milliBottlenecks on more

scenarios easily. The performance unpredictability associated milliBottlenecks has impeded

the migration of the applications from in house infrastructures to public clouds. By turn-

ing milliScope as an open-source project, more researchers could utilize our fine-grained

monitoring framework on other scenarios to validate if there are more milliBottlenecks

existing. Besides, through turning milliScope as an open source project, researchers are

able to contribute more mScopeMonitor components, port them to other platforms, and

achieve the growth of the milliScope ecosystem. Figure 5 describes the scope of source

code releasing and the work flow of milliBottleneck discovery. The users first define the

configuration files, and then the script generator would generate the corresponding scripts

to set up the experimental environment and deploy mScopeMonitors as well as other soft-

wares. Once the experiment is finished, mScopeDataTransformer collects the native logs

and converts these unstructured data to structured tuples in mScopeDB, while milliAnalyst
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would investigate the reason of the performance variation if it exists. If the root cause of

milliBottleneck was out of the scope of monitoring, the users would refine the configuration

files and rerun the experiments. Currently, we are on the path to release the source code of

these components, including script generator, mScopeMonitors, mScopeDataTransformer

and milliAnalyst. Researchers would be able to quantify the impact of the milliBottlenecks

and improve the Quality of Service (Qos) of the could service easily in the future.

2.6 Conclusion

This chapter presents the first part of my core thesis research that is “milliScope”, the

first millisecond-granularity software-based resource and event monitoring for distributed

systems. First, Section 2.2 briefly discusses the data transformation platform, mScop-

DataTransformer, and our dynamic data warehouse, mScopeDB. After that, Section 2.3

describes the resource mScopeMonitors, while Section 2.4 discloses the details of our own

event mScopeMonitors. milliScope provides a fine-grained monitoring framework composed

of different mScopeMonitors, mScopeDataTransformer and mScopeDB, which used together

can provide a complete system performance profile.

20



CHAPTER III

MILLIBOTTLENECK

This chapter presents the second study of my core thesis research that is the two illustra-

tive scenarios of milliBottleneck detection when we apply milliScope to monitor the system

utilization and related events and diagnose the root cause of the milliBottleneck. In Sec-

tion 3.1, we introduce the background of milliBottlenecks, while we describe our experiment

setup in Section 3.2. Section 3.3 discovers that database IO activities results in the drastic

increase in Point-In-Time response time which grows from 20 ms to just less than 500 ms

in hundreds of millisecond interval. In Section 3.4, we demonstrate that memory thrashing

should be responsible for the milliBottlenecks occurring at two different tiers of a n-tier

application in five second period. For both cases, milliScope makes no assumption about

the origin of milliBottlencks but discovers the system component that cause the VLRT re-

quests successfully. Finally, Section 3.6 provides an overview of related work in this area,

and Section 3.7 concludes this chapter.

3.1 Introduction

milliBottlenecks emerge in web-facing applicatons and cause long-tail latency problem [75]

when a majority of normal queries responding within milliseconds appear with a non-trivial

number of queries with very long response time (VLRT), on the order of seconds. Although

there have been several studies on various aspects of milliBottlenecks, practitioners continue

to report real-world problems recently [22] [38] [46] [85]. Moreover, due to the management

concerns with milliBottlenecks and long-tail latency, data centers persist low dutilization

levels to prevent from the very long response time [45] [49].

The technical challenges in milliBottleneck research arise from the lacking of fine-grained

monitoring tools and from the variety causes of milliBottlenecks, which can be divided

into three categories. First, the uneven resource is required for n-tier applications with

apparently uniform workload [37]. For example, web search of popular terms can return
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many more results than normal terms. Second, the resource contention in single nodes

is triggered by busty workload, such as interference by “noisy neighbors” [58] [73] [83].

Third, the resource contention is amplified by dependencies among distributed nodes, a

phenomenon known as “Cross-Tier Queue Overflow”. Although the execution of one request

by itself would only take milliseconds, it might be observed as the very long response time

request (VLRT) under moderate average resource utilization (e,g,. 50%) of all participating

nodes. Therefore, milliBottlenecks may arise independently even in distributed systems

where the average system utilization is far from saturation. Due to the dependencies and

interactions among components, the performance of distributed systems is far more complex

than a single server’s behavior [55].

To study the milliBottlencks and the induced very long response time (VLRT) re-

quests, we need an infrastructure capable of providing fine-grained monitoring data and

linking these data to information about requests dependencies and causality so that the

researchers are able to do advanced analysis easily. Here, we have to point out that sam-

pling methods are incapable of such fine-grained monitoring task since they can miss peaks

like the one shown in Figure 2. To make milliBottleneck detection possible, Fugitsu SysViz

uses special server hardware connected to network witches to trace the packets of the re-

quest [41]. Instead of hardware-based solution, we propose milliScope as the first software-

based millisecond-level resource and event monitoring solution for distributed system.

As previous works have shown, VLRT requests can occur for very different reasons,

including CPU dynamic voltage and frequency scaling (DVFS) control at the architectural

layer [80], Java garbage collection (GC) at the system software layer [79], virtual machine

(VM) consolidation at the VM layer [78], and performance interference of memory thrash-

ing [59]. In this chapter, we provide two illustrative scenarios in which milliScope: collects

the data from the event mScopeMonitors and the resource mScopeMonitors, transforms

the native logs into structured data through mScopeDataTransformer and loads it into

mScopeDB. With milliScope, we are able to “scale the mountain” of data to look for the

root cause of observed performance anomalies. In both scenarios, we discover that the mil-

liBottlenecks cause the VLRT requests, but they occur for different reasons, database I/O

22



Web  

Server 

Physical 

Node 

App  

Server 

DB  

Server 

Hypervisor 

Physical 

Node 

Physical 

Node 

Physical 

Node 

Middleware 

Server 

Figure 6: Dedicated deployment of a 4-tier application system with four software servers
(i.e., web, application, middleware, and database) and four physical hardware nodes

activities and memory thrashing respectively.

3.2 Experimental Setup

While consolidation in practice may be applied to any type of application, the focus of this

chapter is n-tier applications with LAMP (Linux, Apache, MySQL, and PHP) implemen-

tations. Typically, n-tier applications are organized as a pipeline of servers, starting at web

servers (e.g., Apache), through application servers (e.g., Tomcat), and ending with database

servers (e.g., MySQL) organized in three tiers or four where an additional layer contains

an application, or middleware, for clustering (e.g., C-JDBC). This organization, commonly

referred to as n-tier architecture (e.g., 4-tier in Figure 6), serves many important web-facing

applications such as e-commerce, customer relationship management, and logistics.

In our experiment, we deploy the popular n-tier application benchmark system RUBBoS

[4], based on bulletin board applications such as Slashdot. RUBBoS has been widely used

in numerous research efforts due to its real production system significance. The workload

includes 24 different interactions such as “view story” and “register user”. The benchmark

includes two kinds of workload modes: browse-only and read/write mixes. In this chapter,

we focus entirely on the read/write workloads, and specifically, the ratio of write request

to all is 10%. Our default experiment trial consists of a three-minute ramp-up, a three-

minute runtime, and a thirty-second rampdown. The hardware and software specifications

are listed in Table 2.

0In this chapter, we refer to server in the context of computer programs serving client requests. Hardware
is referred to as physical computing node or node for short.
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Table 2: Summary of experimental setup (i.e., hardware, operating system, software).
CPU 2 Quad Q9650 3GHz *

4CPU
Memory 16GB
HDD SATA, 7,200RPM, 500GB
Network I/F 1Gbps

Web Server HTTPD-2.2.22
App Server Apache-Tomcat-5.5.17
Connector Tomcat-Connectors-

1.2.32-src
Cluster middleware C-JDBC 2.0.2
DB Server MySQL-5.5.19-Linux2.6-

i686
Java JDK1.6.0 27
Monitoring Tools Collectl

Operating System RHEL Server 6.3 64-bit
OS Kernel 2.6.32-279.22.1.e16.x86 64

3.3 Database IO as the milliBottleneck

In our first case, we review the period in which the maximal Point-In-Time response time

suddenly becomes twenty times larger than the average response time as shown in Figure 2.

This period only exists for hundreds of milliseconds, and the Point-In-Time response time

returns to normal quickly. Coarse-grained monitoring tools, such as periodically sampling

at one second intervals, might overlook the peak and miss the opportunity for performance

improvement.

To better understand the reason for such performance degradation, we calculate the

instantaneous, concurrent requests in each tier using the monitoring data provided by the

event mScopeMonitors. Specifically, we use window with 50 millisecond window size, and

the requests are attributed to designated window depending on the starting timestamp. For

example, if there are three windows representing the time interval from 0 to 50, from 51

to 100 and from 101 150 respectively, and if there is a request staring at 40 millisecond

timestamp and ending at 120 millisecond timestamp, this request will increase the number

of instantaneous queue length for the window number one (e.g. from 0 to 50) since we use

starting timestamp to decide which window the request belongs to.

Other event monitoring tools cannot usually provide the correct number of concurrent
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Figure 7: Instantaneous # of queued requests for each tier for the same period as shown in
Figure 2. Pushback is found, since the database queue length increases concurrently with
the other tiers’ increases.

requests, since they usually adopt sampling to reduce overhead. As depicted in Figure 7,

obvious cross-tier pushback phenomena [77] happens, evidenced by the concurrent increas-

ing queue lengths of the database tier and the other tiers. To investigate the reason why

the queue length persists for hundreds of milliseconds, we apply Collectl mScopeMonitor

to interrogate the resource utilization of each tier during this period. Since milliScope has

transformed the native logs into structured tuples housed in our dynamic data warehouse,

mScopeDB, we can easily associate monitoring data across several system components dur-

ing the same period. As displayed in Figure 8, the disk utilization of the database tier varies

dramatically, while the disk utilization of the other tiers remains consistently low. We con-

clude this case by showing the high correlation that exists between the disk utilization of

the database and the Apache queue length found in Figure 9. This relationship provides

strong evidence for the database IO causing the milliBottleneck. Previous research has

shown short lifespan IO activity is triggered by the database flushing its logs from memory

to disk in order to maintain consistency [43].
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Figure 8: Disk Utilization at different n-tier component nodes in the same period as shown
in Figure 2. We observe that disk of Mysql has reached full utilization a couple of times
during this period.

3.4 Memory Dirty-Page as the milliBottleneck

A dramatic increase in Point-In-Time response time might be caused by different system

components and different system layers. With milliScope, researchers are able to utilize a

variety of the fine-grained resource mScopeMonitors and integrate the related data easily.

In this section, we show another example of our system performance debugging system, mil-

liScope, successfully detecting another performance anomaly. First, we observe the Point-

In-Time response time reaches one thousand milliseconds twice while the average response

time is less than twenty milliseconds during a five second interval as shown in Figure 10. Af-

ter identifying the execution boundary of each request with the event mScopeMonitors and

calculating the request queue lengths for each tier in Figure 11, we found these two similar

looking Point-In-Time response time peaks. These peaks however are actually caused by

different system components in the n-tier system. Specifically, during the first peak, only

the request queue length of Apache increases, while the request queue length at both Apache

and Tomcat increase at the second peak. In the other words, cross-tier queue amplification

is observed only at the second Point-In-Time response time peak.
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Figure 9: Further investigation for Figure 2 via milliScope. Once the IO of the database
tier is saturated because the database flushes logs from memory to disk, the requests at the
Apache tier starts queueing. This figure shows disk IO is the milliBottleneck and makes
the Point-In-Time response time increase dramatically during the milliBottleneck period.

Checking the monitoring data from Collectl mScopeMonitor, we found the CPU uti-

lization of Apache and Tomcat are saturated at the first and second peak respectively, as

shown in Figure 12. However, the reason for CPU saturation differs from the previous case

study (IO activities), since we do not observe high IO utilization in this period. milliScope

is a fine-grained monitoring framework, which allows researchers to extend the monitoring

scope easily. In this case, we utilize another subsystem in Collectl mScopeMonitor to real-

ize the memory usage scenario. Once again, milliScope converts the native log of Collectl

mScopeMonitor into structured tuples through mScopeDataTransformers multi-stage trans-

formation prior to loading the data into the data warehouse. As shown in Figure 13, the

abrupt drop in dirty page cache size correlates with CPU saturation, which suggests that

the dirty page recycling on the Apache and Tomcat tiers are the reason for the increasing

Point-In-Time response times during these periods.

3.5 Docker for Cross-Tier Queue Overflow

The long tail latency problem arises in distributed systems with tightly-coupled servers us-

ing RPC-style request-response communications: Cross-Tier Queue Overflow (CTQO). Re-

cently, researchers have shown that CTQO can be avoided by replacing the server dripping
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Figure 10: Point-In-Time response time for a n-tier system reaches 1,000 millisecond twice
while the average response time is less than twenty millisecond. Although they look similar
at the first glance, they are actually caused by different components of an n-tier system.

packets with an asynchronous server [81]. By repalcing all servers with their asynchronous

versions, CTQO phenomena can be removed despite workload bursts in moderate average

resource utilization. To study if the argument is also validated when the n-tier application

is running in virtual machines or containers to share the hardware resource with other ap-

plications in the cloud environment, we extend the monitoring scope by introduce the new

event and resource mScopeMonitors: Nginx mScopeMonitor and LockStat mScopeMonitor.

Concretely, Nginx is an event-based web server, while LockStat monitors the status of locks

in the kernel space.

Virtualization technology is popular because it allows multiple applications sharing the

computing infrastructures such as computing clouds with little or zero interference. The

applications running inside the container or virtual machines recognize nothing about the

virtualized environments, while the hypervisor or container daemon is responsible for hard-

ware resource sharing. However, contrary to the above argument, we found evidence showing

that the cloud environment imposed by virtualization technology can change the behavior

of the application and cause the performance penalty that supposes to be eliminated by

event-driven architecture.

Since Apache is the source of VLRT requests in both case described in Section 3.3
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Figure 11: Request queue length for each tier shows an interesting phenomena. During the
first peak, only request queue length at Apache increases, but the request queue length at
both Apache and Tomcat increase at the second peak.

and Section 3.4, we replace the synchronous Apache with an asynchronous web server,

Nginx, to solve the upstream CTQO problem and remove VLRT requests. Furthermore,

each component server is running inside a docker container to achieve better scalability.

Previous research has proved the Nginx indeed will not drop packets [81] in the dedicated

environment. However, our experiments show that asynchronous application still causes

CTQO problem because of the synchronous design of container technology, which is Docker

in this case.

Since the experiment setup is slightly different from Section 3.2, we describe the detail of

the docker experiment here. While consolidation in practice may be applied to any type of

application running inside docker container, the focus of our experiment is to demonstrate

the synchronous architecture of container technology that will have impact of performance

for n-tier application even though it adopts asynchronous design aiming at removing CTQO.

Hence, for each physical computing node, we only run one component server (including

Nginx, Tomcat, Mysql) in one container. Hardware and software specification is listed in

Table 3. Moreover, we enable lockstat in linux kernel to monitor the status of locks in kernel

space. In addition, we use ”devicemapper” rather than ”aufs” as storage driver for docker,

since using “aufs” as storage driver and lockstat simultaneously will cause kernel panic. We
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Figure 12: Checking the monitoring data through milliScope, we found CPU utilization of
Apache and Tomcat are saturated at the first and the second peak respectively.

adopt RUBBoS benchmark with 6,000 workload executing on browse-only mode.

The experimental results in Figure 14 show that milliBottleneck is observed in a hun-

dreds of millisecond period, in which the Point-In-Time response time for a n-tier system

reaches 500 millisecond while the average response time is around twenty millisecond. More-

over, Figure 15 shows the queue length of both Nginx and Tomcat is increasing simulta-

neously that implies Nginx fails at removing CTQO phenomena. When we overhauled the

monitoring data collected from Collectl mScopeMonitors at each component server host,

we found the root cause of milliBottlenecks in this period is because the CPU utilization

for the four cores of Tomcat reach over 90% as shown in Figure 16. On the other hand,

IO utilization for each tier doesn’t exceed 75% in the period milliBottleneck happened as

shown in Figure 17. Furthermore, the result from Lockstat mScopeMonitor demonstrates

that the lock holding time for “RCU read lock” at Tomcat has an obvious peak as shown

in Figure 18, since the high resource utilization would make the tasks wait for longer time

until they get enough resource to finish.

The reason for CTQO phenomena existing is because docker in its current form places

any docker commands into a work queue and executes them one at a time sequentially.
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Figure 13: Applying memory subsystem of Collectl mScopeMonitor, milliScope transforms
the relative logs, such as number of dirty page, to structured tuples and loads them into
mScopeDB. We demonstrate the root cause of CPU saturated is due to dirty page recycling.

In the other hand, docker applies synchronous architecture to perform applications’ re-

quests. In this case, a simply asynchronous function call, such as downloading image for

example, would incorporating docker command would get backed very quickly but overload

the docker work queue, where the other function calls waiting for exectution. We adopt

the default parameters setting for linux kernel 4.4, which limits the “TasksMax” system

attribute as 512. A request would be blocked if the the threshold was reached and cause

the upstream tier queue amplification. From our observation, the Nginx-Tomcat-MySQL

configurations with default setting shows that the replacement of the synchronous Apache

with the asynchronous Nginx might fail at removing the web server from the Cross-Tier

Dependency sequence and still cause the upstream CTQO between Nginx and Tomcat due

to the synchronous architecture of virtualization technology. Potential solutions includes

increasing the value of “TaskMax” so that it reduces the chance of this situation happening.

Systems with high availability requirement might consider running docker in swarm mode,

which consists of multiple docker hosts. A running container is as a swarm service and

managed by swarm manager, which uses ingress loading balance to automatically assign

available resources to service.
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Table 3: Summary of docker experimental setup (i.e., hardware, operating system, soft-
ware).

CPU Xeon E5530 2.4GHz *
4CPU

Memory 12 GB 1066 MHz DDR2
HDD SATA, 250GB 7200 rpm

Seagate SATA disk
Network I/F 1Gbps

Web Server HTTPD-2.2.22
App Server Apache-Tomcat-5.5.17
Connector Tomcat-Connectors-

1.2.32-src
Cluster middleware C-JDBC 2.0.2
DB Server MySQL-5.5.19-Linux2.6-

i686
Java JDK1.6.0 27
Monitoring Tools Collectl
Docker version 1.12.6

Operating System Ubuntu Trusty 14.04 64-
bit

OS Kernel Linux kernel 4.4

3.6 Related Work

Diagnosing the root cause of VLRT requests is challenging due to the number of possible

offending system resources. As previous works have shown, VLRT requests can occur for

very different reasons. Potential root causes span different system levels, including CPU

dynamic voltage and frequency scaling (DVFS) control at the architectural layer [80], Java

garbage collection (GC) at the system software layer [79], and virtual machine (VM) con-

solidation at the VM layer [78] [59]. In this chapter, we utilize milliScope described in

Chapter 2 and highlight other two different reasons for the milliBottleneck, database I/O

activities and memory thrashing respectively.

The factors affecting database transaction performance have been studied and steady

progress has been made in resolving these issues [21, 23, 25]. Commit, one of the most

important functions for preserving the ACID property of transactions, has been shown to

increase database processing time because of the incurred disk access time [30]. Remesh

et al. [34] investigated the distributed real-time database system performance of commit
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Figure 14: Point-In-Time response time for a n-tier system reaches 500 millisecond while
the average response time is around twenty millisecond. Each component server is running
inside a docker container and located at different physical machines.

protocols, and proposed the OPT protocol to improve the performance of commit over

standard algorithms, such as 2PC and 3PC. Lowell et al. presented a system that reduces

the transaction overhead by replacing the standard redo log with recoverable memory [50].

Recently, with SSD (Solid State Drive) storage systems, transaction throughput has been

improved by a factor of 3.5 over traditional hard disk drive systems [44]. Recently, C. Lai

et al. have shown that single group commit, fsync, would incur large disk I/O in a short

time and degrade the system performance in cloud environment [43].

Memory thrashing due to page faults a well-known issue to system community. For ex-

ample, Banerjee et al. conducted comparative analysis for various memory over-commitment

methods which are implemented on popular hypervisors, including ESX, KVM, Hype-V and

Xen [74]. Besides, through sub-page level page shring with pathing, Gupta et al. demon-

strated the better use of host memory in Xen [33]. Moreover, Junhee et. al. showed that in

typical cloud virtualizatin environment, the memory thrashing can occur without memory

over-commitment and it can significantly limit the virtual machine consolidation ratio [60].

In this chapter, we proved that even with moderated system utilization, the mechanism of

memory thrashing, the number of dirty page reaches the threshold so the garbage collector

is executed, would cause the long milliBottleneck and increase the point-in-time response

time in a short period.
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Figure 15: Previous researches showed the asynchronous architecture, such as Nginx, is
able to removed the Cross-Tier Queue Overflow (CTQO). However, CTQO phenomena is
observed here since docker is still synchronous architecture. During the period that Point-
In-Time response increasing, the request queue length at both Nginx and Tomcat increase.

The performance variations of computing nodes makes the processing of a normal re-

quest to be unexpectedly long. According to an Amazon report [1], an increase of 100

milliseconds in system latency can lead to a 1% loss in sales. Isolating the root cause of

these bottlenecks is challenging because of their fleeting nature and the large number of

potential causes [80] [78]. Several researches have proposed solutions to the unexpected

very long response time (VLRT) requests without identifying the specific sources. For in-

stance, Dean et al. used service replication to bypass tail latency of interactive application

in Google [22], while C3 duplicated the adaptive selection scheme in storage servers to avoid

VLRT requests [69]. With milliScope, researchers and system administrators are able to

find the root cause of the milliBottlenecks and tackle the long tail problem through the

corresponding solutions.

3.7 Conclusion

Except the milliBottleneck which have been shown in previous researches, we provide two

new illustrative scenarios in Section 3.3 and Section 3.4 respectively, in which milliScope

accomplishes each of the following activities: collects data from the event mScopeMonitors

and the resource mScopeMonitors, transforms the native logs into structured data through

mScopeDataTransformer and loads it into mScopeDB. With milliScope, we are able to
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“scale the mountain” of native log that generated by different mScopeMonitors, and even-

tually look for the root cause of observed performance anomalies. In both scenarios, we

discover the milliBottlenecks that cause the VLRT requests, and we demonstrate milliScope

makes no assumptions about the origin of bottlenecks. This is exhibited by highlighting

the different reasons for the milliBottlenecks in the scenarios, database I/O activities and

memory thrashing respectively.
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(a) CPU utilization of each core for Nginx.
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(b) CPU utilization of each core for Tomcat.
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(c) CPU utilization of each core for Mysql.

Figure 16: Checking the monitoring data through milliScope, we found CPU utilization of
Tomcat are increasing obviously for all the four cores in this period.
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Figure 17: On the other hand, IO utilization for each tier doesn’t exceed 75% in the period
milliBottleneck happened.
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Figure 18: To extent the monitoring scope, we apply lockstat mScopeMonitor to check
the status of lock in the kernel space. The result shows the lock holding time for
“RCU read lock” at Tomcat has an obvious peak in this period. This demonstrates Point-
In-Time response time increases is because the increasing of CPU utilization at Tomcat
causes the Cross-Tier Queue Overflow.
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CHAPTER IV

MORE EVALUATIONS FOR MILLISCOPE

In the previous chapter, we have shown that milliScope is able to scale the mountain of

native logs, which are generated by the event mScopeMonitors and resource mScopeMoni-

tors, to detect the milliBottlenecks successfully. In this chapter, we would like to study the

characteristics of milliScope more. First, we discuss the impact of the overhead of the mon-

itoring tools in Section 4.1, and we describe our experiment setup in Section 4.2. We show

concrete experimental evidence of the accuracy through comparison between the monitoring

data of milliScope and the monitoring records of Fujitsu SysViz [41] in Section 4.3. After

that, we provide the detail of overhead of milliScope to show it is a light weight fine-grained

monitoring tool in Section 4.4. Furthermore, we demonstrate its flexibility and extensibility

in Section 4.5 and Section 4.6 respectively. Section 4.7 provides an overview of the related

work in this area. Finally, Section 4.8 concludes this chapter.

4.1 Introduction

End-to-end tracing tools have been used to analyze the distributed system performance for

a wide variety of use cases. For instance, they can be used to identify suspicious workflows

and abnormal latency. They are also helpful for improving the system’s resource efficiency

and ultimately the end user experience. According to an Amazon report [1], an increase

of 100ms in system latency can lead to a 1% loss in sales. Conversely, improvements to

their system’s performance can lead to higher business profits; however, this occurs at

diminishing returns in part because of the extremely difficult proposition of the root cause

of the milliBottlenecks among the component servers in their distributed systems with a

negligible overhead.

Currently, coarsed-grained tracing tools play key roles in performance debugging and

optimization, because they support system administrators and programmers in diagnosing

bottlenecks in distributed systems, which ultimately enables these stakeholders to overhaul
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the system’s request processing. While black box approach relies on the assumption for

the specific system models in mind, white-box approach is more generic for the dynamical

cloud environment. However, although these tracing tools in white-box category provide

different features for performance debugging, they all adopt sampling approach to reduce

monitoring overhead, which limit their availability for milliBottleneck detection.

The milliBottlenecks (e.g., JVM garbage collection and Intel SpeedStep) have been

proved to be the reason for significant performance loss, but the study of the milliBottle-

neck has been hampered due to the short lifespan [77]. Monitoring tools which sample at

time intervals measured in seconds or minutes are not capable of detecting these kind of

bottlenecks from Sampling Theory. Fugitsu SysViz [41] adopts machine learning techniques

and statistical regression to reconstruct the entire trace of each transaction executed in the

system, but it’s lack of scalability because all the servers have to be connected to passive

network tracing support network switch.

In the previous chapters, we have presented milliScope, the first millisecond granularity,

software-based resource and event monitor for distributed systems. milliScope is an end-

to-end tracing tool that is the most closely related to other previous excellent ones, such

as Dapper [67], Magpie [12] and X-Trace [28]. Instead, milliScope aims to provide each

request’s execution footprint in a distributed system while imposing negligible overhead.

Instead of extending an existing RPC library, milliScope just adds a global identifier to each

request. As the request flows through the distributed processing system, the added identifier

is propagated across the systems’ component servers. By using very simple instrumentation

at critical points in the system’s infrastructure, such as the points connecting the upstream

and downstream tiers, and capturing this minimal information in system logs, milliScope

delivers on three of the most important features of tracing:

• Precise: milliScope reconstructs the explicit causal relationship using a global identi-

fier and associated timestamps.

• LightWeight: milliScope keeps the tracing results in memory and integrates this in-

formation into the existing log files of component servers.
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Table 4: Summary of experimental setup (i.e., hardware, operating system, software).
CPU 2 Quad Q9650 3GHz *

4CPU
Memory 16GB
HDD SATA, 7,200RPM, 500GB
Network I/F 1Gbps

Web Server HTTPD-2.2.22
App Server Apache-Tomcat-5.5.17
Cluster middleware C-JDBC 2.0.2
DB Server MySQL-5.5.19-Linux2.6-

i686

Operating System RHEL Server 6.3 64-bit
OS Kernel 2.6.32-279.22.1.e16.x86 64

• Scalable: milliScope interleaves the tracing code into each component server, hence

inheriting the same degree of scalability as the underlying distributed system.

The main focus in this chapter is that we would overhaul the characteristics of milliScope

to see if it is able to achieve highly precise, lightweight, and scalable. Specifically, we

validate the precision of milliScope with Fugitsu SysViz [41], a passive network tracing tool.

In comparison to other white-box monitoring tools such as Zipkin [5], milliScope introduces

only 1% to 3% of CPU overhead into the system-under-study, without sampling, and it

helps diagnose response time anomalies caused by milliBottlenecks. We also show that

milliScope is easily plugged into other web applications by adding instrumentation in only

a few lines of source code.

4.2 Experimental Setup

We execute the RUBBoS benchmark [4] with the event mScopeMonitors and SysViz running

at the same time on their own n-tier systems (but in the same configuration) and compare

the monitoring results of each tier as determined by these two monitoring tools respectively.

The configuration we use for validation appears in Figure 19, while the hardware and

software specifications are listed in Table 4.
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Figure 19: Hardware configuration for validation experiment. The event mScopeMoni-
tos are deployed in each component server, while the SysViz machine is connected to the
network switch for passive network tracing.

4.3 Accuracy Validation

The event mScopeMonitors aim to provide just enough information to correlate the event

information with the monitoring data generated by the resource mScopeMonitors on n-tier

systems. These systems are typically organized as a pipeline of servers, starting at web

servers, through application servers, middleware servers and ending with database servers

organized in four tiers as shown in Figure 1. To validate the accuracy of each specific event

mScopeMonitor, we compare its request queue length accounting for each system component

with a commercial request tracing tool Fujitsu SysViz [41]. SysViz is able to reconstruct

the entire trace of each transaction executed in a system based on the interaction messages

collected through network taps or network switches that support passive network tracing.

Additionally, we use RUBBoS, a standard n-tier benchmark [4], to simulate bulletin board

applications such as Slashdot. The workload of RUBBoS consists of 24 different interactions

such as “view story”, and the value of the workload represents the number of concurrent

users. Each experimental trial is running for 7 minutes.

In this section, we show the queue length, an important metric that can be derived

from the request flow tracing data [77] for each tier at workload 1,000, 8,000 and 9,000 as

depicted in Figure 20, Figure 21, and Figure 22 respectively. As these figures show, the event

mScopeMonitors and SysViz determine very similar queue lengths for each tier regardless of

the scenario. Consequently, this demonstrates milliScope’s event mScopeMonitor’s ability

to trace requests accurately.
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4.4 Overhead Comparison

We evaluate the impact of logging on system performance using three metrics: system

throughput, system response time and IOWait as a component of overall CPU utilization.

We investigate the impact of monitoring-related logging on system performance by com-

paring the performance of the RUBBoS [4] benchmark when the event mScopeMonitors

are enabled on each of the component nodes of the underlying n-tier system. Figure 25

shows that there is almost no difference in the system throughput despite the fact that the

event mScopeMonitors are enable or not. Similarly, we compare the system response times

for the same benchmark and underlying system. The instrumented system experiences two

milliseconds more latency than its un-instrumented equivalent.

Figure 23 shows each node’s respective IOWait via an aggregate CPU utilization metric,

which includes the time the CPU spends in user mode, system mode and IOWait. Even

though logging is not a computationally intensive task, an efficient logging method should

not increase CPU IOWait. The graph depicts the magnitude of the IOWait penalty imposed

by the event mScopeMonitors on the modified server components relative to their unmodi-

fied counterparts. We present these utilization measurements across a range of workloads to

account for any decline in the percentage of idle time (and hence IOWait) as a consequence

of larger workloads.

Apache mScopeMonitor and C-JDBC mScopeMonitor add about 1% overhead to their

respective CPUs, which demonstrates that our monitors by integrating into the system’s ex-

isting logging infrastructure impose no additional IOWait penalty beyond what the logging

infrastructure itself contributes. On the other hand, Tomcat mScopeMonitor adds about

3% to its CPU. The difference in overhead between Tomcat mScopeMonitor and the other

mScopeMonitors is primarily due to an additional thread being created to record the times-

tamps associated with the downstream server communication. Tomcat mScopeMonitor uses

this extra thread to log variable-width data corresponding to the dynamic communication

between Tomcat and the downstream servers. We also present in Figure 24 that the dif-

ference between the event mScopeMonitor-enabled components’ aggregate disk write size

and the corresponding unmodified components’ disk write sizes for the same experiments
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and setup, as described in Section 4.2. Taking Figure 23, Figure 24, and Figure 25, we

see a favorable tradeoff. Our event mScopeMonitors actually output twice as much data to

disk, most of which is associated with the timestamps as shown in Figure 4, at the cost of

increasing overhead 1% to 3% due primarily to increased IOWait. These evaluations demon-

strate the event mScopeMonitor’s ability to provide fine-grained monitoring data with only

negligible overhead.

4.5 milliScope Flexibility & Availability

Different resource mScopeMonitors target at different system components and provide dif-

ferent numbers of variables for monitoring as shown in Table 5. Moreover, they usually

allow users to customize their reports, so hundreds of possible log formats might be gener-

ated. milliScope uses mScopeParsers to enrich the semantics and syntax of these arbitrary

log files to infer a database schema. The unstructured log files are converted into some

structured tuples through a multi-stage approach.

Table 5: Number of variables monitored by default. Users are allowed to customize the
report format, so each resource mScopeMonitor might generate hundreds of different for-
mats. milliScope handles the variety of log format through mScopeParsers as mentioned in
Section 2.2.

Monitoring Tool Number of
Monitoring Variables

SAR 8 * (Number of CPU cores)

IOStat 12 * (Number of disks)

Collectl Memory 10

Collectl Network 13 *
Subsystem (Number of network interfaces)

Another reason for the study of very short bottlenecks had been hampered is that fine-

grained monitoring requires tracing all of the requests without sampling and it produces

the voluminous amounts of data that is hard to process and analyze. In the past year, we

have executed more than four hundred of experiments in which the event mScopeMonitors

generate about fifty million entries overall cross different number of files depending on the

experiment configurations as shown in Figure 26. milliScope demonstrates its flexibility and

availability by parsing the voluminous of data and storing in mScopeDB, so that researchers
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are able to select the relevant monitoring records through structured query languages like

SQL language.

4.6 Extensibility

Our approach is fully realized when migrating milliScope to new benchmarks. With the

event mScopeMonitors already deployed onto component servers, only a few pieces of source

code need to be instrumented. A portion of the modifications for one benchmark is illus-

trated in Figure 27. Specifically, we apply milliScope to the RUBBoS and RUBiS bench-

marks. Each of these benchmarks contains more than 6,000 lines of servlet code; however,

less than 300 lines of code have to be added to make milliScope work with these applications.

To extent our code specialized methodology to more component server, we currently

rely on manual instrumentation by sophisticated programmers. However, section 2.4 has

demonstrated the number of lines to modify the original source code of component server

is usually less than 50 lines. With a few modification, component servers will be able to

record the extra metadata and utilize their existing logging facilities and achieve fine-grained

monitoring eventually. The instances shown in Section 2.4 implies that the need of source

code specialization by a programmer can be potentially eliminated by using systematical

and automated solution. One possible technique to address this issue would be annotation

language-level constructs. For example, programmers might be able to use aspect-oriented

programming in the form of AspectJ pointcuts to decorate targeted code with our mea-

surement instrumentation. We would like to see more related research in this field in the

future.

4.7 Related Work

Sampling is the most popular technique used by the end-to-end tracing infrastructures to

prevent performance degradation due to runtime and storage overhead [16] [27] [67] [66] [71].

For example, Dapper uses sampling to capture 0.01% of all trace points, that reduces the

overhead from 1.5% to 0.06% and from 16% to 0.20% in terms of throughput and response

time respectively [67]. Moreover, sampling is also helpful to limit the sizes of analysis-

specific data structure even when the trace-point records do not need to be persisted in
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online analysis scenario. Generally, the methods to determine if the trace points would

be sampled could be categorized as these three options: head-based coherent sampling,

tail-based coherent sampling, and unitary sampling [16].

Head-based coherent sampling makes a random decision for the entire workflow when the

requests enter the system, and it propagates the metadata with workflows along to indicate

whether to collect their trace points. It is popular and used by many existing tracing

implementations due to its simplicity [66] [16] [27]. Since the effective trace-point-sampling

percentage is almost always much higher than the workflow sampling percentage, head-

based coherent sampling is unable to reduce runtime and storage overhead for monitoring

tools that perserve submitter causality. For instance, although Stardust [71] only adopts

sampling rate of 10%, 97% trace points are sampled in their testbed distributed system,

Ursa Minor [6], since the system contains a cache that aggregated 32 items at a time at the

entry point.

Tail-based coherent sampling is different from the head-based coherent sampling by the

sampling decision made at the end of workflows rather than at their starting. The advantage

of delay the sampling decision is that the monitoring tool is able to choose only to collect

anomalous requests through examining their properties, such as response time. However,

the monitoring data for the requests have to be stored somewhere before the sampling

decision is made for them. A hybrid approach is also proposed in which the monitoring

tool use head-based coherent sampling, but it also records the executed tracing points in

per–node circular buffer. By doing so, the monitoring tool could backtrack and collect the

data for non-sampled workflows that appear anomalous.

Unitary sampling relies on developers setting the trace-point sampling percentage di-

rectly, and it makes sampling decision at the level of individual trace points. Developers

must decide how to sample requests at the trace points as well as how many of them would

be sampled. The sample ratio is often between 0.01% and 10% for most of monitoring infras-

tructure [16] [27] [67]. Besides, Sigelman et al. proposed an adaptive approach to capture

a set rate of trace points and dynamically adjusts the workflow sampling percentage [66],

such as five hundred trace points per second or one hundred workflows per second.
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However, sampling methods have to be avoided for fine-grained monitoring tool, such as

milliScope, because it might overlook the milliBottleneck and the very long response time

(VLRT) requests. Meanwhile, black-box monitoring approach is not capable of milliBot-

tleneck detection because it relies on pre-built analytical models and is limited to specific

workflows [12] [35] [39] [70] [20] [86]. Comparing with other approaches, milliScope imposes

negligible overhead by leveraging the native logging infrastructure accompanying each com-

ponent server. Each request receives a unique identifier that accompanies the request as it

propagates across the system. As system components process requests, the corresponding

unique identifiers are recorded at millisecond granularity in the components’ logs, creating

a composite of the components’ execution boundaries.

4.8 Conclusion

In this chapter, we overhaul the detailed characteristics of milliScope, the the first mil-

lisecond granularity software-based resource and event monitor for distributed systems.

Through multiple evaluation, we demonstrate that milliScope has both acceptable perfor-

mance (low overhead at high measurement frequency) and high accuracy when compared to

other firmware monitors. Concretely, milliScope introduces only 1% to 3% CPU overhead

without adopting sampling, but it is able to record up to two times in terms of the data size

comparing with unmodified component servers. Moreover, we validate the accuracy and

lightweight characteristics of the event mScopeMonitors and demonstrate the availability

and flexibility of millisScope through several evaluations. W also showed the flexibility of

milliScope by importing it into other web application benchmarks with few lines of source

code modification. Overall, milliScope is an important contribution towards performance

debugging and milliBottleneck detection of complex n-tier applications in cloud environ-

ments.
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Figure 20: Queue length comparison at workload 1000 between SysViz and the event
mScopeMonitors among n-Tier systems, including Apache, Tomcat, CJDBC and MySQL.
The event mScopeMonitors’ results are very similar to SysViz’s, which demonstrates the
accuracy of the event mScopeMonitors.
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Figure 21: Queue length comparison at workload 8000 between SysViz and the event
mScopeMonitors among n-Tier systems, including Apache, Tomcat, CJDBC and MySQL.
The event mScopeMonitors’ results are very similar to SysViz’s, which demonstrates the
accuracy of the event mScopeMonitors.
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Figure 22: Queue length comparison at workload 9000 between SysViz and the event
mScopeMonitors among n-Tier systems, including Apache, Tomcat, CJDBC and MySQL.
The event mScopeMonitors’ results are very similar to SysViz’s, which demonstrates the
accuracy of the event mScopeMonitors.
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(b) Overhead is about 3%.
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(c) Overhead is about 1%.

Figure 23: Compared to unmodified servers, the overhead for event mScopeMonitors are
increase 1% to 3% CPU utilization.
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(b) Write size increases around 50%.
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(c) Write size increases around 50%.

Figure 24: Compared to unmodified servers, the aggregated disk write size for event
mScopeMonitors are up to two times.
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Figure 25: Performance comparison between disable and enable mScopeMonitors using
RUBBoS benchmark on a n-tier system, in which Apache, Tomcat, CJDBC and Mysql are
running in one component node respectively.
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Figure 26: Number of files and entries generated by event mScopeMonitors among more
than four hundred experiments. milliScope demonstrates its flexibility and availability by
handling voluminous logs in varied formats.

Figure 27: Lines of instrumentation to apply milliScope to RUBBoS and RUBiS benchmark.
With more than 6,000 lines of source code for each benchmark, milliScope inserts less than
300 lines for each.
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CHAPTER V

RELATED WORK

Many end-to-end tracing implementations insert and propagate metadata (e.g., an ID) to

create correlation among individual trace points. For example, Pip [63] aims to detect

incorrect behavior by finding rare paths or those that differ greatly from expectation, while

Whodunit [16] tracks and profiles transactions flowing through system components to iden-

tify latency-inducing components and interference from concurrent transactions. Quanto

[26] uses resource attribution by power state, energy metering and causal tracking activi-

ties in a distributed-embedded system. Moreover, Stardust [71] creates queuing models to

capture workload summaries for performance prediction. Recently, Dapper [67] and Zipkin

[5] provide application-level transparency by restricting the instrumentation to common li-

braries. Pivot Tracing [51] is a monitoring framework that enables users to obtain system

metrics at runtime through dynamic instrumentation and causal tracing techniques. To

reduce the runtime overhead, most tracing infrastructures, which rely on metadata propa-

gation techniques, adopt sampling to collect relatively small numbers of tracing points or

workflows. milliScope, the event mScopeMonitors in particular, inserts a request ID as well,

but it captures the entire request execution map without the need of sample.

A few implementations establish causal relationships among variables that are exposed

in custom-written log messages. Magpie [12] adopts this approach by not only record-

ing the path of each request but also its resource consumption, while ETE [35] addresses

long response time transactions and their associated components by late binding events to

transaction definitions. Since these schema-based approaches delay determining the causal

relationship in systems until all logs are collected, it’s incompatible with sampling and less

scalable than a metadata-based propagation approach. Recently, Mystery Machine imple-

ments a measurement interface in each component server and uses the output to reconstruct

54



the execution flow across all of these traces [20], while 1prof attempts to leverage existing

log messages of systems to extract meaningful performance information, i.e., how to parse

them, and where they occur in the execution flow of a system [86].

Several end-to-end request-flow tracing systems have been built in previous research for

anomaly detection and performance correction. Magpie [12] and Pip [63] aim at identifying

anomalous requests which either have long response times or incorrect behavior by finding

rare paths that differ greatly from expectation, while Spectorscope [66] identifies anomalous

requests by comparing request-flows between ”problem” period and ”non-problem” period.

Instead of building model of the workload and adopting statistics analysis, Dapper [67]

provides low overhead application-level transparency by using sampling and restricting the

instrumentation with common libraries.

Black-box implementations use statistical regression analyses to reconstruct causality

without modifying traced systems. Draco is a diagnosis engine, which operates by corre-

lating variables from pre-existing logs to address chronic problems, which are often ignored

due to the small number of affected users [39]. By making assumptions about programming

patterns, vPath discovers the request-processing path observed by monitoring thread and

network activities [70]. Recently, Mystery Machine [20] constructs the potential hypothe-

ses about system behavior through large number of pre-existing component logs, and it

confirms these hypotheses by the empirical observation on the target system. SysViz [41]

can reconstruct the entire trace for each transaction at sub-second levels, making very short

bottleneck detection possible [77], but it requires its servers to be connected to network

switches, which support passive network tracing. Although this method incurs low-overhead

and does not require software modification, it is limited to the specific workflows since it

relies on a pre-built analytical model.

These end-to-end monitoring tools with different approaches have been proven useful for

many important use cases, including anomaly detection [12] [18], diagnosis of steady-state
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correctness [18] [27] [28] [63] [66] [67], system performance profiling [16] [67], and resource

usage attribution [26] [71]. With the emerging of large and complex modern distribution

services, like Google File System [31] and Bigtable [17], more and more industry implemen-

tations, such as Google’s Dapper [67], Cloudera’s HTrace [2] and Twitter’s Zipkin [5] for

instance, have been built to captures the detailed causally-related activities of the appli-

cation within and among the components of a distributed system. End-to-end monitoring

tools have become the essential parts to provide the advanced analysis of request activities

in cloud environments.

Though these detecting anomalous requests some tools to provide very useful hints to

diagnose performance problems, they may overlook the response time fluctuations in high

resource utilization scenario [76] or fail at transient bottleneck detection [77] due to the

granularity limitation. From the sampling theory, due to the short lifespan, the phenomena

only can be detectable when the monitor tool achieve sub-second granularity. Currently,

SysViz [41] is the only one being able to reconstruct the entire trace of each transaction

with sub-second level monitoring. However, SysViz is limited for specific workflow since it

relies on the analytical models, and it lacks of scalability because it requires the servers to be

connected with the network taps or network switches which support passive network tracing.

milliScope is designed for providing fine-grained monitoring data and linking these data

to information about request dependencies and causality so that the researchers would be

able to study the milliBottlenecks and the induced very long response time (VLRT) prob-

lem easily. The long-tail latency issue is not only the particular concern for mission-critical

web-facing applications [8] [9] [22] [46] [40], it is also the important metric in the evaluation

of quality of service provided by computing clouds and data centers [11] [61] [65] [76] [77].

To mitigate the long-tail latency, researchers have proposed several bypass techniques which

are effective in the specific applications or domain [22] [43] [59].
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The potential root causes of the very long response time requests for the web appli-

cation can occur for very different reasons, such as CPU dynamic voltage and frequency

scaling (DVFS) control at the architectural layer [80], Java garbage collection (GC) at the

system software layer [79], virtual machine (VM) consolidation at the VM layer [78], and

performance interference of memory thrashing [59]. Moreover, Dean et al. outlined the

potential causes for the long-tail latency issue of Google’s large scale interactive applica-

tions [22]. In addition, workload characteristics (e.g., burstiness and request type mix-

ratio) [15] [19] [29] [36] [52] [53] [54] [68] and the soft resource (e.g., threads and database

connection) [64] [13] [24] [47] [48] [56] [57] [58] [62] [83] [87] allocation have been discussed

as the important source for unpredictable performance. In this thesis, we have provided

several illustrative scenarios in which milliScope scales the mountain of data to look for the

root cause of observed performance anomalies.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

In this thesis, we have presented the first millisecond granularity, software-based resource

and event monitor, milliScope, for distributed systems (detail in Chapter 2). milliScope pro-

vides a fine-grained monitoring framework for different mScopeMonitors to profile execution

performance. This reduces the friction for researchers to perform more robust system de-

bugging. milliScope contains several resource mScopeMonitors to monitor system resource

utilization. Moreover, we developed our own event mScopeMonitors, which incur negligible

overhead because of their integration with the existing logging infrastructure. We present

two illustrative scenarios in which the abnormal phenomena look similar at first glance,

e.g., one to two orders of magnitude increase in response time over a short period, but they

are caused by different system operations: IO activities and dirty page recycling (detail in

Chapter 3). Moreover, we validate the accuracy and lightweight characteristics of the event

mScopeMonitors and demonstrate the availability and flexibility of millisScope through sev-

eral evaluations (detail in Chapter 4). With its good performance (low overhead at high

frequency) and high accuracy, milliScope is an important contribution towards fine-grained

performance debugging of complex n-tier applications in the cloud environments.

6.1 Future Work

Due to the potential depth of the proposed research, the proposed dissertation—even

though self-contained and highly significant—can merely be regarded as an initial step

towards one of the important goals in the fine-grained system performance debugging: a

millisecond-granularity software-based resource and event monitoring for distributed sys-

tems that achieves both performance, low overhead at high frequency, and high accuracy

matched with other firmware monitoring tool. One topic of particular interest is how the

researchers and the system administrator can identify the milliBottlenecks systematically

through voluminous monitoring records. While the milliBottlenecks in n-tier systems might
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exhibit the similar pattern, detecting and diagnosing each individual pathology requires a

robust data collection and analytical platform. The seemingly unbounded number of possi-

ble ways this pattern could be manifested on top of the complexity of isolating the offending

resource is not possible to handle manually. We expect further research could lead us to

the holy grail of the automation of milliBottlenecks detections for applications running in

distributed cloud environments.
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