
A Distributed Access Control System for Cloud
Federations

Shorouq Alansari, Federica Paci, Vladimiro Sassone
University of Southampton

{sa3n13; f.m.paci;vsassone}@soton.ac.uk

Abstract—Cloud federations are a new collaboration paradigm
where organizations share data across their private cloud infras-
tructures. However, the adoption of cloud federations is hindered
by federated organizations’ concerns on potential risks of data
leakage and data misuse. For cloud federations to be viable,
federated organizations’ privacy concerns should be alleviated by
providing mechanisms that allow organizations to control which
users from other federated organizations can access which data.
We propose a novel identity and access management system for
cloud federations. The system allows federated organizations to
enforce attribute-based access control policies on their data in a
privacy-preserving fashion. Users are granted access to federated
data when their identity attributes match the policies, but without
revealing their attributes to the federated organization owning
data. The system also guarantees the integrity of the policy
evaluation process by using blockchain technology and Intel
SGX trusted hardware. It uses blockchain to ensure that users
identity attributes and access control policies cannot be modified
by a malicious user, while Intel SGX protects the integrity and
confidentiality of the policy enforcement process. We present the
access control protocol, the system architecture and discuss future
extensions.

Index Terms—Blockchain, Access control, Anonymous identi-
ties, Cloud federation.

I. INTRODUCTION

Cloud computing has enabled cross-organizational collabo-
rations called cloud federations. In cloud federations partner
organizations share data hosted on their private cloud infras-
tructures in order to achieve a common business goal. Thereby,
the data stored in one cloud infrastructure are available not
only to the users of the organization owning the data, but also
to users of other organizations that are part of the federation.

However, the realization of federations of private clouds is
hindered by partner organizations’ privacy concerns sharing
its data across private cloud infrastructures.

For cloud federation to become a reality, researchers need
to develop an identity and access management framework
that allows organizations to authenticate users from other
federate organizations and to determine which authenticated
users can access which data in federated organizations’ cloud
infrastructures.

These systems should satisfy several security requirements.
First, they should allow federated organizations to specify
fine-grained access control policies based on data consumers’
properties often called identity attributes rather than con-
sumers’ role. Second, As identity attributes encode consumer’s
sensitive information and revealing them to other federated or-
ganizations may not be desirable [1], systems should be able to

preserve the privacy of these attributes. Third, the framework
should guarantee the integrity of the policy evaluation process.
Enforcing access control policies in a federated cloud requires
an architecture where distributed components participate to the
evaluation and enforcement of access control policies. Due
to its distributed nature such an architecture is vulnerable to
attacks that can compromise the policy evaluation process. A
malicious user or software could take control of the host where
the policy evaluation engine is running or the access control
policies are stored. For example, it could modify the evaluation
process to return always the same access control decision e.g
permit or modify the access control policies.

Few access control frameworks to support secure data
sharing in cloud federations have been recently proposed [2],
[3], [1]. However the proposed frameworks do no support
identity attributes privacy and do not guarantee the integrity
of the policy evaluation process.

Contribution. In this paper we present an identity and
access management system for secure data sharing in cloud
federations. The framework allows federated organizations to
specify fine-grained access control policies in terms of users
identity attributes. The enforcement of the policies preserves
users’ identity attributes privacy in that a user does not reveal
his identity attributes in clear to the federated organization
owning the data nor the organization learns which policy is
satisfied by the user. Policies are enforced by means of a
cryptographic approach that supports efficient key manage-
ment: data is encrypted with a symmetric key and user is able
to reconstruct the key only if he satisfies the access control
policy of the federated organization owning the data. The
process extends a previously proposed cryptographic approach
to privacy-preserving document broadcast [4].

In order to guarantee the integrity of the policy eval-
uation process the framework adopts two novel technolo-
gies: blockchain [5] and Intel’s SGX [6] trusted hardware.
Blockchain is a distributed ledger of data and computations
on these data cannot be modified. The integrity of the data
and computations stored on the blockchain is guaranteed by
a group of nodes called miners that run a consensus protocol.
Therefore, we use the blockchain to store the identity attributes
of the users of federated organizations and the access control
policies that protect the access to the federated data. However,
we cannot use blockchain technology to ensure the integrity
of the cryptographic approach to policy enforcement for two
main reasons: the approach would be public and it would

be too costly to deploy and execute on the blockchain the
cryptographic operations on which the approach is based. For
this reason, to guarantee the integrity of the policy enforcement
process we adopt Intel’s SGX, which is a trusted execution
environment that preserves the integrity and confidentiality of
sensitive code and data.

Paper Structure. The next section introduces basic technical
background. Section III introduces the identity and access
management protocol. Section IV presents the architecture’s
components. Section V discusses the related work, and Section
VI concludes the paper outlining future extensions.

II. BACKGROUND

In this section we provide basic background on the main
technologies and cryptographic protocols used by the proposed
access control system.

A. Blockchain and Smart Contracts

The blockchain was the novel technique behind Bitcoin [5].
In general, the blockchain is a public ledger of transactions
managed by all the nodes within the cryptocurrency network.
The blockchain keeps a log of all the transactions that have
ever occurred in the network. Unlike traditionally centralized
banking system, the blockchain does not relay on any trusted
central authority. Instead, every node within the network is
trusted to follow the protocol and maintain the blockchain.

Smart contracts is the key element in the second generation
of blockchains, which enables a generally programmable in-
frastructure (i.e. Ethereum) [7]. Smart contracts are deployed
and executed on the blockchain network and can be used to
reach agreements and solve common problems with minimal
trust.

B. Trusted Hardware

Trusted hardware platforms encompass the ability to run
security-sensitive programs in secure and isolated software ex-
ecution environment to protect the integrity and confidentiality
of the computations against several attacks; for instance, Intel’s
newly released Software Guard Extensions (SGX) [6]. SGX
is a set of extensions to Intel architecture that allows running
trusted computations on a remote system. To achieve this, SGX
relies on software attestation. Attestations provide users with a
proof that a piece of software is running in a secure container,
called enclave, hosted by the trusted hardware [8]. The enclave
contains only the private data and the code that operates on
it. Once instantiated, the the enclave is given a credential,
also known as report. The report is digitally signed using a
hardware-protected key to produce a proof, also called quote,
which can be verified by a remote system [8].

C. Cryptographic Building Blocks

a) Pedersen commitment: Pedersen commitment scheme
[9] is a two-phase protocol. The first phase, commit, enables
one party Sender S to commit a value to another party Receiver
R, in such a way that R does not know which value has been
committed, and S cannot change the committed value. The

second phase, reveal, includes revealing the original value,
whereby R can verify that this is indeed the value to which S
has committed.

Pedersen Commitment scheme is based on the discrete
logarithm problem and works as follows:

Setup. R chooses large primes p and q such that q divides
p−1. Let g be a generator of Gq , the order−q subgroup of
Z∗
p. R picks a random secret a from Zq and computes h =

gamod p. R publishes p, q, g, h as system’s parameters,
while keeping a a secret.
Commit. S commits to x ∈ Zq by choosing random r ∈
Zq and sends c = gxhrmod p to R.
Reveal. S shows the values x and r to open the commit-
ment, R verifies that c = gxhrmod p.
b) OCBE protocols: Oblivious Commitment-Based En-

velope (OCBE) protocol [10] enables users to deliver informa-
tion in an oblivious way. The protocol involves three actors:
a Sender S, a Receiver R, and a trusted Central Authority CA.
S allows R to decrypt a sent information only if its identity
attributes committed values satisfy an attribute-based access
control policy and without S learning R’s attribute values.

The cryptographic building blocks of OCBE protocols are:
1) The Pedersen commitment scheme.
2) Symmetric key encryption algorithm E with key length

k-bits. We use Ekey[M] to denote the encrypted plaintext
M with encryption key under the encryption algorithm
E .

3) Cryptographic hash function H : G → {0, 1}k, where
G is a finite cyclic group of large primes.

The protocol consists of the following phases:
Setup. CA takes a security parameter t and outputs
the public parameters Params for commit, a set V of
possible values, and a set P of predicates. Each predicate
in P maps an element in V to either true or false.
Commit. R chooses a value a ∈ V (R’s attribute value)
and sends it to CA. CA picks a random number r and
computes the commitment c =commitParams(a, r). CA
gives c and r to R, and c to S.
Initialization. S chooses a message M ∈ {0, 1}∗ and a
predicate Pred ∈ P and then reveals Pred to R. By the
end of this phase, S has Pred, c and M , while R has
Pred, c, a, and r.
Interaction. S sends an envelope containing an encryp-
tion of M to R via an interactive protocol.
Open. R extracts the massage M if Pred(a) is true;
otherwise, R does nothing.

III. THE PROPOSED PROTOCOL

The framework builds and extends a previous privacy-
preserving scheme for content dissemination [4] in order to be
executed on top of blockchain and Intel SGX. It involves four
main entities: O, the federated organization owning the shared
data, R, the user requesting access to the shared data, IP, the
identity provider who manages the identity of the users in the
cloud federation, ACM, the access control manager responsible

for encrypting the data and generating the parameters needed
to retrieve the decryption key. The main phases of the protocol
are the followings:

a) Policy Specification: O defines a set of access control
policies ACPs that specify which data Di Rs are authorized to
access based on Rs’ identity attributes. Access control policies
are formally defined as a conjunction of attribute conditions
cond1 ∧ . . . ∧ condn. Each attribute condition cond is in the
form of 〈namea, op, v〉 , where namea is the name of an
identity attribute a, op is a comparison operator such as =
, 6=,≤, <,≥, >, and v is the value of attribute a. O sends the
data1 and the predefined policies ACPs to ACM.

b) Data Encryption: To encrypt the data, ACM goes
through the following steps:

• ACM combines the different policies ACP that apply to
the same data element Di into a Policy configuration Pci.
There can be multiple data elements D1, . . . , Di ∈ D
which have the same policy configuration.

• ACM chooses an `′-bit prime number q, a cryptographic
hash function H(·) whose output bit length is no shorter
than `′, Key space KS = Fq , where Fq is a finite field
with q elements, and a semantically secure symmetric-
key encryption algorithm with key length `′ bits. These
public parameters are published and stored on-chain.

• ACM selects a key K ∈ KS for a symmetric key
encryption algorithm for each policy configuration Pc.
ACM uses K to encrypt all data elements under the same
Pc. So when the same policy configuration applies to
multiple data elements, all data elements D1, . . . , Di ∈ D
are encrypted with the same key K. The encrypted data is
forwarded to an off-chain storage. While only references
to the encrypted data Ref(EK [D]) and the access control
policies ACPs are kept on chain.

• ACM generates ri,j ∈ Fq a conditional subscription secret
(CSS) for each requester with pseudonym nymi

2 and
attribute condition condj . CSSs are kept hidden in ACM3

until delivered to nymi on the next phase. ACM creates
a table T to maintain the delivered CSSs with respect to
each nymi and condj in ACP.

• ACM picks N random bit strings (z1, . . . , zN) to create
the access matrix A as in [4]. ACM then solves for a
nonzero (N + 1)-dimensional column Fq -vector Y such
that AY = 0. Y is called an access control vector. ACM
sets the vector

X = (K, 0, 0, . . . , 0)T + Y,

Where vT denotes the transpose of vector v, and
K is the pre-chosen symmetric key. ACM publishes
〈X, (z1, . . . , zN) 〉 on-chain along with the reference to
data Ref(EK [D]).

1To avoid sending data in clear or using a secure channel between O and
ACM, the data itself is encrypted under the WACM public key pkACM . The
decryption is done in EnclACM .

2later in the registration phase, ACM gives each requester a random unique
pseudonym nym, as such all identity tokens for the same R have the same
nym.

3Particularly, in EnclACM as we will see later.

c) Identity Token Issuance Phase: R provides its identity
attributes to IP and for each attribute, IP issues an identity
token IT. IT is a tuple

IT = (nym, id− tag, c),

Where nym is a pseudonym for uniquely identifying the IP
in the system, id − tag is the name of the identity attribute,
c is a Pedersen commitment for the attribute value x. IP
digitally signs IT, then sends it to R to sign the identity token
again. Finally, the identity tokens are stored on the blockchain.
Without the signature of R on the identity token, any user could
use the identity token to gain access to data shared within
the federation because everything stored on the blockchain is
public.

d) Identity Token Registration Phase: R registers its iden-
tity tokens with ACM to receive the CSSs required to derive the
decryption key K for the shared data. During the registration,
R receives a set of CSSs, based on the identity attribute
names corresponding to the attribute names in the identity
tokens. ACM retrieves the signed ITs from the blockchain.
Then, it checks if id − tag matches the name of the identity
attribute in the access control policies, and verifies both the
IP’s signature and R’s signature. If the signatures are valid,
ACM publishes reference to the encrypted data Ref(EK [Di])
to R. ACM starts an OCBE session to send the CSS to R. It
is worth mentioning that CSSs are the only information that
demands a secure channel to be sent. ACM updates table T
by adding the delivered CSSs along with the associated R
pseudonym nymi and the policy condition condi.

e) Data Access: R uses Ref(EK [Di]) to retrieve the
encrypted data from off-chain storage. Then, R uses the public
parameters published on the blockhain, and the CSSs to
reconstruct the key K as in [4]. Once reconstructed the key K,
R decrypts the data.

IV. SYSTEM ARCHITECTURE

The system architecture consists of several components
distributed across the cloud infrastructures of the organizations
that are part of the federation (see Fig.1). In what follows
we will describe the behaviour of the main components of
the architecture based on a formal abstraction of Intel SGX
proposed in [11].

Fig. 1. System architecture

a) Data Owner O: a web application that allows data
owner to specify access control policies and provide data to
be shared to ACM.

b) Data Requester R: an SGX-enabled application which
includes two main sub-components:

• RelayR provides in and out network traffic for EnclR
(the program for RelayR is shown in Algo.1), as all
SGX enclaves lack networking capabilities. It provides
an interface to the users of the federation to requesting
the necessary identity tokens ITs from IP, and then
registering them with ACM to obtain CSSs.

• EnclR is the the part of code running on SGX enclave
(the program for EnclR is shown in Algo.2) which
securely uses the CSS to derive the key K and decrypt
the data. EnclR has a key pair (pkR, skR), which is used
for message authentication.

Algorithm 1: Relay Program RelayR for data Requester

Initialize
Send initialize to Fsgx[EnclR, RelayR]
On receive (pkR, σatt) from Fsgx[EnclR, RelayR]:

Publish (pkR, σatt)
Relay

Send CreateToken (params) to DAppIP
On receive (requestID, IT)α from DAppIP :

Send SignToken (requestID, IT)α to EnclIP
On receive (requestID, IT)αβ from EnclR:

Send (requestID, IT)αβ to DAppIP
Send RegisterToken (IT) to DAppACM

On receive (CSS, Ref(EK [Di]) from DAppACM :
Fetch EK [Di] from Off-chain storage using

Ref(EK [Di])
Retrieve public parameters from Ledger L
Send Decrypt (EK [Di], CSS) and public

parameters to EnclR

Algorithm 2: Enclave Program EnclR for data Requester

Initialize
On receive initialize from RelayR:

return pkR, σatt
SignToken (IT)

On receive (requestID, IT)α from RelayR:
β:=

∑
.Sign(skR, (requestID, IT)α)

return (requestID, IT)αβ
Decrypt ()

On receive (EK [Di], CSS) and public parameters
from RelayR:

Reconstruct the key K
Decrypt EK [Di] using key K

c) Identity Provider IP: an application that combines
a smart contract running on the blockchain with a program
running on a secure SGX enclave off the chain. The purpose

behind such a complex combination is ensuring the privacy
and integrity of policy evaluation. On chain computations are
trusted for integrity, yet computations in smart contracts are
slow, expensive and publicly visible. While SGX computations
are executed privately, correctly and efficiently. To guarantee
the integrity of the data stored on chain and the code running
on SGX enclave, IP is implemented using the following
components:

• a smart contract CIP that stores the identity tokens.
• an SGX-enabled application. The application consists of

the following:
– RelayIP : provides network communication to
EnclIP (the program for RelayIP is shown in
Algo.3). Since sending information to the blockchain
can only be done via transaction, RelayIP also offers
an interface, known as ÐAppIP , to the blockchain.
ÐAppIP incorporates an Ethereum client, geth that
can be configured to run as a JSON RPC server and
a walletWIP that allows to execute the contract CIP
to store the identity tokens.

– EnclIP : is the code running on SGX enclave (the
program for EnclIP is shown in Algo.4), which
is responsible for issuing the identity tokens to R.
EnclIP has a key pair (pkIP , skIP), which is used
for message authentication. EnclIP creates WIP

with public key pkIP and this key is hardcooded
into CIP . This allows the blockchain to verify the
signature on each massage with no additional cost.

Algorithm 3: Relay Program RelayIP for Identity
Provider
Initialization

Send initialize to Fsgx[EnclIP , RelayIP]
On receive (pkIP , σatt) from
Fsgx[EnclIP , RelayIP]:

Publish (pkIP , σatt)
Relay

On receive (params) from ProgR:
Send CreateToken (params) to EnclIP

On receive (requestID, IT)α from EnclIP :
Send SignToken((requestID, IT)α) to ProgR

On receive (requestID, IT)αβ from ProgR:
AuthSend (requestID, IT)αβ to CIP as WIP

d) Access Control Manager ACM: Similar to IP, in-
cludes off-chain and on-chain components, as follows:

• a smart contract CACM which stores access control
policies ACPs when received from O, all the public
parameters required to reconstruct the key, and references
to the encrypted data Ref(EK[Di]) (see Algo.7).

• an SGX-enabled application. The application consists
of the RelayACM and EnclACM . RelayACM provides
bidirectional network access for EnclACM (the program
for RelayACM is shown in Algo.5). It also offers an inter-
face, commonly refer to as ÐAppACM , to the blockchain
which incorporates an Ethereum client, geth that can be
configured to run as a JSON RPC server and a wallet

Algorithm 4: Enclave Program EnclIP for Identity
Provider

Initialize
On receive (initialize) from RelayIP :

Set Counter:= 0
return pkIP , σatt

CreateToken (params)
On receive (params) from ProgR:

requestID := Counter; Counter:= Counter+1
Parse params as (att-name, att-value,

requesterID)
nym:= requesterID
c:= Compute pedersen commitment

(att− value)
id-tag:= att-name
IT:= (nym,id-tag,c)
α:=

∑
.Sign(skIP , (requestID, IT))

return (requestID, IT)α

WACM that allows to execute the contract CACM to
match and verify the identity tokens. EnclACM is the
the part of code running on SGX enclave (the program
for EnclACM is shown in Algo.6). EnclACM holds all
CSSs for the encrypted data and maintains a table T
of the delivered CSS after registration. EnclACM has
a key pair (pkACM , skACM), which is used for message
authentication. EnclACM createsWACM with public key
pkACM and this key is hardcooded into CACM .
e) Off-chain Storage: As the blockchain was not de-

signed to store massive amounts of data, we adopt Distributed
Hash Tables (DHTs) to store the encrypted data.

Algorithm 5: Relay Program RelayACM for Access Con-
trol Manager

Initialize
Send initialize to Fsgx[EnclACM , RelayACM]
On receive (pkO, σatt) from
Fsgx[EnclACM , RelayACM]:

Publish (pkACM , σatt)
Relay

On receive ACP (Di) from ProgO:
Send ACP (Di) to EnclACM
AuthSend ACP (Di) to CACM via WACM

On receive Di from ProgO:
Send Encrypt (Di) to DAppACM

On receive EK [Di], Ref(EK [Di]), and public
parameters from EnclACM :

AuthSend Ref(EK [Di]), public parameters to
CACM via WACM

Send EK [Di] to Off-chain storage
On receive DeliverCSS from CACM

Send DeliverCSS to EnclACM

Algorithm 6: Enclave Program EnclACM for Access
Control Manager

Initialize
On receive (initialize) from RealyACM :

Create table T
return pkACM , σatt

Encrypt
On receive ACP (Di) from RelayACM :

Generate policy configuration Pc for Di

Generate public parameters
Select K ∈ Fq

Encrypt Di using K → EK [Di]
Generate CSS Create Access Matrix A

Calculate Access Control Vector Y as AY = 0
Set X = (K, 0, 0,0) + Y
Choose z1, z2, ..zi randomly

Send EK [Di] to Storage S
return Ref(EK [Di]) and public parameters

DeliverCSS
On receive DeliverCSS from RelayACM :

Deliver CSS to ProgR via OCBE
Update table T with nymi and delivered CSSi,j

Algorithm 7: Blockchain Contract CACM for Access
Control Manager

StorePermissions
On receive ACP (Di),Ref(EK [Di]), and public
parameters from DAppACM :

Store ACP (Di), Ref(EK [Di]), and public
parameters 〈X, (z1, ..., zn)〉 on Ledger L

RegisterToken
On request (RegistrationRequest) from Data
Requester:

Send Retrieve IT to CIP
Match (id-tag, name[ACP (Di)])
Verify (pkIP ,α)
Verify (pkR,β)
Send DeliverCSS to DAppACM

return Ref(EK [Di])

V. RELATED WORK

In this section, we review related work which leveraged
blockchain technology to enforce access control and works on
access control in the cloud.

a) Blockchain-based Access Control: The work of
Zyskind et al. [12] offers a decentralized privacy solution for
personal data that is collected and controlled by a third-party.
This model depends on a blockchain, which acts as an access
control manager to guarantee transparency over data and
retains only pointers (hash) to the data and an off-blockchain
Distributed Hashtable (DHT), which can be accessed through
the blockchain and stores the encrypted data. When a user

signs up to use the service, a new compound identity (user,
service) is created and shared. The compound identity consists
of signing key-pairs for the user and service, and a symmetric
key used to encrypt and decrypt the data. The blockchain
verifies the signature for either the user or the service and
checks whether the service is granted permission to access
the data, then provides the hash to retrieve the data from the
off-chain storage.
This work is extended by Enigma [13], a decentralized
computational platform based on Multi-party Computation
(MPC). Enigma deploys a public blockchain to ensure data
correctness and an off-chain distributed hash-table (DHT)
to assure data privacy. Unlike [12], only references to the
data is stored in the DHT, while the actual data is divided
over several nodes across the network. Thereby, nodes can
compute functions together without leaking information to
other nodes. The main difference between these approaches
and ours is that the process of generating users’ identities
in our approach is privacy preserving, hence the identity of
user requesting or granting access to data is not exposed.
Moreover, our access control solution is fine-grained based
on users’s identity attributes.

b) Access Control in Multi-Clouds: Many solutions to
access control in cloud environments have been proposed. The
work of [2] proposed distributed access control architecture
for cloud computing. This architecture relies on RBAC model
and supports both federated and loosely coupled collaboration
models. Suzic et al. [3] provides an XACML-based approach
for federated cloud environments. [1] propose a proxy multi-
cloud computing framework supporting dynamic and runtime
collaborations between cloud-based services. The role of prox-
ies is to act as mediators between applications not only to offer
dynamic collaboration but also to provide resource sharing.
In our solution, we propose an access control framework for
cloud federations based on users’ identity attributes, while
using a cryptographic approach to enforce the access control
policies.

VI. DISCUSSION AND CONCLUSION

In this paper, we presented a novel identity and access con-
trol framework for federated clouds. The framework satisfies
several security properties:

• User Privacy. The framework preserves users privacy
in that the federated organization owning data learns
nothing about the users’ identity attributes. The privacy
is guaranteed by the use of the OCBE protocol to deliver
the CSSs to the user requesting access to the data.

• Fine-Grained Access Control. CSSs necessary to recon-
struct the decryption key can only be delivered to a
user if he has identity attributes that satisfy the attribute
conditions in the access control policy.

• Integrity. The framework preserves the integrity of the
identity tokens issued to the users in the cloud federation
and the access control policies protecting access to the
federated data. The integrity is ensured by storing them

on the blockchain via a smart contract. Similarly, the
integrity of the cryptographic policy enforcement protocol
is guaranteed by running the protocol within the Intel
SGX’s enclave.

We are planning to extend the cryptography-based access
control enforcement protocol with an approach that considers
the risk associated with a particular user accessing a particular
piece of information owned by a particular federated orga-
nization within the cloud federation. The approach will rely
upon the cryptocurrency system of the blockchain to price
information access by users where the price will quantify the
risk for the data provider to disclose the data with a particular
users. The price will be used to reward federated organizations
for sharing their personal data and to penalize those users from
other organizations that misuse it.

We will also develop a proof-of-concept prototype using
Ethereum blockchain and Intel SGX trusted execution envi-
ronment and conduct an extensive evaluation of the protocol
with respect to security, performance, and cost of execution.

ACKNOWLEDGMENT

This work has been supported by the EU H2020 Programme
under the SUNFISH project, grant agreement N. 644666.

REFERENCES

[1] M. Singhal, S. Chandrasekhar, T. Ge, R. Sandhu, R. Krishnan, G. J. Ahn,
and E. Bertino, “Collaboration in multicloud computing environments:
Framework and security issues,” Computer, vol. 46, no. 2, pp. 76–84,
2013.

[2] A. Almutairi, M. Sarfraz, S. Basalamah, W. Aref, and A. Ghafoor,
“A distributed access control architecture for cloud computing,” IEEE
Softw., vol. 29, no. 2, pp. 36–44, Mar. 2012.

[3] B. Suzic, B. Prünster, D. Ziegler, A. Marsalek, and A. Reiter, “Balancing
utility and security: Securing cloud federations of public entities,”
in OTM Confederated International Conferences" On the Move to
Meaningful Internet Systems". Springer, 2016, pp. 943–961.

[4] N. Shang, M. Nabeel, F. Paci, and E. Bertino, “A privacy-preserving
approach to policy-based content dissemination,” in Data Engineering
(ICDE), 2010 IEEE 26th International Conference on. IEEE, 2010,
pp. 944–955.

[5] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[6] I. CORP., “Intel(r) software guard extensions (intel(r) sgx) sdk,” https:

//software.intel.com/en-us/sgx-sdk, 2015.
[7] G. Wood, “Ethereum: A secure decentralised generalised transaction

ledger, 2014,” Ethereum Project Yellow Paper, 2014.
[8] IntelCorp., “Intel (r) software guard extensions enclave writer’s guide,”

Tech. Rep., 2015.
[9] T. P. Pedersen, “Non-interactive and information-theoretic secure veri-

fiable secret sharing,” in Annual International Cryptology Conference.
Springer, 1991, pp. 129–140.

[10] J. Li and N. Li, “OACerts: Oblivious Attribute Certificates,” Dependable
and Secure Computing, IEEE Transactions on, vol. 3, no. 4, pp. 340–
352, 2006.

[11] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier: An
authenticated data feed for smart contracts,” Cryptology ePrint Archive,
Report 2016/168, 2016, http://eprint.iacr.org/2016/168.

[12] G. Zyskind, O. Nathan, and A. Pentland, “Decentralizing privacy: Using
blockchain to protect personal data,” in Security and Privacy Workshops
(SPW), 2015 IEEE, May 2015, pp. 180–184.

[13] ——, “Enigma: Decentralized computation platform with guaranteed
privacy,” CoRR, vol. abs/1506.03471, 2015.

