N

N

Internet of Things: From Small-to Large-Scale
Orchestration
Charles Consel, Milan Kabac

» To cite this version:

Charles Consel, Milan Kaba¢. Internet of Things: From Small-to Large-Scale Orchestration. The
37th IEEE International Conference on Distributed Computing Systems (ICDCS 2017) , Jun 2017,
Atlanta, GA, United States. hal-01544578

HAL Id: hal-01544578
https://inria.hal.science/hal-01544578

Submitted on 21 Jun 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-01544578
https://hal.archives-ouvertes.fr

Internet of Things: From Small- to Large-Scale Orchestration

Charles Consel
Bordeaux Institute of Technology / Inria
Bordeaux, France
email: charles.consel@inria.fr

Abstract—The domain of Internet of Things (IoT) is rapidly
expanding beyond research, and becoming a major industrial
market with such stakeholders as major manufacturers of chips
and connected entities (i.e., things), and fast-growing operators
of wide-area networks. Importantly, this emerging domain is
driven by applications that leverage an IoT infrastructure to
provide users with innovative, high-value services. IoT infras-
tructures range from small scale (e.g., homes and personal
health) to large scale (e.g., cities and transportation systems).

In this paper, we argue that there is a continuum between or-
chestrating connected entities in the small and in the large. We
propose a unified approach to application development, which
covers this spectrum. To do so, we examine the requirements for
orchestrating connected entities and address them with domain-
specific design concepts. We then show how to map these design
concepts into dedicated programming patterns and runtime
mechanisms.

Our work revolves around domain-specific concepts and
notations, integrated into a tool-based design methodology and
dedicated to develop IoT applications. We have applied our
work across a spectrum of infrastructure sizes, ranging from
an automated pilot in avionics, to an assisted living platform
for the home of seniors, to a parking management system in
a smart city.

Keywords-Internet of things, domain-specific languages, pro-
gramming frameworks, MapReduce, orchestration

I. INTRODUCTION

Internet of Things (IoT) is a rapidly emerging domain,
spanning a wide range of application areas, including homes,
cities, environment, energy systems, retail, logistics, industry,
agriculture, and health [1]. This domain is supported by
a new breed of infrastructure operators (e.g., Sigfox [2],
Lora [3]) that provide a wide area network and application-
oriented services. Such IoT infrastructures have been
leveraged by a host of companies that have developed
economically viable applications to manage parking lots city-
wide [4], to supervise wide-area transportation systems [5],
to monitor offshore oil production platforms [6], etc. These
applications have in common that they process information
produced by a range of entities, connected to a large-scale,
global network infrastructure. In a typical IoT infrastructure,
entities have a unique identity, as well as network, computing
and storage capabilities. Depending on their purpose, they
also offer specific sensing and actuating functionalities (e.g.,
pollution, motion, luminosity, humidity).

Milan Kabac
Imperial College
London, UK
email: m.kabac @imperial.ac.uk

A key challenge of IoT is its crosscutting nature, spanning
such areas as embedded systems, networking, distributed
systems, security, pervasive computing, and software engi-
neering. As a result, developing applications requires to
gather many dimensions of expertise, in addition to coping
with the various scales of entities that need to be orchestrated
(i.e., structured, organized and managed) to turn received data
into actionable information.

Actuating entities in the large

Delivering data

Processing data

Binding entities

in the small

Figure 1: The continuum between small and large-scale IoT orchestration.

In this paper, we argue that there is a continuum between
orchestrating IoT entities in the small and in the large
(Figure 1), and propose a unified approach to developing
IoT applications. We examine the requirements for orches-
trating IoT entities and address them with domain-specific
design concepts and notations. We then show how to map
these design concepts into dedicated programming patterns
and runtime mechanisms. To achieve this mapping, we
introduce a Domain-Specific Language dedicated to the
design of IoT applications. An IoT design is processed
by a compiler that produces a customized programming
framework in a host (mainstream) programming language,
bridging the gap between designing in a domain-specific
language and programming in a mainstream language. The
generated programming framework is then used to guide
and support the implementation of the design. As such,
this generative programming approach allows to factorize
the many dimensions of expertise at the compilation level,

thus raising the level of abstraction of the IoT application
development process.

More specifically, we introduce a paradigm that captures
common application design patterns of the IoT domain
(Section II). We propose declarative constructs that abstract
over the heterogeneity of IoT entities (Section IIT). Then, we
identify four key domain-specific activities of an application
orchestrating IoT entities: binding entities, delivering data,
processing data, and actuating entities (Section IV). We
present design declarations that capture these four activities.
Finally, we show how the proposed domain-specific design
language can be integrated into a mainstream programming
language (Section V).

Our domain-specific language approach has been imple-
mented and takes the form of a tool-based design method-
ology, dedicated to develop IoT applications [7], [8]. It
has been applied across a spectrum of infrastructure sizes
and application areas, ranging from an automated pilot in
avionics [9], to an assisted living platform for the home of
seniors [10], to a parking management system in a smart
city [11].

II. ANIOT-SPECIFIC DESIGN PARADIGM

Conceptually, most IoT applications follow the Sense-
Compute-Control (SCC) paradigm, promoted by Taylor et
al. [12], and consist of an iterative process, as depicted in
Figure 2: 1) an environment (e.g., physical) is sensed to
collect some data; 2) these data are processed to compute
actionable information; and 3) this information is used to
issue actions, impacting and controlling the environment.
Following the domain-specific approach, we introduce a
design language, named DiaSpec [13], [8], which decom-
poses the SCC paradigm into SCC-specific constructs. Let
us, examine the concepts included in DiaSpec that match
the SCC model (Figure 2). To sense the environment,
devices are declared and include a source facet for collecting
data. (Note that devices may either correspond to hardware
entities or services.) Sensed data are passed to context
software components to be processed and eventually turned
into actionable information. This information is passed
to controller software components when the environment
needs to be impacted; controllers compute effects and issue
corresponding actions to devices (i.e., their action facet).

orders

Controllers

context
data

Actions
Devices

Sources

Figure 2: The Sense-Compute-Control paradigm.

We illustrate this IoT-specific design paradigm with two
applications, used throughout this paper: a cooker monitoring
application and a parking management application.

Cooker monitoring. This small-scale orchestrating applica-
tion ensures the home safety for older adults by detecting
when the cooker stays on beyond a time threshold and notifies
the user. If this situation occurs, the user may decide to turn
off the cooker remotely through a dedicated TV prompter.
For the sake of simplicity, this application has a rudimentary
behavior and only considers a small number of sensors and
actuators; the graphical view of its SCC design is depicted in
Figure 3. Conceptually, this view decomposes an application
into components (devices, contexts, controllers) and defines
how they form a functional chain from device sources to
device actions.

v 82
Cookel] Prompter é S
off askQuestion ec

Remote
TurnOff

Contexts

answer tickSecond

TV
Prompter

consumption

Cooker Clock

Devices
(sources)

Figure 3: Graphical view of the design of the cooker monitoring application.

Let us illustrate this view with the first functional chain of
the cooker monitoring application on the right-hand side
of Figure 3; the Clock device periodically triggers the
Alert context, which is subscribed to this event (noted by
a straight arrow). When triggered, this context then queries
the consumption source of the Cooker device (noted by
a loop arrow). If the cooker has been on for too long,
the Alert context invokes the Notify controller, which
computes a notification to be issued to the TVPrompter
device via the askQuestion operation. On the left-hand
side of Figure 3, the source facet of the TVPrompter
triggers the RemoteTurnOff context when the user has
supplied a response to the notification. In this situation,
the RemoteTurnOff context queries the current consumption
level from the Cooker to ensure that the cooker is still on

before turning it off, if the user’s response instructed such
action. The TurnOff controller is then invoked and issues
an off action to the Cooker device.

Parking CityEntrance 8w
EntrancePanel Panel Messenger e X:
update update sendMessage, ee

e, l— —— 0
ParkingEntrance CityEntrance Messenger %
PanelController PanelController Controller =
L L L S
A ©

Parking
Suggestion

Contexts

Parking

Average
Availability

Parkin
2 Occupancy

UsagePattern

presence

Presence
Sensor

Devices
(sources)

Figure 4: Graphical view of the design of the parking management
application.

Parking management. The SCC design of this large-
scale orchestrating application is graphically represented
in Figure 4. [Each parking space is equipped with a
PresenceSensor device, which produces occupancy statuses
via its presence source to subscribed context components,
namely ParkingAvailability, ParkingUsagePattern and
AverageOccupancy. The ParkingAvailability context
keeps track of the number of available parking spaces in
parking lots and, in turn, publishes these values periodically
to the ParkingEntrancePanel controller. This controller
is in charge of refreshing the number of available parking
spaces displayed on the entrance screens via the update
action. The ParkingSuggestion context combines infor-
mation from ParkingAvailability with usage patterns
of parking lots supplied by ParkingUsagePattern. This
combination of information is processed to produce parking
suggestions, passed to CityEntrancePanelController in
charge of displaying information to drivers on screens spread
across the city. The AverageOccupancy context computes
presence values for each parking lot, averaged over a period
of 24 hours for management purposes. This information is
passed to the MessengerControler and to the sendMessage
action of the Messenger device.

III. ABSTRACTING OVER HETEROGENEOUS
ENTITIES

To cope with the heterogeneity of entities, DiaSpec pro-
vides the device construct to declare their functionalities, ab-
stracting over their implementation or hardware specificities.
This is illustrated in Figure 5 by the device declarations of the
cooker monitoring application. These declarations consist of
source and action facets depending of the functionalities
to be described. A source can be indexed to distinguish
between values. For example, the answer source in the
Prompter device is indexed to allow to match a response,
obtained from the answer source, with a question, issued by
the askQuestion action.

1 device Clock {
source tickSecond as Integer;
source tickMinute as Integer;
4+ source tickHour as Integer;

50}

7 device Cooker {
s source consumption as Float;
action On;
o action Off;
1
}

s device Prompter {
. source answer as String indexed by questionId as String;
action askQuestion;

o}

Figure 5: Device declarations for the cooker monitoring application.

Figure 6 shows the device declarations for the parking
management application. To account for the location of
presence sensors, their declaration includes an attribute
defining their respective parking lot; this attribute is in-
troduced via the attribute construct. When the IoT
infrastructure is actually deployed, the location of the sensors
are registered using this attribute. Also, as can be noticed for
the declaration of display panel variations (DisplayPanel,
ParkingEntrancePanel, CityEntrancePanel), DiaSpec
entities can be declared hierarchically to inherit attributes
and/or operations, as is done in object-oriented languages.

A concrete entity (e.g., a device) needs to conform to the
interface and implement the sources and action operations.
This task can be viewed as implementing a device driver. As
discussed in the next section, a concrete device is required
to implement three data delivery modes to match the range
of context usages of applications.

Also, note that device declarations are factorized and
form a taxonomy dedicated to a given area, used across
applications. For example, we created a taxonomy of entities
for the domain of assisted living. More details can be found
elsewere [7], [8].

Finally, note that the device declarations can serve as a
vehicle to express non-functional information about an entity.
We illustrated this approach by introducing annotations in

device PresenceSensor {
2 attribute parkinglLot as ParkinglLotEnum;
3 source presence as Boolean;
i 3
s device DisplayPanel {
7 action update(status as String);
e 3
1o device ParkingEntrancePanel extends DisplayPanel {
1 attribute location as ParkinglLotEnum;
12 %}
13
1+ device CityEntrancePanel extends DisplayPanel {
15 attribute location as CityEntranceEnum;

16}

15 device Messenger {
19 action sendMessage(message as String);

2 3}

> enumeration ParkinglLotEnum {

;s A22, BI16, DS6,...

24}

s enumeration CityEntranceEnum {
NORTH_EAST_14Y, SOUTH_EAST_1A, ...

s}

Figure 6: Device declarations for the parking management applica-
tion.

declarations to describe potential errors [14] or quality of
service constraints [15] at the level of devices and related
contexts and controllers. This extended approach to software
design was applied to the avionics domain [9].

IV. IOT-SPECIFIC ACTIVITIES

Based on the literature and practical experience, we have
identified four fundamental activities that uniformly capture
entity orchestration across the orchestration scale: 1) binding
entities, 2) delivering data, 3) processing data, and 4)
actuating entities. Our goal is to map these four activities into
dedicated language concepts. We first present these activities
and then exemplify them with our two IoT applications.

Binding entities. This activity is concerned with how entities
are bound to the environment. For example, when sensors are
deployed in a house or in a parking lot, each sensor needs
to be registered and attribute values defined (e.g., setting
a room for a sensor location). Another aspect of entity

binding regards how entities are bound to an application.

For example, an application controlling a room temperature
requires to be bound to a temperature sensor. Depending on
the area and orchestration scale, entity binding can occur at

configuration time, deployment time, launch time, or runtime.

Delivering data. This activity is concerned with how data
are delivered to an application. We propose three data
delivery models, inspired by the domain of wireless sensor
networks [16]: periodic, even driven and query driven. These
three models cover most practical cases from small-scale to

large-scale orchestration. As shown in Figures 5 and 6, a
device declaration does not restrict client context components
to use any of the three models. In fact, an implementation
of a device is required to implement the three data delivery
modes, providing flexibility to client applications.

Processing data. In general, small-scale orchestration is
not concerned with high-volume of data. However, large-
scale orchestration may involve masses of sensors, gathering
large amounts of data. This situation may require efficient
processing strategies that can leverage our design approach
to expose parallelism.

Actuating entities. This activity is the dual of data delivery.
We assume that entities are issued actions by the application
with a simple call mechanism.

Let us now illustrate these four fundamental activities
with our working examples for small and large-scale IoT
orchestration.

1) Small-Scale Orchestration: Consider the DiaSpec de-
sign of the cooker monitoring application, shown in Figure 7.
This application design consists of the two functional chains,
strictly mimicking the graphical view displayed in Figure 3.
The Alert context is defined as subscribing, via the when
provided clause, to the tickSecond source of the Clock
device; this corresponds the event-driven data delivery model.
Once triggered, this context queries the electric consumption
of the cooker; it uses the query-driven delivery model. The
design of the Alert context specifies that this component
may publish a result, if indeed, the cooker has remained
turned on for too long. Otherwise, this context component
does not produce any value, hence the maybe publish
clause. The rest of the design follows the presentation of
this application given earlier. Notice that contexts can invoke
other contexts or controllers, but controllers cannot invoke
context components in conformance with the SCC paradigm.
Finally, controller declarations use the do construct to specify
that the controller implementation performs one of more
operations on the action facet of a device. For example, the
Notify controller sends a notification to the user.

Let us examine the four activities illustrated by this IoT
application. As is usually done in pervasive computing, we
assume that entities are bound to the application at runtime,
enabling much flexibility. As a result, the entity discovery
operation is invoked in the implementation of the context
and controller components (see Section V), as opposed to
statically in the design. Data from entities are delivered using
two models: event and query. Note that the tickSecond
source could have also been delivered using a periodic model.
For small-scale IoT applications, the volume of data to be
processed is modest and does not require specific computing
or networking capabilities beyond what is available in a
standard home. Actuating entities does not require any
specific treatment either.

context Alert as Integer {
> when provided tickSecond from Clock
get currentElectricConsumption from Cooker
+ maybe publish;
5}

7 controller Notify {

s when provided Alert

s do askQuestion on TvPrompter;

10 }

1

12 context RemoteTurnOff as Boolean {

i1 when provided answer from TvPrompter

1+ get currentElectricConsumption from Cooker
15 maybe publish;

16}

15 controller TurnOff {
1o when provided RemoteTurnOff
do off on Cooker;

23

Figure 7: Design of the cooker monitoring application.

2) Large-Scale Orchestration: We now turn to the presen-
tation of DiaSpec for the design of large-scale IoT applica-
tions, leveraging our work from the DiaSwarm project [17].
We first present how our design language is evolved to bind
(or discover) masses of sensors. Our approach provides the
IoT developer with design constructs to declare how sensor
data should be gathered and presented to the application.
These constructs involve parameters specific to the data
delivery models (e.g., time for the periodic model) and
attributes specific to the application (e.g., grouping sensors
by parking lots). To illustrate this approach consider the
design of the parking management application in Figure 8.
The ParkingAvailability context specifies in line 2 that
presence statuses should be delivered periodically (every 10
minutes) and line 3 requires these values to be grouped
by an application-specific attribute, namely, parking lots.
Specifically, every 10 minutes, all presence sensor statuses of
all parking lots are delivered to the ParkingAvailability
context. To ease the processing, the grouped by construct
(line 3) requires these statuses to be split into (or grouped
by) parking lots.

Large-scale IoT applications often require to cope with
large amounts of data, calling for efficient processing strate-
gies. To do so, our IoT design-driven approach can be
leveraged in two ways: first, design declarations are used
by the compiler to generate the customized programming
framework (see Section V); second, declarations can be sup-
plemented with information to expose parallelism and allow
efficient processing of large datasets. This last approach is
used to introduce the MapReduce programming model [18]
in the design of large-scale IoT applications. Specifically,
we leverage the grouped by construct because it partitions
a large set of gathered data. This partitioning can then be
applied to the MapReduce programming model by splitting

context ParkingAvailability as Availability[] {

when periodic presence from PresenceSensor <10 min>
grouped by parkinglLot

with map as Boolean reduce as Integer

always publish;

¢

o -

context ParkingUsagePattern as UsagePattern[] {
when periodic presence from PresenceSensor <1 hr>
grouped by parkingLot
no publish;

; when required;
4}
context AverageOccupancy as ParkingOccupancy[] {

when periodic presence from PresenceSensor <10 min>

grouped by parkinglLot every <24 hr>
always publish;

o ®»

20}

2> context ParkingSuggestion as ParkinglLotEnum[] {
23 when provided ParkingAvailability

24 get ParkingUsagePattern

»s always publish;

2%}

s controller ParkingEntrancePanelController {
25 when provided ParkingAvailability

;0 do udpate on ParkingEntrancePanel;

510}

33 controller CityEntrancePanelController {
when provided ParkingSuggestion
35 do update on CityEntrancePanel;
36}
controller MessengerController {
when provided AverageOccupancy
w2 do sendMessage on Messenger;

s}

5 & U

13 structure Availability {
42 parkinglLot as ParkingLotEnum;
count as Integer;

3

s structure UsagePattern {
parkinglLot as ParkingLotEnum;
se level as UsagePatternEnum;

510}

53 structure ParkingOccupancy {
parkinglLot as ParkinglLotEnum;
occupancy as Float;

.

enumeration UsagePatternEnum { HIGH, MODERATE, LOW }

g

Figure 8: Design of the parking management application.

data processing into a Map and a Reduce phase. To express
these two phases at the design level, the grouped by con-
struct is extended with an optional clause that specifies what
types of values are produced by both the Map and Reduce
phases. An example of the resulting construct is displayed
in lines 3 and 4 in Figure 8. The ParkingAvailability

context includes a grouped by construct that declares a Map
phase that processes Boolean values and a Reduce phase that
produces an Integer value. The next section examines how
these declarations are exploited to guide the developer to
implement the context and controller components against a
generated programming framework that parallelizes the Map
and Reduce phases.

In the parking management application, as in most
applications, actuators are handled as they are in small
scale IoT applications: they are discovered with respect to
attributes (e.g., locations) and are invoked to perform specific
operations. In constrast with sensors, there is no need for
processing large datasets.

As shown in this section, a design approach can be general
enough to cover the continuum from small to large-scale IoT
applications. Let us now examine how designing in an IoT-
specific language can be put in synergy with programming
in a mainstream language.

V. MAINSTREAM PROGRAMMING LANGUAGE
INTEGRATION

Programming IoT applications is time consuming and
requires a range of expertise. This task involves much
boilerplate code needed for discovering devices, establishing
network communications, managing the state data of under-
lying subsystems, efc. Writing this boilerplate code is error
prone and requires intimate knowledge of the underlying
layers, without losing track of the application requirements.

To ease the programming of orchestrating applications,
our approach provides the developer with a design compiler
that generates an application framework tailored to a given
application design. Because the generated programming
frameworks employ the inversion of control [19], implement-
ing a design is devoted to implementing the declared contexts
and controllers of an application, which are then called as
required by the runtime system.

The current implementation of our approach generates
programming frameworks in Java. However, it can be
applied to any mainstream programming language regardless
of the language paradigm, as shown by Van der Walt et
al. [20]. The generated framework ensures conformance
between design and programming, and allows the developer
to concentrate exclusively on the application logic. Indeed,
this generative approach greatly improves productivity as the
amount of generated code may represent up to 80% of the
resulting application code [8].

Let us now examine the code support generated from
an application design using our two working examples.
Programming frameworks generated from application de-
sign provide domain-specific functionalities, including entity
binding, data gathering and component interaction. The
code generator provides the programmer with an abstract
class for each declared application component (i.e., context,
controller) or device. The generated abstract class needs to

1 public class Alert extends AbstractAlert {

@Override

public AlertValuePublishable onTickSecondFromClock(
TickSecondFromClock tickSecondFromClock,
DiscoverForTickSecondFromClock discover) {

// TODO Auto-generated method stub}
7}
s }

Figure 9: An implementation of the Alert context of the cooker
monitoring application.

be subclassed to implement the logic of a component. In this
paper, we provide details on the code generated for context
and controller components. Support for the implementation
of devices is examined elsewhere [8].

A. Small-Scale Orchestration Support

Figure 9 presents the subclassing of an abstract class
generated for the Alert context in the cooker monitoring
application. The declaration of the Alert context (Figure 7,
line 2 to 4) is mapped into the onTickSecondFromClock
callback method, which is triggered every time the Clock
device publishes a value (i.e.,, every second according to
the design declaration). The developer has to implement
the generated method to introduce the application logic.
The tickSecondFromClock parameter (line 4) provides in-
formation about the Clock device, including its attributes
and the published source value. The discover parameter
(line 5) exposes a specialized interface to querying the current
consumption of the cooker. Finally, the resulting context
value has to be wrapped using the generated method return
type (i.e., AlertValuePublishable) and may be passed to
the Notify controller as specified by the maybe publish
clause (Figure 7, line 4).

B. Large-Scale Orchestration Support

Figure 10 presents the implementation of the
ParkingAvailability context for the parking management
application. The generated code is colored in gray as in
Figure 9; while the user-supplied code is displayed with a
white background. The context keeps track of the number
of available parking spaces in parking lots. As in the
previous example, the context implementation is done by
subclassing the generated abstract class. In addition, the
ParkingAvailability context relies on the MapReduce
model (Figure 8, line 4) for processing large datasets,
which requires the developer to implement the MapReduce
interface (line 3) provided by the generated programming
framework.

In conformance with the MapReduce programming model,
the Map function is passed a key and a value, which
correspond to the parking lot identifier (defined by the
attribute of the grouped by directive) and a reading
from the corresponding presence sensor. If there is no

public class ParkingAvailability

2 extends AbstractParkingAvailability

3 implements MapReduce<ParkingLotEnum, Boolean,

4 ParkinglLotEnum, Boolean,

ParkinglLotEnum, Integer> {

@Override
public void map(ParkinglLotEnum parkinglot,

8 Boolean presence,

9 MapCollector<ParkinglLotEnum, Boolean> collector) {

1 if(!presence)
12 collector.emitMap(parkinglot, true);
13}

15 @Override

e public void reduce(ParkinglLotEnum parkingLot,

17 List<Boolean> values,

18 ReduceCollector<ParkingLotEnum, Integer> collector) {

0 int sum = values.size();
2 collector.emitReduce(parkinglLot, sum);

}

24 @Override
> protected List<Availability> onPeriodicPresence(
26 Map<ParkinglLotEnum, Integer> presenceByParkinglLot) {

List<Availability> availabilitylList =
29 new ArraylList<Availability>();
for (Entry<ParkingLotEnum, Integer> parkinglot :
3 presenceByParkinglLot.entrySet()) {
32 Availability availability = new Availability(
33 parkinglLot.getKey(), parkingLot.getValue());
34 availabilitylist.add(availability);
}
36 return availabilitylist;
3 3
38)

Figure 10: An implementation of the ParkingAvailability
context with MapReduce for the parking manager application.

presence detected, the emitMap method produces a key/-
value result. Intermediate results from the Map phase
are grouped into a list by the generated framework, and
passed to the Reduce phase via the values parameter
(line 17). The Reduce phase sums up the set of values
associated with a given intermediate key (i.e., parking lot)
and emits the total availability per parking lot via the
emitReduce method. Data resulting from MapReduce com-
putations are passed to the onPeriodicPresence method
through a map (line 26). Finally, the onPeriodicPresence
method wraps the refined data into a list of values of
type Availability, as specified by the context declara-
tion. This list is consequently returned to subscribed
components (i.e., ParkingEntrancePanelController,
ParkingSuggestion). As can be noticed, the generated
programming framework exposes an interface that prevents
the specificities of a target MapReduce implementation to
percolate to the application logic. This separation simplifies
the programming of applications and promotes reusability.
Details on how an orchestrating application is combined
with an actual implementation of MapReduce can be found

1 public class ParkingEntrancePanelController extends
2 AbstractParkingEntrancePanelController {
@Override
protected void onParkingAvailability(Discover discover,
ParkingAvailabilityValue parkingAvailability) {
for(Availability availability :
7 parkingAvailability.getValue()) {
8 String status = getStatus(availability);
discover.parkingEntrancePanels().wherelLocation(
o availability.getParkinglLot()).update(status);
1 }
>}
s 3

Figure 11: An implementation of the ParkingEntrancePanel
controller.

elsewhere [11].

Figure 11 presents the implementation of the
ParkingEntrancePanel controller. Similar to a context,
a controller is implemented by subclassing the generated
abstract class. The generated abstract class ensures that
the controller receives data from subscribed contexts in
conformance with design declarations. The controller
receives data from the ParkingAvailability context
via the onParkingAvailability callback method. The
role of this component is to display the availability
of each parking lot on dedicated display panels
(i.e., ParkingEntrancePanel). This is done using
the discover object, which comprises a set of proxies for
invoking remote devices without the need for managing
distributed systems details.

VI. CONCLUSION

The IoT domain encompasses a wide spectrum of areas,
devices, requirements, and scales. To harness the possibilities
of this domain, the many dimensions involved in developing
IoT applications need to be factorized. To do so, we propose
to leverage a domain-specific language approach where IoT-
specific concepts, mechanisms and notations are abstracted
from these dimensions. We have shown that a design
language can capture the development of IoT applications
along a continuum from small to large-scale infrastructures.

Our approach is instantiated with DiaSpec, an IoT-specific
design language. We have shown that DiaSpec design
declarations cover the four activities of IoT applications (bind-
ing entities, delivering data, processing data, and actuating
entities) from small to large-scale infrastructures. We have
argued that a range of implementation issues can be encap-
sulated in the compiler that processes design declarations
and generates customized programming frameworks. Not
only can this generative programming approach allow to
introduce parallelism to handle large datasets from sensors,
but it also guides and supports the implementation of the
declared software components in a mainstream language such
as Java.

This design language approach can be a vehicle to explore
a number of challenges in the IoT domain. Can design dec-
larations be used to match the requirements of an application
with the resources of an infrastructure? The application re-
quirements could be extracted (or estimated) from the design
declarations; they could include devices, network bandwidth,
and processing capability. What non-functional dimensions
should be added to the design declarations to account for
constraints of the IoT infrastructure? We illustrated this idea
with parallel processing that was introduced at the design
level. Other dimensions could address quality of service or
device failure.

ACKNOWLEDGEMENTS

This paper revisits, aggregates and extends the work
conducted in the Phoenix research group by a number of
PhD students, postdocs, and collaborators: Emilie Balland,
Benjamin Bertran, Julien Bruneau, Damien Cassou, Zoé
Drey, Quentin Enard, Stéphanie Gatti, Hongyu, Guan, Hen-
ner Jakob, Wilfried Jouve, Julia Lawall, Nicolas Loriant,
Julien Mercadal, Young-Joo Moon, and Paul van der Walt.

We also thank Nic Volanschi and Bernard Serpette for
providing feedback on earlier versions of this paper.

REFERENCES

[1] A. Bahga and V. Madisetti, Internet of Things: A Hands-On
Approach. VPT, 2014.

[2

—

Sigfox, “Global cellular connectivity for IoT,” Online, Ac-
cessed 31/3/2017, http://www.sigfox.com.

[3] LoRa, “Low Power Wide Area Network,” Online, Accessed
31/3/2017, http://www.lora-alliance.org.

[4

—

Libelium, “Smart City project in Santander to mon-
itor Parking Free Slots,” Online, Accessed 31/3/2017,

http://www.libelium.com/smart_santander_parking_smart_city.

[5] Y. Mizuno and N. Odake, “Current Status of Smart Systems
and Case Studies of Privacy Protection Platform for Smart
City in Japan,” in 2015 Portland International Conference on
Management of Engineering and Technology (PICMET), Aug
2015, pp. 612-624.

[6] J. Manyika, M. Chui, P. Bisson, J. Woetzel, R. Dobbs,
J. Bughin, and D. Aharon, “The internet of things: Mapping
the value beyond the hype. mckinsey global institute,” 2015.

[7] B. Bertran, J. Bruneau, D. Cassou, N. Loriant, E. Balland,
and C. Consel, “Diasuite: A tool suite to develop Sense/Com-
pute/Control applications,” Science of Computer Programming,
vol. 79, pp. 39-51, 2014.

[8] D. Cassou, J. Bruneau, C. Consel, and E. Balland, “Toward a
tool-based development methodology for pervasive computing
applications,” IEEE Transactions on Software Engineering,
vol. 38, no. 6, pp. 1445-1463, 2012.

[9] Q. Enard, S. Gatti, J. Bruneau, Y.-J. Moon, E. Balland,
and C. Consel, “Design-driven development of dependable
applications: A case study in avionics,” in PECCS-3rd Inter-
national Conference on Pervasive and Embedded Computing
and Communication Systems. SciTePress, 2013.

[10] C. Consel, L. Dupuy, and H. Sauzéon, “HomeAssist: An
assisted living platform for aging in place based on an
interdisciplinary approach,” in Proceedings of the Sth Interna-
tional Conference on Applied Human Factors and Ergonomics
(AHFE 2017). Springer, 2017, (To appear).

[11] M. Kabac and C. Consel, “Designing parallel data processing
for large-scale sensor orchestration,” in /3th IEEE Interna-
tional Conference on Ubiquitous Intelligence and Computing
(UIC 2016), 2016.

[12] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software
Architecture: Foundations, Theory, and Practice. ~ Wiley
Publishing, 20009.

[13] D. Cassou, E. Balland, C. Consel, and J. Lawall, “Leveraging
software architectures to guide and verify the development
of Sense/Compute/Control applications,” in Proceedings of
the 33rd International Conference on Software Engineering.
ACM, 2011, pp. 431-440.

[14] J. Mercadal, Q. Enard, C. Consel, and N. Loriant, “A domain-
specific approach to architecturing error handling in pervasive
computing,” ACM Sigplan Notices, vol. 45, no. 10, pp. 47-61,
2010, (OOPSLA’10).

[15] S. Gatti, E. Balland, and C. Consel, “A step-wise approach
for integrating QoS throughout software development,” in
International Conference on Fundamental Approaches to
Software Engineering. Springer, 2011, pp. 217-231.

[16] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman, “A
taxonomy of wireless micro-sensor network models,” ACM
SIGMOBILE Mobile Computing and Communications Review,
vol. 6, no. 2, pp. 28-36, 2002.

[17] M. Kabac and C. Consel, “Orchestrating Masses of Sensors: A
Design-Driven Development Approach,” in /4th International
Conference on Generative Programming: Concepts & Expe-
rience (GPCE’15), Pittsburgh, Pennsylvania, United States,
Oct. 2015.

[18] J. Dean and S. Ghemawat, “MapReduce: simplified data
processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107-113, 2008.

[19] M. Fayad and D. C. Schmidt, “Object-oriented application
frameworks,” Communications of the ACM, vol. 40, no. 10,
pp- 32-38, 1997.

[20] P. Walt, C. Consel, and E. Balland, “Frameworks compiled
from declarations: a language-independent approach,” Soft-
ware: Practice and Experience, 2016.

http://www.sigfox.com
http://www.lora-alliance.org
http://www.libelium.com/smart_santander_parking_smart_city

	Introduction
	An IoT-Specific Design Paradigm
	Abstracting Over Heterogeneous Entities
	IoT-Specific Activities
	Small-Scale Orchestration
	Large-Scale Orchestration

	Mainstream Programming Language Integration
	Small-Scale Orchestration Support
	Large-Scale Orchestration Support

	Conclusion
	References

