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Abstract—Multicasting is a fundamental functionality of net-
works for many applications, including online conferencing, event
monitoring, video streaming, and system monitoring in data
centers. To ensure multicasting reliable, secure and scalable,
a service chain consisting of network functions (e.g., firewalls,
Intrusion Detection Systems (IDSs), and transcoders) usually
is associated with each multicast request, which we refer to
as an NFV-enabled multicast request. In this paper we study
NFV-enabled multicasting in a Software-Defined Network (SDN)
with the aim to minimize the implementation cost of each NFV-
enabled multicast request and maximize the network throughput
of a sequence of NFV-enabled requests, subject to resource
capacity constraints on servers and links. We first formulate novel
NFV-enabled multicasting and online NFV-enabled multicasting
problems. We then devise the very first approximation algorithm
with an approximation ratio of 2K for the NFV-enabled multi-
casting problem if the number of servers for implementing the
network functions of each request is no more than a constant
K (≥ 1). Furthermore, we also study dynamic admissions of
NFV-enabled multicast requests without the knowledge of future
request arrivals with the objective to maximize the network
throughput, and propose an online algorithm with a competitive
ratio of O(logn) for it if K = 1, where n is the number of
nodes in the network. We finally evaluate the performance of
the proposed algorithms through experimental simulations, and
experimental results demonstrate that the proposed algorithms
outperform other existing heuristics.

I. INTRODUCTION

Network Function Virtualization (NFV) [2], [3], [7], [16]
is emerging as a promising paradigm that is shaping the
future networking landscape, by not only bringing the promise
of enabling inexpensive and flexible management solutions
but also introducing new challenges to the area of network
management. Today’s data centers and communication net-
works deploy a variety of intermediary middleboxes, e.g.,
firewalls, Intrusion Detection Systems (IDSs), proxies, and
WAN optimizers, to guarantee the security and performance
of data transfers. However, it is very expensive to achieve
the benefits of middleboxes in conventional networks, since
the middleboxes are typically made by dedicated hardware
devices. Underpinned by the NFV technique, Software-Defined
Networking (SDN) that separates the control plane from the
data plane can be utilized to enable inexpensive and flexible
implementation of network functions as software components
running in Virtual Machines (VMs), rather than expensive and
hard-to-manage hardware middleboxes. Multicasting in SDNs
that transmits data from one source to multiple destinations
is a fundamental functionality of the networks, which has
wide applications, such as video conferencing, multimedia

distribution, software updates, and system monitoring in data
centers. Such multicast requests usually require to forward their
traffic to some middleboxes before reaching their destinations
for security and performance concerns. To admit multicast
requests with network function requirements to be implemented
as VMs, in this paper we study the problem of NFV-enabled
multicasting in a software-defined network that is equipped
with servers to run the VMs.

Performing NFV-enabled multicasting in an SDN is signifi-
cantly challenging, as the VMs in servers for network function
implementations are located at different places of the SDN,
while the locations of servers partially determine the cost of
implementing requests. Naive placements of the VMs of each
NFV-enabled multicast request at locations that are far away
from its source and its destinations may incur a prohibitive
communication cost. In addition, multicast requests usually
arrive in the network one by one without the knowledge of
future request arrivals. This leads to difficulty to estimate
dynamic workloads of computing and bandwidth resources
at servers and links. The challenges thus are (1) how to jointly
find one or multiple servers to implement the network functions
and multicast routes for each incoming multicast request while
meeting its computing and bandwidth demands, (2) how to
design a novel metric that can accurately capture the dynamic
resource usage and workload in an SDN, and (3) how to
devise an online algorithm to maximize the number of admitted
multicast requests, subject to the resource capacity constraints.

Several studies on multicasting in SDNs have been con-
ducted recently [9], [10], [22], [23]. However, among these
work, they either do not consider network functions in multicast
requests [9], [10], or only dealt with a single multicast request
admission [22], [23]. In contrast, we here investigate NFV-
enabled multicasting, by devising not only an approximation
algorithm with a provable approximation ratio for realizing
a single NFV-enabled multicast request but also an online
algorithm with a guaranteed competitive ratio for the online
NFV-enabled multicasting problem.

To the best of our knowledge, we are the first to formulate
a novel NFV-enabled multicast problem in SDNs with the
aim to minimize its implementation cost, through striving for
the fine tradeoff between computing and bandwidth resource
consumptions if no more than K servers are employed to
implement the service chain of each request. We devise the
very first approximation algorithm for the problem. We also
study online NFV-enabled multicasting and devise the very first
online algorithm with a provable competitive ratio if only one
server is deployed for its service chain implementation. The



key ingredients in the design of both approximation and online
algorithms are a series of non-trivial reductions, reducing the
problems into other well-known optimization problems.

The main contributions of this paper are as follows.

• We first study the problem of NFV-enabled multicasting
in an SDN to minimize the implementation cost of
each NFV-enabled multicast request in terms of both
computing and bandwidth resource consumptions

• We then devise the very first approximation algorithm
with an approximation ratio of 2K for minimizing the
implementation cost of the request, assuming that the
number of servers used for implementing the service
chain of each request is no more than K

• We also investigate dynamic admissions of NFV-
enabled multicast requests without the knowledge of
future request arrivals with an aim to maximize the
network throughput, by proposing an online algorithm
with a provable competitive ratio.

• We finally evaluate the performance of the proposed
algorithms through experimental simulations. Experi-
mental results demonstrate that the proposed algorithms
outperform other existing heuristics.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III introduces the system
model, notations, and problem definitions. Section IV devises
approximation algorithms for the NFV-enabled multicasting
problem with and without capacity constraints. Section V
devises an online algorithm for the online NFV-enabled
multicasting problem. Section VI evaluates the performance
of the proposed algorithms by experimental simulation, and
Section VII concludes the paper.

II. RELATED WORK

Previous studies have extensively explored the issues on
placement and resource allocation for NFVs in SDNs [2],
[3], [15], [14], [18], [21]. For example, Moens et al. [18]
investigated efficient NFV placements in SDNs, by focusing
on a hybrid scenario where some network functions are
implemented by dedicated physical hardware and others are
implemented in VMs. Lukovszki et al. [15] studied the problem
of online admission and embedding of service chains (i.e., a
sequence of virtualized network functions) into a substrate
network (i.e., an SDN with both bandwidth and computing
resource capacities on its links and nodes). Li et al. [14]
designed and implemented a system to provide dynamic
provisions of resources in an NFV-enabled SDN. They also
studied the problem of maximizing the total number of requests
that can be assigned to each service chain, by utilizing Integer
Linear Programming (ILP) and randomized rounding methods.
Cao et al. [1] dealt with policy-aware traffic engineering
in SDNs, by assuming that the traffic has to pass a given
sequence of network functions. Cohen et al. [3] considered
NFV placements in an SDN with and without server capacity
constraints for NFV-enabled unicast requests. Kuo et al. [13]
studied how to implement a single NFV-enabled unicast request
with the end-to-end delay constraint by utilizing existing NFV
in servers, and proposed a dynamic programming solution to the

problem. These studies however do not consider multicasting
in SDNs.

There are studies focusing on multicasting in SDNs [9], [22],
[23]. Huang et al. [10] devised the very first online algorithms
with provable competitive ratios for online unicasting and
multicasting in SDNs, under both node capacities (forward-
ing table sizes) and link capacities (bandwidth capacities)
constraints. However, they do not consider network function
requirements of multicast requests. Huang et al. [9] studied the
scalability problem for multicasting in SDNs, by proposing an
efficient algorithm to find a branch-aware Steiner Tree (BST)
for each multicast request. Their solutions however may not
be applicable to the NFV-enabled multicasting problem, as the
solutions do not consider NFV requirements of requests.

A very closely related work is conducted by Zhang et
al. [22], [23]. They investigated the NFV-enabled multicasting
problem in SDNs, by assuming that there are sufficient comput-
ing and bandwidth resources in the SDN to accommodate any
multicast request, for which they provided a 2-approximation
algorithm for the problem if only one server (K = 1) is
deployed for implementing the service chain of each multicast
request. However, their method cannot be extended to a general
case of the problem, where multiple servers are employed. In
reality, both computing and bandwidth resources of an SDN
are limited, and need to be carefully allocated. Also, they
did not consider the online admissions of multiple multicast
requests. Since different requests may have different resource
demands, which requests should be admitted/rejected is crucial
to optimize the network throughput.

III. PRELIMINARIES

In this section, we first introduce the system model, nota-
tions and notions, and we then define the problems precisely.

A. System model

We consider a software-defined network G = (V,E) with
a set V of SDN-enabled switch nodes and a set E of links
between SDN-enabled switch nodes. Some of the switch nodes
in V are attached with computing servers that can implement
various network functions as virtual machines (VMs). The
communication delay between a switch node and the server
attached to it usually is negligible in comparison with the
communication delay with other nodes in the network, as
they are connected by a high-speed optical fiber. We thus
denote by VS (⊆ V ) the subset of switch nodes attached with
servers. Notice that each node v ∈ VS is treated like a switch
node without an attached server if its server is not used for
implementing VMs. Otherwise, the VM implementation cost
of v must be taken into account. Denote by Cv and Be the
computing capacity of the server attached to a switch node
v ∈ VS and the bandwidth capacity of a link e ∈ E in G,
respectively. There is an SDN controller in G that controls the
allocations of both the computing and bandwidth resources of
G to meet the resource demands of each admitted NFV-enabled
multicast request. Fig. 1 is an example of an SDN.

B. NFV-enabled multicast requests and pseudo-multicast trees

An NFV-enabled multicast request rk is represented by a
quadruple rk = (sk, Dk; bk, SCk), where sk ∈ V is the source,
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Fig. 1. An SDN G with a set V = {v1, v2, v3, v4, v5, v6} of SDN switches
and a subset VS = {v1, v2, v6} of switches with servers.

Dk is the set of destinations (or terminals) with Dk ⊆ V , bk is
the demanded bandwidth by rk, and SCk is the service chain
of rk that consists of a sequence of network functions that must
be implemented by either dedicated hardware middleboxes or
virtual machines running on servers. Specifically, the service
chain SCk of request rk enforces that every message from the
source of rk must go through each of the network functions of
the chain in the specified order prior to reaching its destinations,
as illustrated in Fig. 2. The network functions in SCk can be
implemented by VMs in servers [7], [17], [19]. Without loss
of generality, we assume that the network functions in SCk
are consolidated to a server in G. Specifically, when realizing
multicast request rk, its message passes a server hosting the VM
of its service chain SCk, the traffic will be directed to the VM
and all the network functions in SCk. Denote by Cv(SCk) the
amount of demanded computing resource to implement SCk
of multicast request rk in server v ∈ Vs.

Source

Destination 1

Destination 2FirewallNAT IDS

Fig. 2. A service chain 〈 NAT, Firewall, IDS 〉.

A pseudo-multicast tree is a graph GT derived from a
multicast tree T for the data traffic routing of an NFV-enabled
multicast request. We here use an example to illustrated the
pseudo-multicast tree concept. Consider a multicast tree T as
shown in Fig. 3, where nodes A and B are attached with servers
for processing the NFVs in SCk of a multicast request rk, the
set of destinations of request rk is {d1, d2, d3, d4, d5}. Recall
that a packet from source sk must pass through a server for
processing the NFVs in SCk prior to reaching all destinations.
However, in this case, only the destinations d1 and d4 in T can
correctly receive the processed packet, because there are servers
at A and B respectively, while the other three destinations d2, d3
and d5 cannot. To enable the packet to pass through a server
before reaching d2, d3 and d4, the packet routing proceeds as
follows. When the packet is processed in node A, the processed
packet is sent back to node a along the tree path PA,a, node
a then forwards the processed packet to d2 (see Fig. 3(b)).
Similarly, the processed packet at B will be sent back to node
b along the tree path PB,b. Assume that the distance between
nodes A and e is greater than the distance between nodes B
and e, the processed packet at node b will be further forwarded

to node e. The processed packet will finally reach node e
and be forwarded to node d5 (see Fig. 3(b)). We term this
routing graph derived from T as a pseudo-multicast tree GT ,
as shown by Fig. 3(b). It can be seen that another tree T ′ (see
Fig. 3(c)) derived from GT will have the same cost as GT , i.e.,
c(T ′) = c(GT ).
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Fig. 3. A pseudo-multicast tree GT derived from a multicast tree T for an
NFV-Enabled multicast request rk , and another tree T ′ derived from GT is
constructed which has the identical cost as GT .

C. Problem definitions

Given an SDN G = (V,E) and a multicast request rk
(= (sk, Dk; bk, SCk)), we consider the following NFV-enabled
multicasting problems with and without various resource
capacity constraints.

Case 1. The SDN G = (V,E) has sufficient computing and
bandwidth resources to meet the resource demands of any NFV-
enabled multicast request. As the network operator of G then
charges each admitted multicast request on a pay-as-you-go
basis, its major concern is its operational cost that is defined
as the sum of the costs of using computing and bandwidth
resources for admitted requests. Let ce and cv be the usage
costs of one unit of bandwidth and computing resources at
link e ∈ E and server v ∈ VS , respectively. As the computing
resource demand of the service chain of each request usually is
within the capacity of each server, we assume that the number
of servers, each of which implements an instance of the service
chain SCk of each admitted multicast request rk, is no more
than a constant K with K ≥ 1. The NFV-enabled multicasting
problem without SDN resource capacity constraint in G for an
NFV-enabled multicast request rk is to find a pseudo-multicast
tree such that its implementation cost is minimized, if no more
than a constant number K of servers are used for implementing
service chain SCk, assuming that G has sufficient computing
and bandwidth resources in G.

Case 2. Both computing and communication resources
of G are capacitated. Then, for an incoming NFV-enabled
multicast request, the network may or may not have enough
resources at that moment to admit it. Or it is too expensive
to admit the request, i.e., the request should be rejected. We
thus define the NFV-enabled multicasting problem with SDN
resource capacity constraint in an SDN G = (V,E) for an
NFV-enabled multicast request rk is to find a pseudo-multicast
tree in G for implementing rk such that its implementation
cost is minimized, if no more than a constant number K of



servers will be used for implementing its service chain SCk,
subject to computing and bandwidth capacity constraints on
servers and links of G.

Both the defined problems are NP-hard, as their special
case - the traditional multicast problem without the NFV
constraints is NP-hard [4]. So far we have only considered a
single request admission. In reality, the requests arrive into the
system one by one without the knowledge of future request
arrivals, and we refer to this dynamic request admission as the
online request admission. Considering that the limited resources
of G may not be able to admit all requests, they need to
be dynamically admitted. We thus formulate this dynamic
admissions of multicast requests as the online NFV-enabled
multicasting problem in G to admit as many NFV-enabled
multicast requests as possible without the knowledge of future
request arrivals, while meeting the computing and bandwidth
resource demands of admitted multicast requests, subject to the
computing and bandwidth capacity constraints on servers and
links of G, assuming that no more than K servers are used to
implement the service chain of each request.

IV. APPROXIMATION ALGORITHMS FOR THE
NFV-ENABLED MULTICASTING PROBLEM

In this section we deal with the NFV-enabled multicasting
problem with and without resource capacity constraints.

A. Algorithm overview

The basic idea of the proposed approximation algorithms
is to find a multicast tree rooted at the source and spanning all
destinations, and each message from the source to destinations
passes through a server in the tree, such that the cost of the
tree is minimized. To this end, the finest tradeoff between
the computing and communication costs needs to be explored.
Specifically, if a server v with a lower computing cost is
included in the pseudo-multicast tree for multicast request rk,
the computing cost of implementing rk may be reduced. This
however will increase the communication cost if the chosen
server v is far from the destinations of rk. Furthermore, if there
are multiple servers in different branches of the multicast tree,
then the message can pass through each of these servers to
reach the destinations in Dk, and thus leads to less bandwidth
usages from the source to the destinations, at the expense of
high computing cost. We thus identify a set of servers with each
implementing the service chain SCk of rk and find a pseudo-
multicast tree for the request with the identified server(s) on
the path from the source sk to each destination u ∈ Dk. As K
is a constant, we aim to find a pseudo-multicast tree in G that
contains no more than K servers and the path in the tree from
sk to each destination u ∈ Dk must pass through one of the
identified servers such that the cost of the tree is minimized.

Recall that there are |Vs| switches in G with servers, clearly
K ≤ |Vs|. As a pseudo-multicast tree for any NFV-enabled
multicast request can contain at least one but no more than K
servers, there are at most

(|VS |
K

)
combinations of servers that can

meet the computing resource demand of service chain SCk of
request rk. For each combination of servers, a pseudo-multicast
tree in G can be identified, and the tree with the minimum
cost is then used to implement rk. Our general strategy is to
reduce the multicast tree problem into a Steiner tree problem

in an auxiliary undirected graph. An approximate solution to
the latter returns an approximate solution to the former.

B. Approximation algorithm without resource capacity con-
straints

Given an NFV-enabled multicast request rk, we now devise
an approximation algorithm for the NFV-enabled multicasting
problem in G without SDN resource capacity constraint, by
reducing it to the Steiner tree problem in an auxiliary undirected
graph Gik = (V ik , E

i
k; c) with an edge weight function c for

all i with 1 ≤ i ≤
(|VS |
K

)
, where V ik = V ∪ {s′k}, Eik =

E ∪ {(s′k, v) | v ∈ V iS}, V iS (⊆ VS) is the ith combination
of the servers in VS , and s′k is a virtual source of request rk.
For each v ∈ V iS , if edge (sk, v) ∈ E in G, the cost of edge
(sk, v) ∈ Eik is assigned zero. s′k now is the new source in Gik,
replacing the original source sk. Notice that the original source
sk is still contained in Gik serving as a ‘regular’ switch node
without an attached server. To guarantee that the traffic of rk
passes through its service chain SCk that is implemented in one
or multiple servers in V iS (⊆ VS), we connect s′k with all server
nodes in V iS , where the edge between s′k and each server node
v ∈ V iS in Gik represents a shortest path psk,v in G between
nodes sk and v. The weight of edge (s′k, v) is the cost sum
of the edges in path psk,v plus the cost of implementing SCk
in server v, i.e., c(s′k,v) =

∑
e∈ps′

k
,v
ce · bk + cv(SCk), where

cv(SCk) is the cost of the amount Cv(SCk) of computing
resource consumption for implementing SCk. In addition, the
weight ce of each edge e ∈ Eik ∩ E is the cost ce · bk of
allocating the amount bk of bandwidth resource to request rk
on edge e ∈ E. An example of the constructed auxiliary graph
Gik that is derived from the SDN in Fig. 1 is shown in Fig. 4.
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Fig. 4. An example of the auxiliary graph G5
k = (V 5

k , E
5
k) constructed

from an SDN G = (V,E) with V 5
S = {v1, v6}, assuming that K = 2 and

VS = {v1, v2, v6}. There are
(|Vs|

K

)
= 3·2 = 6 auxiliary graphs derived from

G, and all different combinations of servers in VS are V 1
S = {v1}, V 2

S = {v2},
V 3
S = {v6}, V 4

S = {v1, v2}, V 5
S = {v1, v6}, and V 6

S = {v2, v6}.

For the sake of convenience, we assume that VS =
{v1, v2, . . . , v|VS |}. Having constructed auxiliary graph Gik, we
find a Steiner tree in Gik for request rk. Specifically, we first find
a minimum spanning tree T imst in a complete graph consisting
of nodes in {s′k}∪Dk, in which each edge is assigned a weight
that is equal to the length of the shortest path in Gik between
its two endpoints. Let Hi

k be a subgraph of Gik derived from
T imst by replacing each edge of T imst with its corresponding
shortest path in Gik. We then find an approximate Steiner tree
T ik in Hi

k by applying the approximation algorithm due to Kou
et al. [12], which will serve as the multicast tree for rk. The



detailed description of the algorithm is given in Algorithm 1.

Algorithm 1 Appro_Multi
Input: G = (V,E), VS , a multicast request rk = (sk, Dk; bk, SCk), and

K ≥ 1.
Output: A pseudo-multicast tree Tk for implementing the multicast request

rk with the minimum cost.
1: costk ←∞; Tk ← ∅; /* the cost of the pseudo-multicast tree */
2: /* each combination of choosing i servers from |VS | servers */;
3: for i← 1 to

(|VS |
K

)
do

4: Let V i
S = {vi1 , vi2 , . . . , vil} ⊆ VS ;

5: Construct an auxiliary undirected graph Gi
k = (V i

k , E
i
k) where V i

k =
V ∪ {s′k}, E

i
k = E ∪ {(s′k, vij ) | vij ∈ V i

S}; assign each edge
(s′k, vij ) a cost which is the cost sum of links in a shortest path
between sk and vij in G plus the cost of using the server at node vij ,
and each edge derived from E \ {(sk, vi) | (sk, vi) ∈ E, vi ∈ V i

S}
has a cost of using the amount bk of bandwidth in that link, and the
edge (sk, vi) ∈ Ei

k has a cost of zero if (sk, vi) ∈ E and vi ∈ V i
S ;

6: Find an MST T i
mst in a complete graph induced by the nodes in

{s′k} ∪ Dk with the weight of each edge being the length of the
shortest path in Gi

k between its two endpoints;
7: Let Hi

k be a subgraph of Gi
k derived from T i

mst, by replacing each
edge of T i

mst with the corresponding shortest path in Gi
k; find an

approximate Steiner tree T i
k in Hi

k rooted at s′k and spanning nodes in
Dk , by invoking the approximation algorithm due to Kou et al. [12];

8: if c(T i
k) < costk then

9: costk ← c(T i
k), Tk ← T i

k; /* put this solution as a candidate
solution to the problem */

10: if Tk contains node sk then
11: Merge nodes sk and s′k into s′k;
12: Rename s′k in Tk as sk , and let Tk be the resulting graph (the pseudo-

multicast tree) for data traffic routing of request rk;
13: return Tk and its cost c(Tk).

C. Approximation algorithm with resource capacity constraints

We now deal with the NFV-enabled multicasting problem
under computing and bandwidth resource capacity constraints,
by performing some minor modifications to Algorithm 1.
Specifically, a subgraph G′ = (V ′, E′) of G is constructed,
where V ′ = V , E′ = {(u, v) | (u, v) ∈ E, and the residual
bandwidth at link (u, v) is no less than bk}, a subset set V ′S
of VS will be used, and V ′S = {vi | vi ∈ VS if the available
computing resource at vi can meet the computing resource
demands of rk}. Algorithm 1 then is applied to graph G′,
using the server set V ′S . Clearly, all the resource demands
by rk will be met. In case G′ is disconnected, and none of
its connected components contains the source node and all
destinations of rk and at least one server node, then the request
should be rejected, because there are no sufficient resources
in G for its implementation. For simplicity, this algorithm is
referred to as algorithm Appro_Multi_Cap.

D. Algorithm analysis

We now show the correctness of Algorithm 1, and
analyze its time complexity and the approximation ratio. The
analysis under resource capacity constraints can be similarly
performed, and thus omitted.

Theorem 1: Given an SDN G = (V,E), a set VS of switch
nodes with each having an attached server, and an NFV-
enabled multicast request rk = (sk, Dk; bk, SCk), there is an
approximation algorithm, Algorithm 1, for the NFV-enabled
multicasting problem with and without SDN resource capacity

constraints, which delivers an approximate solution with an
approximation ratio of 2K, assuming no more than K servers
will be employed for its service chain implementation. The
time complexity of the algorithm is O(|V |3 · |VS |K), where
|VS | � |V | and K ≥ 1 is a small integer.

Proof: Clearly, according to the construction of Gik, the
solution delivered by Algorithm 1 is feasible.Due to space
limitation, the detailed proof for feasibility is omitted.

We now analyze the approximation ratio of Algorithm 1.
Let G∗T be the optimal pseudo-multicast tree for the NFV-
enabled multicast request rk in G. If G∗T is not a multicast
tree, there is a corresponding tree T ′ with the identical cost
as G∗T , following the transformation in Section III; otherwise
GT itself is a multicast tree. From now on, we denote by T ∗
either the optimal multicast tree G∗T or its corresponding cost-
identical tree T ′. We assume that there are l servers in T ∗ for
implementing SCk with 1 ≤ l ≤ K. Without loss of generality,
we assume that these l nodes are v1, v2, . . . , vl, respectively.
Clearly, it can be easily shown that none of pairs of these
nodes in T ∗ has the ancestor and descendant relationship in
terms of a node being used as a server, otherwise the node
in VS will be treated as a regular switch node without the
use of its server. Each subtree T ∗vi of T ∗ rooted at vi contains
some destinations, and all of the l subtrees will contain all
the destinations in Dk, following its definition. We construct
another tree T ∗c = (V ′, E′) which is derived from T ∗ by
compressing the path in T ∗ from sk to each node vi as follows.
We replace the source node sk by a node s′k and the path in
T ∗ from sk to vi by an edge (s′k, vi), and assign the edge a
weight that is the sum of all edge costs in the path plus the cost
of using server vi. We now claim that the cost of tree T ∗c is no
greater than l times the cost of tree T ∗, i.e., c(T ∗c ) ≤ l · c(T ∗)
by showing the claim as follows.

It can be seen that there is a multicast tree T ik in Gik rooted
at source s′k and spanning all destinations in Dk, which has
the same topological structure as T ∗c , however, it has a lower
cost compared with that of T ∗c , i.e., c(T ik) ≤ c(T ∗c ). This is
because the weight of each edge in Gik between s′k and vi is
the length of the shortest path in G between the two nodes
plus the cost of using server vi, while the corresponding edge
weight in T ∗c is the sum of all edge weights in the path in T ∗
between sk and vi plus the cost of using server vi.

Let TOPT,ik be an optimal multicast tree in Gik rooted at s′k
and spanning all destinations in Dk and each path in the tree
from s′k to a destination goes through one of the servers in V ′S .
Then, c(TOPT,ik ) ≤ c(T ik) as T ik is one of the multicast trees for
multicast request rk. Let T app,ik be an approximate multicast
tree in Gik for multicast request rk by the algorithm due to
Kou et al. [12], then c(T app,ik ) ≤ 2c(TOPT,ik ) ≤ 2c(T ik) ≤
2c(T ∗c ) = 2 · l · c(T ∗). Since a pseudo-multicast tree Tk with
the minimum cost from the

(|VS |
K

)
auxiliary undirected graphs

Gik for all i with 1 ≤ i ≤
(|VS |
K

)
will be found and the value

of l is within [1,K], the cost of the pseudo-multicast tree Tk
for rk is no greater than 2K · c(T ∗).

The analysis of the time complexity of Algorithm 1 is
omitted, due to space limitation.



V. ONLINE ALGORITHM FOR THE ONLINE NFV-ENABLED
MULTICASTING PROBLEM

We now study the online NFV-enabled multicasting problem
in G with SDN resource capacity constraints. We first propose
a novel cost model to capture dynamic resource consumptions
in G. We then devise an online algorithm with a competitive
ratio for the problem when K = 1.

A. Cost model

Given an SDN G = (V,E) with limited computing and
bandwidth capacities at its servers and links, there is a need of
a metric to capture dynamic consumptions of its resources in
order to better utilize the resources, by encouraging the use of
underloaded resources while restricting the use of overloaded
resources to maximize the number of NFV-enabled multicast
request admissions. A simple cost model which is referred to
the linear cost model, is widely adopted to charge each request
with a cost that is linearly proportional to the amount of its
resource consumption, regardless of whether a specific resource
has been overloaded or underloaded. Clearly, this model may
lead to some resources being under-utilized while others being
over-utilized. Consequently, significant number of requests may
be rejected due to unbalanced resource utilizations.

We here introduce a novel cost model that assigns an
underloaded resource with a lower cost and an overloaded
resource with a higher cost. Thus, the resources in the network
can be maximally allocated among user requests, thereby
maximizing the network throughput. Specifically, let Cv(k)
be the amount of available computing resource at the server
attached to a switch node v ∈ VS and Be(k) the amount of
available bandwidth at link e ∈ E respectively, when multicast
request rk arrives. To capture the resource use of rk, we use
exponential functions to represent the costs cv(k) and ce(k)
of its usages of computing and bandwidth resources at server
node v and link e:

cv(k) = Cv(α
1−Cv(k)

Cv − 1), (1)

where α is a constant with α > 1, Cv(k) = Cv(k − 1) −
Cv(SCk) if rk is admitted, and Cv(0) = Cv initially. (1 −
Cv(k)
Cv

) in Eq. (1) is the utilization ratio of computing resource
at server v ∈ VS . The rationale behind is that the use of less
residual computing resource will be charged with a higher cost,
while the use of plenty of residual computing resource will be
charged with a much less cost.

The cost ce(k) of using the bandwidth resource at link e
prior to the admission of rk can be similarly defined, i.e.,

ce(k) = Be(β
1−Be(k)Be − 1), (2)

where β is a constant with β > 1, Be(k) = Be(k − 1) − bk
if rk is admitted, and Be(0) = Be initially. We will use the
defined costs to guide the network resource allocations to meet
the demands of NFV-enabled multicast requests.

B. Online algorithm

We now propose an online algorithm with a provable
competitive ratio for the online NFV-enabled multicasting
problem, assuming the service chain of each multicast request
is implemented by a single server, i.e., K = 1.

The basic idea behind the algorithm is to determine whether
every incoming NFV-enabled multicast request rk will be
admitted or rejected, depending on a given admission control
policy. If rk is admissible, the algorithm requires to jointly
find a server with sufficient computing resource to implement
the service chain SCk and a pseudo-multicast tree for rk,
such that the cost of implementing the request is minimized,
subject to the resource capacity constraints on the network.
For the finding of such a pseudo-multicast tree, we have
an important observation: one of the |VS | servers must be
contained in any pseudo-multicast tree for each request rk,
the pseudo-multicast tree must include the server as one of
the destination nodes of rk. Thus, we can find a Steiner tree
in Gk = (Vk, Ek;w) for request rk with source sk and the
destination set Dk∪{v}, where v ∈ VS has sufficient computing
resource. Notice that Gk(Vk, Ek;w) is an undirected graph that
is identical to G(V,E), i.e., Vk = V and Ek = E. The weight
we(k) of each edge e ∈ Ek is the normalized cost of the
cost defined by Eq. (2), that is, we(k) = ce(k)/Be, while the
weight wv(k) of each node v ∈ VS for rk is the normalized
cost of the cost defined by Eq. (1), i.e, we(k) = cv(k)/Cv.
Let T be an approximate Steiner tree in Gk rooted at sk and
spanning the terminals in Dk by the approximation algorithm
due to Kou et al. [12], where Gk is the graph G(V,E) that
considered the first k − 1 requests already, partial resources at
its servers and links are occupied by some of the first (k − 1)
requests at this moment. We build a multicast tree for rk. If
server v is in any path in T from sk to each destination, T
is the multicast tree, and its cost is no more than twice the
optimal one [12]; otherwise, assume that the path between sk
and a destination node d does not contain server v. Let u be
the lowest common ancestor u = LCA(v, d) between nodes v
and d in T . Then, when the message from sk is sent to server
v for processing, the processed message continues forwarding
to all destinations in the subtree rooted at v; for the destination
d ∈ Dk, the processed message at node v is then sent back to
node u, which then forwards toward destination d. Clearly, in
the worst scenario, the processed message will be sent back to
the source sk for multicasting.

Let T and T ∗ be the found approximate Steiner tree by the
approximation algorithm in [12] and the optimal one. Denote
by Tk and T ∗k the pseudo-multicast tree based on T and the
optimal multicast tree, respectively. The sum of the weights of
the pseudo-multicast tree Tk based on T and server v is

w(Tk) + wv(k) = w(T ) + w(PTv,u) + wv(k) ≤ w(T )
+ w(PTv,sk) + wv(k) ≤ 2w(T ) + wv(k) ≤ 2(w(T ) + wv(k))

≤ 4w(T ∗) + 2wv(k) ≤ 4(w(T ∗) + wv(k)) ≤ 4OPTv, (3)

where PTx,y is a path in T between node x and node y,
and OPTv is the optimal cost of the pseudo-multicast tree
using server v as its service chain processing server. Thus,
the optimal solution OPT for request rk in Gk thus is
OPT = minv∈VS{OPTv}.

We then adopt the following admission control policy
to guide the admission of each multicast request rk: (a) If
wv(k) ≥ σv for any v ∈ VS ∩ Tk, rk will be rejected; and
(b) if

∑
e∈Tk we(k) ≥ σe, rk will be rejected, where Tk is

a pseudo-multicast tree delivered by an algorithm in Gk for
rk, σv > 0 and σe > 0 are admission control thresholds of
computing and bandwidth respectively, and σv = σe = |V |−1.



The detailed online algorithm, referred to as Online_CP, is
given in Algorithm 2.

Algorithm 2 Online_CP
Input: G = (V,E), VS , Be for each e ∈ E, Cv for each v ∈ VS , a

sequence of multicast requests that arrive at the network one by one with
each request rk = (sk, Dk; bk, SCk), σe, and σv .

Output: The admission or rejection of each incoming NFV-enabled multicast
request, if admitted, a pseudo-multicast tree for the request will be
delivered.

1: G ← ∅; /* the pseudo-multicast trees for the admitted requests */
2: for each incoming request rk do
3: Tk ← ∅; /* the pseudo-multicast tree for rk if it is existent */
4: cost←∞; /* the cost of the pseudo-multicast tree Tk for rk */
5: Construct an undirected weighted graph Gk = (Vk, Ek;w), by

assigning each link e ∈ E a normalized weight we(k) and each
node v ∈ VS a normalized weight wv(k);

6: for each v ∈ VS do
7: if wv(k) < σv then
8: Find an approximate Steiner tree T in Gk with the terminal set

{sk, v} ∪Dk by the algorithm due to Kou et al. [12];
9: if

∑
e∈T we(k) < σe then

10: Compute the lowest common ancestor
u = LCA(v, d1, d2, . . . , d|Dk|) in T ,
where LCA(x1, x2, . . . , xn) =
LCA(LCA(x1, x2, . . . , xn−1), xn);

11: Calculate the cost cost(k) of pseudo-multicast tree derived
from T for rk;

12: cost(k)← c(T ) + cv(SCk) + c(pv,u);
13: if cost(k) < cost then
14: Tk ← T , cost← cost(k);
15: if Tk 6= ∅, then Admit request rk , G ← G ∪ {< rk, Tk, cost >};
16: else Reject request rk;
17: return G.

C. Algorithm analysis

We now analyze the competitive ratio of algorithm
Online_CP. Let S(k) and OPT be the sets of admitted
multicast requests by algorithm Online_CP and an op-
timal offline algorithm when multicast request rk arrives.
Let R(k) be the set of multicast requests that are rejected
by algorithm Online_CP while admitted by the optimal
offline algorithm. Then the competitive ratio of algorithm
Online_CP is |S(k)|

|S(k)∩OPT |+|R(k)| ≥
|S(k)|

|R(k)|+|S(k)| , since
OPT = R(k) ∪ (OPT ∩ S(k)) ⊆ R(k) ∪ S(k). Specifically,
the analysis of the competitive ratio of algorithm Online_CP
consists of three steps: (1) show the upper bound on the
accumulative computing and bandwidth resources occupied by
requests in S(k); (2) show the lower bound on the accumulative
computing and bandwidth resources occupied by requests in
R(k)) and (3) derive the competitive ratio by combining the
results of steps (1) and (2). We then have the following lemma.

Lemma 1: When multicast request rk arrives, the cost sums
of all servers in VS and all links in E are

∑
v∈VS cv(k) ≤

2C(k)·logα·(|V |−1), and
∑
e∈E ce(k) ≤ 2B(k)·log β ·(|V |−

1), provided that bk′ ≤ mine∈E Be
log β and Cv(SCk′) ≤

minv∈VS Cv
logα

with 1 ≤ k′ ≤ k, where B(k) and C(k) are the accumulative
amounts of bandwidth and computing resources being occupied
by the admitted requests in S(k), respectively.

Proof: Consider any k′ ∈ S(k) admitted by the online
algorithm, its data traffic is first routed to a server v ∈ VS that
hosts its service chain SCk via path psk,v in G, and then to
each of its destinations in Dk through a subtree Tv with root

v. The costs of computing resource usage of different servers
in VS are different. We thus have

cv(k
′ + 1)− cv(k′) ≤ Cv(α1−Cv(k′+1)

Cv − α1−Cv(k′)
Cv )

= Cvα
1−Cv(k′)

Cv (α
Cv(SC

k′ )
Cv − 1)

= Cvα
1−Cv(k′)

Cv (2
Cv(SC

k′ ) logα

Cv − 1) (4)

≤ Cvα1−Cv(k′)
Cv (

Cv(SCk′) logα

Cv
) (5)

= α1−Cv(k′)
Cv Cv(SCk′) · logα. (6)

Notice that the derivation from Eq. (4) to inequality (5) is
due to that 2x−1 ≤ x for 0 ≤ x ≤ 1. Similarly, if edge e ∈ E
is in the route for multicast request rk, we have

ce(k
′ + 1)− ce(k′) ≤ β1−Be(k

′)
Be bk′ · log β. (7)

Notice that cv(0) = 0 for all v ∈ VS . If an NFV-enabled
multicast request rk′ is admitted, this means that

wv(k
′) = α1−Cv(k′)

Cv − 1 ≤ σv = |V | − 1, (8)

We now calculate the cost sum of all edges and the server
attached to v ∈ VS when admitting the multicast request rk.
Notice that if an edge in E is not included in Tk for rk, its
cost does not change after the admission of rk. So does the
cost of a server that is not used for implementing SCk of rk.
Assuming that v is chosen for rk′ , we have∑
v∈VS

cv(k
′ + 1)− cv(k′) = cv(k

′ + 1)− cv(k′)

≤ (α1−Cv(k′)
Cv )Cv(SCk′) logα, by inequality (6)

= (α1−Cv(k′)
Cv − 1)Cv(SCk′) logα+ Cv(SCk′) logα

≤ (α1−Cv(k′)
Cv − 1)Cv(SCk′) logα+ (|V | − 1)Cv(SCk′) logα,

since |V | > 1

≤ 2Cv(SCk′) logα(|V | − 1) by inequality (8). (9)

Similarly we have∑
e∈E

ce(k
′ + 1)− ce(k′) ≤ 2bk′ log β(|V | − 1). (10)

We finally have∑
v∈VS

cv(k) =

k−1∑
k′=1

∑
v∈VS

(cv(k
′ + 1)− cv(k′))

≤
∑

k′∈S(k)

2Cv(SCk′) · logα · (|V | − 1) = 2C(k) · logα · (|V | − 1),

and similarly
∑
e∈E ce(k) ≤ 2B(k) · log β · (|V | − 1).

We now show the lower bound on the cost of a multicast re-
quest in R(k) that is rejected by online algorithm Online_CP
but admitted by an optimal offline algorithm.

Lemma 2: For rk′ ∈ R(k), if α = β = 2|V |, we have

w(T ′k′) + wv′(k
′) ≥ |V | − 1

4
, (11)



where T ′k′ is the Steiner tree found by the optimal offline
algorithm to route the traffic of rk′ , and v′ is the switch in
T ′k′ whose server is selected to implement server chain SCk′ ,
assuming that both the following inequalities are met: bk′ ≤
mine∈E Be

log β , and Cv(SCk′) ≤
minv∈VS Cv

logα with 1 ≤ k′ ≤ k.

Proof: A multicast request rk′ will be rejected by the pro-
posed online algorithm, Algorithm Online_CP, because
of the following cases. Case 1, there is no sufficient computing
resource for implementing the service chain of rk′ ; Case 2.
There is no sufficient bandwidth resource for routing the traffic
of rk′ to its destinations; Case 3. The weighted sum of edges in
the pseudo-multicast tree for rk′ is too high (Step 9), and/or the
weight of the selected server attached to switch v to implement
the service chain of rk′ is too high (Step 7).

Case 1. Let v′ be the switch whose attached server is
selected to implement the service chain of request k′. As the
request is rejected by algorithm Online_CP due to insufficient
available computing resource, we have Cv′(k

′) < Cv(k
′).

Therefore, 1 − Cv′ (k
′)

Cv′
≥ 1 − Cv(k

′)
Cv(SCk′ )

≥ 1 − 1
logα , since

Cv(SCk) ≤
minv∈VS Cv

logα . We then have

w(T ′k′) + wv′(k
′) ≥α1−

C
v′ (k
′)

C
v′ − 1 > α1− 1

logα − 1

=
α

2
− 1 = |V | − 1. (12)

Case 2. We have w(T ′k′) +wv′(k
′) ≥

∑
e∈T ′

k′
β1−Be(k

′)
Be −

1 ≥ |V | − 1.The derivation is similar to Case 1. Due to space
limitation, omitted.

Case 3. Let Tk′ be the pseudo-multicast tree by algo-
rithm Online_CP for multicast request rk′ . According to
inequality (3), we have w(Tk′) + wv′(k

′) ≤ 4(w(T ∗k′) +
wv′(k

′)) ≤ 4(w(T ′k′) + wv′(k
′)), where T ∗k′ and v′ are the

optimal multicast tree and the server for rk′ by the optimal
solution. Since the proposed online algorithm rejected the
request, we have w(Tk′) > σe and/or wv′(k

′) > σv. If
w(Tk′) > σe, we have w(T ′k′) + wv′(k

′) ≥ w(Tk′ )+wv′ (k
′)

4 ≥
w(Tk′ )

4 ≥ σe
4 = |V |−1

4 , similarly, if wv′(k′) > σv, we have
w(T ′k′)+wv′(k

′) ≥ σv
4 = |V |−1

4 . Summarizing the three cases,
we have w(T ′k′) + wv′(k

′) ≥ |V |−14 .

We finally analyze the competitive ratio of Online_CP.

Theorem 2: Given an SDN G = (V,E) with computing
capacity Cv of each server node v ∈ VS and bandwidth
capacity Be for each link e ∈ E, a sequence of NFV-enabled
multicast requests with the kth multicast request rk being
represented by a quadruple (sk, Dk; bk, SCk), there is an online
algorithm, Algorithm Online_CP, with a competitive ratio
of O(log |V |) for the online NFV-enabled multicasting problem
if only one server is contained in the pseudo-multicast tree for
the service chain implementation of the request, provided that
bk′ ≤ mine∈E Be

log β and Cv(SCk′) ≤
minv∈VS Cv

logα with 1 ≤ k′ ≤ k.
The algorithm takes O(k|V |3) time if the request sequence
contains k NFV-enabled multicast requests.

Proof: The competitive ratio of algorithm Online_CP
is analyzed as follows. Let T ∗k′ be the optimal multicast tree
by the optimal offline algorithm for request rk′ ∈ R(k) and

v∗ ∈ T ∗k′ be the server for the service chain SCk′ of rk′ .

|V | − 1

4
(|R(k)|) ≤

∑
rk′∈R(k)

|V | − 1

4

≤
∑

rk′∈R(k)

∑
e∈T∗

k′

(β1−Be(k
′)

Be − 1) + α
1−Cv∗ (k

′)
Cv∗ − 1, by Lemma 2

=
∑

rk′∈R(k)

(
∑
e∈T∗

k′

ce(k
′)/Be + cv∗(k

′)/Cv∗),

≤
∑

rk′∈R(k)

(
∑
e∈T∗

k′

ce(k)/Be + cv∗(k)/Cv∗),

≤
∑
e∈T∗

k′

ce(k)
∑

rk′∈R(k)

1/Be + cv∗(k)
∑

rk′∈R(k)

1/Cv∗ ,

≤
∑
e∈E

ce(k) +
∑
v∈VS

cv(k). (13)

Following inequalities (13) and Lemma (1), we have

|V | − 1

4
(|R(k)|) <

∑
e∈E

ce(k) +
∑
v∈VS

cv(k)

≤ 2C(k) logα(|V | − 1) + 2B(k) log β(|V | − 1)

≤ 2|S(k)|Cmax logα(|V | − 1) + 2|S(k)|bmax log β(|V | − 1)

= 2|S(k)|(|V | − 1)(Cmax logα+ bmax log β), (14)

where Cmax = argmaxk Cv(SCk) and bmax = argmaxk bk,
i.e., the maximum computing and bandwidth resource demands
of all requests. Inequality (14) then can be rewritten as

|R(k)|
|S(k)|

≤ 8(Cmax logα+ bmax log β). (15)

The competitive ratio of algorithm Online_CP thus is

|S(k)|
|OPT |

≥ |S(k)|
|R(k) ∪ S(k)|

≥ |S(k)|
|R(k)|+ |S(k)|

=
1

|R(k)|/|S(k)|+ 1

≥ 1

1 + 8(Cmax logα+ bmax log β)
, by inequality (15)

≥ 1

c′ log |V |
,when Cmax and bmax are given constants,

where c′ > 0 is a positive constant and α = β = 2|V |.
The competitive ratio of the competition ratio of algorithm
Online_CP thus is O(log |V |) when α = β = 2|V |.

The analysis of the time complexity of the proposed
algorithm is omitted due to space limitation.

VI. PERFORMANCE EVALUATION

In this section we evaluate the performance of the proposed
algorithms through experimental simulation. We also investigate
the impact of important parameters.

A. Environment settings

We consider SDNs consisting of from 50 to 250 nodes,
where each network is generated using GT-ITM [6]. The number
of servers in each network is set to 10% of the network size,
and they are randomly co-located with switches in the network.
We also use real network topologies, i.e., GÉANT [5] and an
ISP network from [20]. There are nine servers for the GÉANT



topology as set in [7] and the number of servers in the ISP
networks are provided by [19]. The bandwidth capacity of
each link varies from 1,000 Mbps to 10,000 Mbps [11], and
the computing capacity of each server varies from 4,000 to
12,000 MHz [8]. Five types of network functions, i.e., Firewall,
Proxy, NAT, IDS, and Load Balancing, are considered, and
their computing demands are adopted from [7], [17]. The
source and destination nodes of each multicast request is
randomly generated, the ratio of the maximum number Dmax

of destinations of a multicast request to the network size
|V | is randomly drawn in the range of [0.05, 0.2], and its
bandwidth resource demand is randomly drawn in the range of
[50, 200] Mbps. We set σe and σv at |V | − 1. The maximum
number K of servers that can be used to implement the service
chain of each multicast request is 3. The running time of each
algorithm is obtained based on a machine with a 3.40GHz
Intel i7 Quad-core CPU and 16 GiB RAM. Unless otherwise
specified, these parameters will be adopted in the default setting.
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(a) Operational costs by different
algorithms with Dmax/|V | =
0.05
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(b) Operational costs by different
algorithms with Dmax/|V | =
0.1
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(c) Operational costs by different
algorithms with Dmax/|V | =
0.2
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(d) Running times of different
algorithms with Dmax/|V | =
0.05
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(e) Running times of different al-
gorithms with Dmax/|V | = 0.1
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(f) Running times of different al-
gorithms with Dmax/|V | = 0.2

Fig. 5. The performance of algorithms Appro_Multi and
Alg_One_Server

We evaluate the performance of algorithm Appro_Multi
against the state-of-the-art – an algorithm in [22], referred to as
algorithm Alg_One_Server, which only uses a single server
to implement service chain SCk of each multicast request rk.
Namely, algorithm Alg_One_Server first routes the traffic
of rk to a server, and then finds a Minimum Spanning Tree
(MST) of a complete graph Gc containing the destinations of

rk, where the edge between two destinations in Gc represents
the shortest path between the two nodes in the original network.
It then expands the MST into its corresponding subgraph in the
original network. It finally selects the combination of server
and subgraph with the minimum cost.

For the online algorithms, we study the performance of
algorithm Online_CP against those of a baseline heuristic
SP. For multicast request rk, algorithm SP first removes links
and nodes that do not have enough available resources to admit
rk, and then assigns each link and each switch node in VS
with the same weight. For each candidate server in VS it then
finds a shortest path from sk to v and a single-source shortest
path tree rooted at v and spanning all destinations of rk. It
finally uses a multicast tree with the minimum cost for rk.

B. Performance evaluation of approximation algorithms

We first evaluate the performance of algorithm
Appro_Multi against that of algorithm Alg_One_Server
by varying the network size from 50 to 250 and the ratio of
the maximum number Dmax of destinations of each request
to the network size |V | from 0.05 to 0.2. The operational
cost and running time curves delivered by algorithms
Appro_Multi and Alg_One_Server are drawn in Fig. 5,
where the operational costs and running times are the
average of admitting 1, 000 NFV-enabled multicast requests.
Specifically, we can see from Fig. 5 (a) that the operational
cost by algorithm Appro_Multi is around 80% of that of
algorithm Alg_One_Server. The reason is that algorithm
Appro_Multi may use multiple servers that are close to
the destinations of the request to implement the service chain
of the request, which can significantly reduce the cost of
bandwidth resource usage. Furthermore, it can be seen from
the figure that the performance gap between the two algorithms
becomes larger and larger, with the increase on the network
size. The rationale behind is that algorithm Appro_Multi
has more chances to select a set of servers that are closer
to the destinations of each request, considering that more
servers in larger networks are to be chosen. The similar
performance behaviour can be observed from Figs. 5(b) and
(c). Furthermore, it can be seen from Figures 5 (d) - (f) that
approximation algorithm Appro_Multi takes a slightly more
time than that of algorithm Alg_One_Server, as different
combinations of servers in VS are to be considered.

We then investigate the performance of approximation
algorithms Appro_Multi and Alg_One_Server in real
networks GÉANT and AS1755, by varying Dmax

|V | from 0.05 to
0.2. Fig. 6 shows that the operational costs and running times
of both algorithms. It can be seen that the operational cost
delivered by algorithm Appro_Multi is much lower than that
by algorithm Alg_One_Server while taking a slightly more
running time. For example, the operational cost by algorithm
Appro_Multi in network AS1755 is around 30% lower than
that of algorithm Alg_One_Server when Dmax

|V | = 0.15 as
shown in Fig. 6 (b).

The rest is to evaluate the performance of approximation
algorithm Appro_Multi_Cap, by setting Dmax

|V | at 0.2.Notice
that algorithm Alg_One_Server is not considered as a
benchmark as it does not consider SDN resource capacity
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Fig. 6. The performance of different algorithms in networks of GÉANT,
AS1755, and AS4755

constraints. From Figs. 7(a) and 5(c), we can see that the oper-
ational cost of algorithm Appro_Multi_Cap is larger than
that of algorithm Appro_Multi without capacity constraints.
The reason is that the algorithm Appro_Multi_Cap excludes
the servers and links without enough available resources from
the consideration for an incoming multicast request, this may
reduce the number of combinations of servers that can be
explored to implement request.
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Fig. 7. The performance of algorithms Appro_Multi_Cap

C. Performance evaluation of online algorithms

We then evaluate algorithm Online_CP against algorithm
SP, by varying the network size from 50 to 250 for a monitoring
period that consists of 300 multicast requests. The numbers
of admitted requests by algorithm Online_CP are shown in
Fig. 8. Specifically, from Fig. 8 (a), we can see that online
algorithm Online_CP admits at least twice the number of
requests admitted by algorithm SP. Although the total resource
capacity of each network keeps increasing with the increase
on the network size, the number of requests admitted by each
mentioned algorithm does not monotonically increase. This is
because there is a higher probability that the destinations of
each multicast request are far away from each other, thereby
increasing the rejection probability of the request, due to more
bandwidth resource consumptions.
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Fig. 8. The performance of online algorithms Online_CP and SP

We now evaluate the performance of algorithm
Online_CP against that of online algorithm SP by
varying the number of requests from 50 to 300, in GÉANT
and AS1755, respectively. It can be seen from Fig. 9 (a)
that algorithms Online_CP and SP can admit almost all
requests if the number of requests is no greater 100. Otherwise,
algorithm Online_CP admits more requests than that by
algorithm SP. Also, the performance gap between them
increases with the growth of the number of requests. The
reason is that online algorithm Online_CP considers the
workload (or the utilization) of each resource by assigning
each resource an exponential cost, while algorithm SP does
not take the resource workload and assigns the same weight
to the same amount of resource at different nodes and links,
which may lead to the excessive usage of a heavily-loaded
resource. Similar performance of algorithms Online_CP and
SP in network AS1755 can also be observed in Fig. 9 (b).
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Fig. 9. The performance of algorithms Online_CP and SP

VII. CONCLUSION

In this paper we studied NFV-enabled multicasting in an
SDN. We first devised an approximation algorithm with a
constant approximation ratio, assuming that the number of
servers for implementing each service chain is no more than
a constant K ≥ 1, subject to the computing and bandwidth
capacity constraints on servers and links in the network. We
then studied dynamic admissions of NFV-enabled multicast
requests without the knowledge of future request arrivals, with
the objective to maximize the network throughput, for which we
proposed an online algorithm with a competitive ratio if K = 1.
We finally evaluated the performance of the proposed algorithms
by experimental simulations. Simulation results demonstrate
that the proposed algorithms outperform the other heuristics.
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