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Abstract—Containers are becoming the de facto standard to
package and deploy applications and micro-services in the cloud.
Several cloud providers (e.g., Amazon, Google, Microsoft) begin
to offer native support on their infrastructure by integrating
container orchestration tools within their cloud offering. At
the same time, the security guarantees that containers offer to
applications remain questionable. Customers still need to trust
their cloud provider with respect to data and code integrity. The
recent introduction by Intel of Software Guard Extensions (SGX)
into the mass market offers an alternative to developers, who
can now execute their code in a hardware-secured environment
without trusting the cloud provider.

This paper provides insights regarding the support of SGX
inside Kubernetes, an industry-standard container orchestrator.
We present our contributions across the whole stack support-
ing execution of SGX-enabled containers. We provide details
regarding the architecture of the scheduler and its monitoring
framework, the underlying operating system support and the
required kernel driver extensions. We evaluate our complete
implementation on a private cluster using the real-world Google
Borg traces. Our experiments highlight the performance trade-
offs that will be encountered when deploying SGX-enabled micro-
services in the cloud.
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I. INTRODUCTION

There has been a steady trend over the last few years [1]
for applications to be packaged and deployed in the form
of containers, such as Docker [2], [3]. Containers offer re-
producible execution environments, light lifecycle manage-
ment, and closer-to-metal performance than classical virtual
machine deployments. Container registries—public ones such
as Docker Hub [4], or private ones such as Google Cloud
Registry [5]—hold and serve thousands of container images,
ready to be used. Hence, developers can simply rely on cloud
infrastructures to deploy services of various nature. As such,
containers are used for all kind of services, from simple key-
value stores (e.g., Redis [6]), to web servers (Apache [6]);
from full-fledged relational databases (MySQL [7]) to scalable
discovery services [8]. Major cloud operators natively support
container deployments in their infrastructure (e.g., Google
Container Engine [9] or Amazon EC2 Container Service [10]).
Similarly, it is straightforward to set up a container cluster on
private premises, leveraging popular [11] container orchestra-
tors (or schedulers) such as Kubernetes or Docker Swarm.

Without special care, containers are exposed to critical
security threats. For instance, the cloud infrastructure could
be compromised by malicious actors or software bugs. This is

especially true when containers are deployed over public cloud
infrastructures, but it also holds true for the case of a deploy-
ment on private premises that may have been corrupted by
malicious actors or software. Hence, service deployers are left
with no other choice than to trust the infrastructure provider
and the complete software stack (including the underlying
operating system, kernel libraries, etc.). Similarly, they must
face the risk that a compromised component can lead to severe
data leakage [12], [13].

To overcome these issues, one could adopt solutions based
on homomorphic cryptosystems [14]. However, their perfor-
mance is several orders of magnitude slower than native
systems, and as of today, these solutions are still impractical
for real-world deployment and adoption [15].

The introduction of Intel Software Guard Extensions
(SGX) [16] into the mass market with the Intel Skylake
family of processors [17] offers a promising alternative. The
availability of SGX allows the deployers to distrust the cloud
operator and rely instead on hardware protection mechanisms,
hence drastically reducing the Trusted Computing Base (TCB).
Moreover, programs execute at almost native speed [18]. Cloud
providers are starting to offer SGX-enabled Infrastructure
as a Service (IaaS) solutions to end-users. One example is
Microsoft Azure Confidential [19]. We expect other cloud
providers to introduce similar offerings in the short-term.

Deploying and orchestrating containers on a heterogeneous
cluster, with a mix of machines with and without SGX
capabilities, presents its own set of specific challenges. The
containers that require SGX will contend on the availability of
dedicated memory (see Section II). Therefore, the monitoring
infrastructure that feeds the scheduler master with resource
usage metrics must keep track of the demanded SGX memory
requests and schedule the containers accordingly. Unfortu-
nately, none of the existing container orchestrators offer native
support to provide runtime insights about the resources used
by SGX containers. Notably, all of them rely on statically-
provided information given by the users upon deployment.
This information can be malformed or non-conforming to the
real usage of the containers, and henceforth leading to over-
or under-allocations.

In the proposed context, our contributions are the following.
We propose an SGX-aware architecture for orchestrating con-
tainers. Fitting in this architecture, we offer an open-source
vertical implementation [20] of the required system support,
including modifications to the Linux driver for SGX as well
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as a Kubernetes device plugin. Further, we show that it will be
possible to drastically reduce the waiting time of the submitted
jobs by exploiting future versions of SGX, as they will offer
better control over the size of the dedicated memory. Finally,
we demonstrate that our design and implementation are sound
with a detailed evaluation using the Google Borg traces [21].

The rest of the paper is organized as follows. We provide a
short introduction to Intel SGX in Section II. In Section III,
we describe our trust model and assumptions. We describe the
architecture in Section IV and our prototype implementation
in Section V, followed by its evaluation in Section VI. We
survey the related work in Section VII, before concluding and
describing how we plan to extend this work in Section VIII.

II. BACKGROUND ON INTEL SGX

The design of our system revolves around the availability
of Intel SGX on hosts. It consists in a Trusted Execution
Environment (TEE) recently introduced by the Skylake family
of Intel processors, similar in spirit to ARM TrustZone [22].
Applications create secure enclaves to protect the integrity and
confidentiality of the code being executed with associated data.

The SGX mechanisms are depicted in Figure 1. They allow
applications to access and process confidential data from
inside the enclave. The architecture guarantees that an attacker
with physical access to a machine cannot tamper with the
application data or code without being noticed. Essentially,
the Central Processing Unit (CPU) package represents the
security boundary. Moreover, data belonging to an enclave
is automatically encrypted, for confidentiality, and its digests
inserted in a hash tree, for integrity and freshness. A memory
dump on a victim’s machine will only produce encrypted
data. A custom remote attestation protocol allows to verify
that a particular version of a specific enclave runs on a
remote machine, using a genuine Intel processor with SGX
enabled. An application using enclaves must ship a signed (not
encrypted) shared library (i.e., a shared object file in Linux)
that can possibly be inspected by malicious attackers. Data
stored in enclaves can be saved to persistent storage, protected
by a seal key. This allows to store sensitive data on disk,
waiving the need for a new remote attestation every time the
SGX application restarts.

There are three memory areas in which data relative to
an SGX enclave may be stored [16]. Data inside the CPU
package (registers, level 1-3 caches, etc.) is stored in plain-
text, as long as the processor is in enclave mode and executes
the enclave owning the data. SGX enclaves can also use a
dedicated subset of system memory called the Enclave Page
Cache (EPC). The EPC is split into pages of 4KiB and exists
in Processor Reserved Memory (PRM), a range of system
memory that is inaccessible to other programs running on
the same machine, including privileged software such as the
operating system. It is a small memory area; current hardware
supports at most 128MiB. This size is configurable via Unified
Extensible Firmware Interface (UEFI) parameters, but a reboot
is required to apply the change. Note also that the EPC is
shared among all the applications executing inside enclaves,
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Fig. 1. SGX core operating principles.

hence being a very scarce and highly contended resource.
Future releases of SGX will relax this size limitation [23].
Our evaluation shows, by means of simulation, how changes
in the next version of SGX would impact the performances
of a scheduler, for example in terms of turnaround time for
submitted jobs (see Subsection VI-D).

Only 93.5MiB out of 128MiB can effectively be used by
applications (for a total of 23 936 pages), while the rest is
used for storing SGX metadata. In order to provide more
flexibility, SGX implements a paging mechanism. It allows
to page-out portions of trusted memory into regular system
memory. Any access to an enclave page that does not reside
in the EPC triggers a page fault. The SGX driver interacts with
the CPU to choose the pages to evict. The traffic between the
CPU and the system memory is protected by the Memory
Encryption Engine (MEE) [24], also in charge of providing
tamper resistance and replay protection. If a cache miss hits
a protected region, the MEE encrypts or decrypts data before
sending to, respectively fetching from, the system memory and
performs integrity checks.

The execution flow of a program using SGX enclaves works
as follows. First, an enclave is created (see Figure 1-Ê) by the
untrusted part of the application. It must then be initialized
using a launch token. Intel’s Launch Enclave (LE) can help
in fetching such token. Access to the LE and other archi-
tectural enclaves, such as the Quoting Enclave (QE) and the
Provisioning Enclave (PE) is provided by the Intel Application
Enclave Service Manager (AESM). SGX libraries provide an
abstraction layer for communicating with the AESM. As soon
as a program needs to execute a trusted function (see Figure 1-
Ë), it executes the ecall SGX primitive (Ì). The call goes
through the SGX call gate to bring the executing thread inside
the enclave (Í). After the function is executed in the trusted
environment (Î), it calls the return instruction (Ï), before
giving the control back to the caller (Ð).

III. TRUST MODEL

We assume that our SGX-enabled orchestrator is deployed
on the premises of a given cloud provider. Providers show an
honest-but-curious behavior. They are interested in offering
an efficient service to customers, mostly for selfish economic
reasons (e.g., providers want to maximize the number of
executed jobs per unit of time, but they will not deliberately
disrupt them). However, providers do not trust their customers,
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Fig. 2. Architecture and workflow of the SGX-aware scheduler.

especially not the resource usage declarations they specify
at deployment time. Nevertheless, providers trust their own
infrastructure, namely the operating system running on the
cluster nodes, the SGX driver, as well as Kubernetes itself.

Customers rely on the infrastructure offered by cloud
providers, but do not trust it. Notably, they trust Intel SGX to
prevent providers from inspecting the contents or tampering
with jobs deployed on their infrastructure. In turn, customers
might try to allocate more resources than what they requested,
either at the cost of providers or their tenants.

In previously existing cloud deployments, customers had
to blindly trust providers not to pry into their jobs, nor
tamper with them. Conversely, providers had to trust that their
customers do not overstep their share of EPC, as they had no
means to limit it. Thanks to the novel work described in this
paper, providers can now effectively supervise SGX-related
resources by enforcing EPC allocation limits, thence rendering
SGX cloud deployments practical. As a consequence, cus-
tomers can enjoy truthful job execution in the cloud without
having to trust their provider.

IV. ARCHITECTURE

This section describes the architecture of our system, as
depicted in Figure 2. The complete system implements a
container orchestrator that can efficiently schedule SGX-
enabled jobs, as well as regular jobs, on a heterogeneous
cluster. We assume that SGX-enabled jobs execute entirely in
enclaves, minus a part responsible for bootstrapping the SGX
enclaves. These assumptions match those of state-of-the-art
SGX systems, e.g., SCONE [18] or Graphene-SGX [25].

One important aspect of the system is its ability to guarantee
that jobs submitted to a given host always fit within its EPC
memory limits. This is of particular relevance to avoid major
performance penalty [18]. To achieve this goal, we use a mon-
itoring layer, implemented by means of daemons executing on
each node of the cluster. They accurately measure individual
EPC utilization of the jobs submitted to our system. These
measures are periodically sent to a central node, in charge of
storing and analyzing them. We rely on a time-series database
for this task, as they have proved to be an efficient tool to
implement queries over moving sliding windows [26]–[28],
such as the ones we use in our scheduling policy.

Users submit their jobs by specifying the name of the
container image (see Figure 2-Ê). They need to indicate
the amount of EPC memory required by their jobs at this
time.1 Apart from these parameters, clients rely on the regular
Application Programming Interfaces (APIs) of the orchestra-
tor. The image is initially pulled from a public or private con-
tainer registry. Afterwards, it is submitted into the scheduler’s
queue as a pending job (Ë).

Scheduling algorithm. Our scheduling algorithm works as
follows. First, the container orchestrator fetches the list of
pending jobs currently in the queue (Ì). It takes their memory
allocation requests into account, both in terms of standard
memory and EPC. At the same time, it fetches accurate, up-
to-date metrics about memory usage across all nodes in the
cluster. This is done by executing a sliding-window query
over the time-series database. The scheduler then combines
the two kinds of data to filter out job-node combinations
that cannot be satisfied, either due to hardware compatibility
(i.e., SGX-enabled job on a non-SGX node), or if the job
requests would saturate a node. The next step depends on the
concrete container placement policy configured for the cluster.
In particular, we enable support for SGX measures in two well-
known placement policies.

When binpack is in use, the scheduler always tries to fit
as many jobs as possible on the same node. As soon as its
resources become insufficient, the scheduler advances to the
next node in the pool. The order of the nodes stays consistent
by always sorting them in the same way. In the case of a
standard job, we sort SGX-enabled nodes at the end of this
list, to preserve their resources for SGX-enabled jobs.

Conversely, the main goal of the spread strategy is to even
out the load across all nodes. It works by choosing job-node
combinations that yield the smallest standard deviation of load
across the nodes. Like binpack, it only resorts to SGX-enabled
nodes for non-SGX jobs when no other choice is possible
to execute the job. After the policy selection is made, the
scheduler communicates the computed job-node assignments
to the orchestrator (Í). It then handles the actual deployment
of jobs towards the various nodes (Î).

There may be jobs that cannot be fitted in the cluster at the
time of their submission. The orchestrator keeps a persistent
queue of pending jobs (Ì); the scheduler periodically checks
for the possibility to schedule some of them, applying a first-
come first-served (FCFS) priority.

V. IMPLEMENTATION DETAILS

In this section we provide insights on the implementation
of the components of our architecture. Although several main-
stream container orchestrators exist today, we decided to build
our implementation on top of the open-source Kubernetes2

1As the allocation of EPC memory has to be done at program initialization,
this value is hard-coded in the SGX-enabled binary and could be extracted
directly from it. We rely on the user’s specification for convenience reasons.

2We also report that our initial attempt was based on Docker Swarm.
However, its lack of hooks to extend the architecture and poor developer
documentation convinced us to look for a different solution.



container orchestrator [29]. Likewise, the entire source code of
our implementation is released as open-source software [20].
The components that we add to Kubernetes’ architecture
interact with it using its public API. This approach further
facilitates the integration into future versions of Kubernetes.

In the remainder of this section, we provide implemen-
tation details for: our device plugin (Subsection V-A), our
custom SGX-aware scheduler (Subsection V-B), and how we
implemented SGX metric probes (Subsection V-C). We then
highlight how we enforce SGX-related resource usage limits
(Subsection V-D). Moreover, we describe our extensions to
the Intel SGX driver for Linux (Subsection V-E). Finally, we
present our base Docker image that SGX application develop-
ers can use as a base for their applications (Subsection V-F).

A. Kubernetes device plugin

The first component is a device plugin that allows to mark
a Kubernetes node as able to execute SGX instructions. The
plugin can be used directly by the Kubelet [29] node agent,
since Kubernetes 1.8 [30]. Its original design was motivated
by the developers’ need to access Graphics Processing Units
(GPUs). Its intent is to expose system devices (i.e., those
available in the /dev pseudo-filesystem) directly within Ku-
bernetes. Opportunely, applications implemented using the
Intel Software Development Kit (SDK) for Linux are given
access to SGX by means of a pseudo-file in /dev. Com-
munication between Kubelet and the device plugin leverages
Google Remote Procedure Calls (gRPC) [31]. Our device
plugin checks for the availability of the Intel SGX kernel
module on each node and reports it to Kubelet. Kubelet notifies
the master node about the availability of an “SGX” resource
on that node.

The philosophy behind device plugins is to register one
resource item (e.g., one graphics processing card, one FPGA
board, etc.) per physical device. In the case of SGX applica-
tions, there is only one pseudo-file registered per processor.
However, SGX allows multiple enclaves to be executed at the
same time, sharing the EPC. Exposing only one resource item
would have utterly limited the usefulness of our contribution,
as only one SGX-enabled set of containers (or pod in the
Kubernetes terminology) could have been scheduled on a
physical host at any given time. We solve this problem by
exposing each EPC page as a separate resource item. By
exposing the EPC as multiple independent “devices”, several
pods can be deployed and share a single node, thus supporting
the execution of several SGX applications at once. Despite the
great amount of resources created with this scheme, we did
not notice any perceptible negative influence on performance.

Although SGX allows over-commitment of its protected
memory via paging, doing so leads to severe performance
drops up to 1000× [18]. Therefore, we deliberately prevent
over-commitment of the EPC, in order to preserve predictable
performance for all pods deployed in the cluster.

Kubernetes will then proceed and mount the SGX device
file inside each pod that requested at least one share of EPC.
Therefore, end-users must declare that their SGX-enabled pods

SELECT SUM(epc) AS epc FROM
(SELECT MAX(value) AS epc FROM "sgx/epc"

WHERE value <> 0 AND time >= now() - 25s
GROUP BY pod_name, nodename

)
GROUP BY nodename

Listing 1. InfluxQL query.

use some amount of the “SGX” resource. In the case of
Kubernetes, this is done by filling in the resource requests
and limits fields of the pod specification. Resource requests are
used by the scheduler to dispatch SGX-enabled pods towards
a suitable node. Limits are transmitted to our modified SGX
driver for strict enforcement (see Subsection V-D).

B. SGX-Aware Scheduler
Once nodes have been configured with our device plugin,

they are ready to accept pods using Intel SGX instructions.
However, Kubernetes’ own scheduler only relies on values
communicated in the resource requirements of each pod. Given
the restrained capacity of the EPC, it is imperative to maximize
its utilization factor. To do so, the scheduler must consider the
actual usage metrics of the cluster, collected at runtime. Our
scheduler can decide on scheduling actions based on actual
measured memory usage (for the EPC as well as regular
memory). Metrics regarding the regular memory are collected
by Heapster [32], while SGX-related metrics are gathered
using our custom probes (see Subsection V-C).

We implemented the previously described scheduling strate-
gies (binpack and spread) in a non-preemptive manner, fol-
lowing the same scheme as Kubernetes’ default scheduler.
The scheduler itself is packaged as a Kubernetes pod. This
allows it to execute with the same privileges as the default
scheduler. It also provides us with seamless migrations and
crash monitoring features, as for any pod.

Kubernetes supports multiple schedulers to concurrently
operate over the same cluster. It is therefore possible to
deploy our scheduler with both of its strategies, in parallel to
the default, non SGX-aware one. Comparative benchmarking
is thus made easier, as each pod deployed to the cluster
can specify which scheduler it requires. We assume that, in
production deployments, only one variant of our SGX-aware
scheduler will be deployed as default scheduler to prevent
conflicts between schedulers.

C. SGX metrics probe
The proposed scheduling algorithm relies on metrics di-

rectly fetched from nodes of the cluster. Kubernetes natively
supports Heapster [32], a lightweight monitoring framework
for containers. We configured Heapster to collect such met-
rics on each node and subsequently store them into an
InfluxDB [33] time-series database. Then, the system performs
InfluxQL queries [34] against the database. Listing 1 shows
how to report the total size of EPC memory used in the last
25 seconds per pod, then grouped by node and summed up.

We have implemented an SGX-aware metrics probe to
gather EPC usage metrics from our modified Intel SGX driver



(see Subsection V-E). These metrics are pushed into the same
InfluxDB database used by Heapster. This allows our scheduler
to use equivalent queries for SGX- and non SGX-related
metrics.

The probe is deployed on all SGX-enabled nodes using the
DaemonSet component [35]. The distinction between standard
and SGX-enabled cluster nodes is made by checking for
the EPC size advertised to Kubernetes by the device plugin.
Finally, we leverage Kubernetes itself to automatically handle
the deployment of new probes when adding physical nodes to
the cluster, as well as their management in case of crashes.

D. Enforcing limits on EPC usage

SGX allows over-commitment of its primary cache, the
EPC. However, this feature comes with an important perfor-
mance penalty for user applications. It is imperative for a
cloud provider that wants to guarantee a fair share of resources
to make sure that multiple containers share the EPC in a
respectful way. In Kubernetes, the users specify the limits for
each type of resource that their pods use. These values are
later used for several purposes, e.g., accounting and billing
the reserved resources. It is in the interest of the infrastructure
provider to make sure that co-hosted containers do not contend
on the same resource. A user with malicious intents could
advertise lower amounts of resources than what his pods
actually use. For this reason, it is crucial to enforce the limits
advertised in the specification of each pod. In our particular
context, we focus on limits related to the EPC usage.

We implement proper limits enforcement by modifying two
existing components of our architecture: (i) the SGX driver
provided by Intel (see Subsection V-E), and (ii) Kubelet, the
daemon running on each node of a Kubernetes cluster. The
SGX driver will deny the initialization of any enclave that
exceeds the share of pages advertised by its enclosing pod.

Linux cgroups. The proper way to implement resource
limits in Linux is by adding a new cgroup controller to
the kernel [36]. This represents a substantial engineering
and implementation effort, affecting several layers of our
architecture. Modifications would be required in Kubernetes,
Docker (which Kubernetes uses as container runtime) and the
Linux kernel itself.

We considered a simpler, more straightforward alternative.
Namely, we use the cgroup path as a pod identifier. The
rationale behind the choice of this identifier is as follows:
(i) it is readily available in Kubelet and in the kernel; (ii) all
containers in a pod share the same cgroup path, but distinct
pods use different ones; (iii) the path is available before
containers actually start, so this allows the driver to know the
limits applicable to a particular enclave on its initialization.

In order to communicate limits from Kubernetes to the SGX
driver, we added 16 lines of Go code and 22 lines of C code to
Kubelet, using cgo [37]. These additions communicate a new
cgroup path–EPC pages limit pair each time a pod is created.
Finally, the communication channel uses a new input/output
queryable (ioctl) [38] added to the SGX driver detailed in
Subsection V-E.

E. Modified Intel SGX Driver

We modified the Linux kernel driver [39] provided by
Intel. Our modifications revolve around two closely-related
topics: gathering usage data to improve scheduling deci-
sions, and enforcement of resource usage limits. We of-
fer access to the total number of EPC pages, as well
as their current usage status by way of module parame-
ters. They are accessible using the usual Linux filesystem
interface, below the /sys/module/isgx/parameters
path. Values can be retrieved through two pseudo-files:
sgx_nr_total_epc_pages (total amount of pages on the
system) and sgx_nr_free_pages (amount of pages not
allocated to a particular enclave).

Additionally, the EPC usage can be probed at a finer
granularity, in a per-process manner. To do so, we created
a new input/output queryable using the ioctl function [38]
available in Linux. This control reports the number of occu-
pied EPC pages given to a single process, described by its
process identifier. This metric is helpful to identify processes
that should be preempted and possibly migrated, a feature
especially useful in scenarios of high contention.

We created a second ioctl to communicate resource usage
limits (see Subsection V-D). Each pod deployed in our cluster
needs to advertise the number of EPC pages it plans to use.
This number is then shared between Kubelet and the driver by
issuing an ioctl at the time of pod creation. The driver makes
sure that limits can only be set once for each pod, therefore
preventing the containers themselves from resetting them. In
the current version of SGX, enclaves must allocate all chunks
of protected memory that they plan to use at initialization time.
We add a couple lines of code in __sgx_encl_init to
call a function that checks whether to allow or deny a given
enclave initialization. Internally, it compares the number of
pages owned by the enclave to the limits advertised by its
enclosing pod.

The implementation of these features consists in 115 lines
of C code on top of the latest Intel SGX release for Linux [40].

F. Base Docker Image and Intel SDK for SGX

When an application wants to use the processor features
offered by Intel SGX, it has to operate in enclave mode.
Before it can switch to this mode, the program has to pre-
allocate all the enclave memory that it plans to use. The
particular x86 instructions that can reserve enclave memory
can only be executed by privileged code running in ring 0 [16].
Under the GNU/Linux operating system, only the kernel
and its modules are allowed to call these instructions. In
a containerized context, the kernel and, by extension, its
modules are shared across all containers. In the case of running
SGX-enabled applications in containers, this implies that it
is required to set-up a communication channel between the
container and the isgx module. In Docker, this can be done
by mounting the /dev/isgx pseudo-file exposed by the
host kernel directly into the container. While it is possible
to create SGX-enabled applications that directly interface with
the kernel module, the Intel SGX SDK provides an easier path
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to SGX application development. Programs that are using this
SDK rely on the Platform Software (PSW) [41]. Hence, we
created a Docker image that allows SGX-enabled applications
developed using the official SDK to be executed seamlessly
within Docker containers. The image is publicly available from
Docker Hub [42].

VI. EVALUATION

This section reports on a detailed evaluation of our SGX-
aware scheduler and its subcomponents. First, we describe
our experimental settings in Subsection VI-A. Then, in Sub-
section VI-B, we characterize the Google Borg trace and the
simplifications done to adapt it to the scale of our cluster. We
characterize the synthetic workload that we use in Subsec-
tion VI-C. Subsection VI-D shows the performance penalties
induced by SGX. A comprehensive evaluation of the scheduler
itself follows in Subsection VI-E, with Subsection VI-F con-
centrating on measuring the effectiveness of strictly enforcing
resource usage limits. We end our evaluation by investigating
how our work will be affected by the release of SGX 2
(Subsection VI-G).

A. Evaluation settings

Our cluster consists of 5 machines. The first 3 machines are
Dell PowerEdge R330 servers, each equipped with an Intel
Xeon E3-1270 v6 CPU and 64GiB of RAM. One of these
machines acts as Kubernetes master, while the remaining are
regular Kubernetes nodes. The two remaining nodes are SGX-
enabled machines, also acting as nodes in the Kubernetes clus-
ter. These machines feature an Intel i7-6700 CPU and 8GiB
of RAM. SGX is statically configured to reserve 128MiB of
RAM for the EPC. The machines are connected to a 1Gbit/s
switched network. We use Kubernetes (v1.8), installed on top
of Ubuntu 16.04. We enabled the Kubernetes device plugin
alpha feature on all the machines.

B. The Google Borg Trace

Our evaluation uses the Google Borg Trace [21], [43]. The
trace was recorded in 2011 on a Google cluster of about 12 500
machines. The nature of the jobs in the trace is undisclosed.
We are not aware of any publicly available trace that would
contain SGX-enabled jobs. Therefore, we arbitrarily designate
a subset of trace jobs as SGX-enabled. In the following
experiments, we insert various percentages of SGX jobs in
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Fig. 5. Google Borg trace: concurrently running jobs during the first 24h.

the system: from 0% of SGX jobs (only standard jobs), and
then increasing by 25% steps, until 100% (only SGX jobs).

The trace reports several metrics measured for the Google
jobs. We extract the following metrics out of it: submission
time, duration, assigned memory and maximal memory usage.
The submission time is crucial to model the same arrival
pattern of the jobs in our cluster. The run time of each
job matches exactly the one reported in the trace, set aside
system clock skews. We use the assigned memory as the
value advertised to Kubernetes when submitting the job to the
system. However, the job will allocate the amount given in
the maximal memory usage field. We believe this creates real-
world-like behavior w.r.t. the memory consumption advertised
on creation compared to the memory that is actually used.

The trace specifies the memory usage of each job as
a percentage of the largest memory capacity in Google’s
cluster (without actually reporting the absolute values). In
our experiments, we set the memory usage of SGX-enabled
jobs by multiplying the memory usage factor obtained from
the trace to the total usable size of the EPC (93.5MiB in
our case). As for standard jobs, we compute their memory
usage by multiplying them to 32GiB. The rationale behind
this choice is that it is the power-of-2 closest to the average
of the total memory installed in our test machines. Moreover,
we think that it yields amounts that match real-world values.
Figure 3 shows the amounts of memory allocations recorded
in the trace. Given the size of Google’s cluster, we have to
scale down the trace before being able to replay it on our own
cluster setup. We scale the trace down along two dimensions.

Time reductions. Figure 4 shows the Cumulative Distribu-
tion Function (CDF) of the duration of jobs found in the trace.
All jobs last at most 300 s. Hence, 1 h is sufficiently long to
properly stabilize the system. Instead of considering the full



29 days recorded in the trace, we use a 1-hour subset ranging
from 6480 s to 10 080 s extracted from the first 24 hours of
execution (highlighted in light gray in Figure 5). This slice of
trace, while being the less job-intensive in terms of concurrent
jobs for the considered time interval, still injects an intensive
load on the cluster. Hence, we also operate a frequency down-
scaling of it, described next.

Frequency reductions. We sample every 1200th job from
the trace, to end up with a number of jobs big enough to
cause contention in the system, but that does not clutter it
with an incommensurable amount of jobs. Figure 5 displays
the concurrent amount of running jobs recorded in the trace,
before sampling.

C. Matching trace jobs to deployable jobs

After processing the trace file, we get a timed sequence of
jobs with their effective memory usage. In order to materialize
this information into actual memory or EPC usage, our jobs
are built around containers that run STRESS-SGX [44], a fork
of the popular STRESS-NG [45] stress tool. Normal jobs use
the original virtual memory stressor brought from STRESS-
NG, while SGX-enabled jobs use the topical EPC stressor. We
specify parameters to allocate the right amount of memory for
every job, in accordance with the values reported by the trace.

D. Evaluation of SGX performance

The main sources of overhead for SGX enclaved executions
are the transitions between protected and unprotected modes,
and memory usage [18], [46]–[48]. Additionally, startup time
is longer than traditional executions, mainly due to support ser-
vice initialization and memory allocation. The Intel SDK [41]
provides the Platform Software (PSW) that includes the Ap-
plication Enclave Service Manager (AESM). As the name
suggests, it is a service that eases the process of deploying
enclaves, performing common tasks such as attestation and
supporting the access to platform services, like obtaining
trusted time and monotonic counters.

By default, Docker—and more in general containers based
on cgroups—enforces strict limitations to what programs
running inside the container can get access to. It especially
isolates the host from potentially malicious containers. The
isolation layer can be lifted by running containers in privi-
leged mode, a potentially dangerous and risky operation [49],
especially in a shared computing environment. As we want to
keep containers isolated, we need to have one instance of the
PSW running in each container. Therefore, each SGX-enabled
containerized process will suffer from a small initialization
penalty, as it will need to wait for the PSW to initialize before
it can start its useful work.

An additional startup overhead is due to the enclave memory
allocation, since all of it must be committed at enclave build
time, to be measured for attestation purposes [23].

We start by quantifying the overhead for launching AESM
and allocating memory. Figure 6 shows the required average
time required for 60 runs. Error bars represent the 95%
confidence interval. We omit measurements for standard jobs
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since they steadily took less than 1ms, negligible compared to
SGX ones. As expected, the service startup time is virtually
the same in all runs, accounting for about 100ms. On the
other hand, memory allocation time shows two clear linear
trends: before and after reaching the usable EPC memory limit.
Until this limit, the time increase rate is 1.6ms/MiB after
which it jumps to 4.5ms/MiB, plus a fixed delay of about
200ms. Note that these times are just for allocating memory,
still without any real use. Even higher overheads are expected
when processes use it [18]. This experiment reinforces the
importance of accurate SGX job scheduling to circumvent the
soft-limits imposed by the EPC size.

Next, we evaluated the trace execution with different EPC
sizes. This particular run is based on simulation, but uses the
exact same algorithms and behaves in the same way as our
concrete scheduler. It allows us to operate with various EPC
sizes, including those that will be available with future SGX
hardware. Figure 7 shows the amount of memory requested by
pods in pending state along the time, with varying maximum
reserved memory. On the x-axis, we have the duration of the
trace, while on the y-axis we see the total amount of EPC
size requested by queued jobs that could not be immediately
scheduled. Looking at the extremes, we can notice the total
absence of contention when the EPC accounts for 256MiB,
finishing the batch execution in one hour, exactly as recorded
in the trace. Conversely, the trace takes 4 h 47min when
the maximum EPC memory usage is 32MiB. In between, a
64MiB EPC would allow the trace execution to finish after
2 h 47min. For 128MiB, the maximum EPC limit of current
processors, the batch would conclude after 1 h 22min.
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This experiment, despite being dependent on this particular
job trace, puts in evidence the benefits of having bigger
protected memory sizes. Having a processor capable of using
256MiB of EPC is theoretical at this stage. Nonetheless, we
expect SGX 2 (see Subsection VI-G) to allow larger EPC
sizes, and consequently make SGX more appealing to cloud
providers.

E. Scheduler evaluation

We conclude the evaluation of our SGX-aware scheduler
by replaying the trace described in Subsection VI-B. All
performance metrics are directly fetched from Kubernetes.

Figure 8 shows the CDF of waiting times observed by jobs
before their execution. The waiting time refers to the period
between the submission of the job to the orchestrator, and
the instant when the job actually starts on a given node of
the cluster. In this experiment, we use the binpack scheduling
strategy. As expected, the run that only uses standard memory
(no SGX jobs) experiences relatively low waiting times. On
the other side, the pure SGX run waiting times go off the
chart, due to much higher contention conditions. The longest
wait observed by a job is 4696 s, more than the total task
duration given in the trace. When 25% to 50% of the jobs
are SGX-enabled, waiting times are really close to the ones
observed with a fully native job distribution. This shows that
incorporating a reasonable number of SGX jobs has close to
zero impact on the scheduling. Notably, we expect real-world
deployments to include small percentages of jobs requiring
SGX instructions, although this might change in the future.

Figure 9 depicts the waiting times observed in relation to
the amount of memory requested by pods. The top plot shows
the results for the spread strategy, while binpack is shown at
the bottom. There are two rows of labels in the x-axis. The
top row with smaller values is applicable to SGX jobs while
the bottom row is applicable to standard jobs. All values are
extracted from the same run with a 50% split between standard
and SGX jobs. The error bars are computed using the 95%
confidence interval. We can observe that the spread strategy is
consistently worse than binpack. Binpack also seems to handle
bigger memory requests better. SGX jobs show similar waiting
times compared to standard jobs, save for one outlier in the
binpack plot. This shows that our scheduler works well with
both types of jobs.
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Finally, Figure 10 shows the aggregated turnaround time for
all jobs. This metric refers to the duration elapsed between
the instant a job was submitted to the moment when the job
finishes and dies. At the top of the figure, the dotted black bar
(labeled “Trace”) represents the total useful job duration, as
recorded in the trace. The difference with the other results
highlights the total waiting time for each of the different
settings. We use runs that only contain one type of job (either
all SGX or regular jobs). As we noted in Figure 9, the binpack
strategy, in this specific setting and portion of the trace,
achieves the best result (shorter turnaround time). When using
the binpack strategy, SGX jobs need slightly less than twice
the time of their non-SGX counterparts. The total waiting time
difference between the two kind of jobs is above this ratio,
but the impact on the total turnaround time is limited to some
extent. Although a more in-depth evaluation of the trade-offs
between the binpack and spread scheduling strategies would
allow for a more comprehensive understanding of our setting,
we believe that individual workload characteristics are the key
factors when selecting a placement strategy.

Our decision to choose a multiplier of 32GiB for stan-
dard jobs and 93.5MiB for SGX-enabled jobs (see Subsec-
tion VI-B) considerably affects the performance difference
between standard and SGX jobs. Indeed, our whole cluster
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has 2 × 93.5MiB = 187MiB of EPC memory (on the
two SGX-enabled machines) compared to a total amount
of 2 × 64GiB + 2 × 8GiB = 144GiB of regular system
memory. This represents a difference of almost 3 orders of
magnitude (788×) between the two kinds of memory, whereas
the difference between the scaling multipliers is only half of
that (350×). Therefore, in relative terms, SGX jobs have close
to 2× less memory at their disposal compared to standard
jobs. As highlighted in Subsection VI-D, doubling the amount
of memory drastically improves performance, which explains
the performance gap. We observe nonetheless that using a
50% split between standard and SGX jobs yields acceptable
performance for both kinds of jobs.

F. Impact of resource usage limits

One of the feature of our system is the strict enforcement
of limits regarding per-container EPC memory consumption
(see Subsection V-D). Resource usage limits are declared
by the users themselves, and therefore could be inaccurate
with regard to the real usage made by their containers.
We identify incentives to lead users into truthfully declaring
resource usages: if the user declares too high a limit for his
container, then the infrastructure provider will charge him for
the additional resources. On the other hand, declaring too
low resource usages will lead to the container being denied
service due to the enforcement of limits. To show the potential
damages that users could cause without this mechanism, we
ran the same experiment as in Subsection VI-B, but we add
so-called malicious containers to the system. We deploy as
many of them as there are SGX-enabled nodes in the cluster.
The modus operandi of these containers is to declare 1 page
of EPC as limit and request in their pod specification, but
actually use way more: up to 50% of the total EPC available
on the machine they execute on.

The results, as presented in Figure 11, show that, without
strict limits being enforced, most honest containers in the
system suffer from longer waiting times. Obviously, as the size
of the allocations made by malicious containers increases, the
effects suffered by honest containers grow as well. Fortunately,
we clearly see that enforcing limits on memory allocations
annihilates the efforts of the malicious containers. The reason
why the run with malicious containers and limits enabled is

better than the one that is just following the trace is because
some jobs in the Google Borg trace actually try to allocate
more memory than they advertise (44 jobs out of 663 show
this behavior). When we strictly enforce memory limits, these
jobs are immediately killed after launch.

G. Compatibility with SGX 2

The hardware in current Intel processors only supports
version 1 of SGX. Intel has already published several de-
sign documents regarding the second version, SGX 2 [23],
[50]. The SDK and the driver adapted to SGX 2 have been
recently published [41]. The most important feature that this
new version introduces is dynamic EPC memory allocation.
Enclaves can ask the operating system for the allocation of
new memory pages, and may also release pages they own.
Contrary to the current version, these operations can also be
done during their execution. Considering the limited amount
of EPC that is shared by every enclave running on the same
node, this new feature can really improve resource utilization
on shared infrastructures.

As far as our scheduler is concerned, we believe that only
minor changes need to be performed to fully take these new
possibilities into account. Provided that Kubernetes nodes are
deployed on SGX 2-compatible hardware, we think that our
solution will work out-of-the-box. The scheduler already uses
up-to-date measurements regarding EPC usage to come up
with scheduling decisions. Even when using SGX 1, variations
of EPC usage can already happen if a container launches
multiple enclaves whose life-cycles are not harmonized. The
only part of our system that we have identified as not yet
SGX 2-ready is our implementation of resource usage limits
in the Intel SGX driver. We believe that the effort required to
port it to the new revision of SGX is modest.

VII. RELATED WORK

The problem of scheduling jobs over a cluster of heteroge-
neous machines has always attracted a lot of research.

To protect sensitive hypervisor scheduling decisions,
Scotch [51] conveys information gathered in System Man-
agement Mode (SMM) to enclaves. The authors implement
a prototype on top of the Xen hypervisor, adding about 14%
of overhead for each context switch and interrupt. Validation
is done by checking the accuracy of accounting under re-
source interference- [52] and escape- [53] controlled attacks.
Although they provide results within 2% of the ground truth
in such scenarios, there is no guarantee that measurements
coming from SMM are not tampered with during control
switch to enclave entry points. Their focus is on the protection
of probing data and preventing improper resource usage.
Instead, we deal with system support for scheduling SGX jobs
based on their main contentious resource: EPC memory pages.

Similar to our work, ConVGPU [54] provides solutions for
scheduling jobs based on memory contention in container-
based virtualized environments. Specifically, they provide a
mechanism that shares the GPU memory among multiple
containers. Just as the EPC, GPU memory is limited. However,



it is not possible to swap out memory once it is full, an event
that usually leads to more severe issues than just performance
degradation. To avoid that, ConVGPU intercepts and keeps
track of memory allocation calls to the CUDA API by provid-
ing an alternative shared library to applications running within
containers. Whenever a request cannot be granted, it holds the
application’s execution by postponing the call return until there
are available resources. They evaluate the system using four
strategies for the selection of which waiting application should
be served first, and show low overall application running time
overheads. Essentially, they act reactively to potential memory
contention issues, after container deployment, whereas we take
scheduling decisions before, based on self-declared memory
needs, and after deployment, based on probed data. Besides,
they only take into account intra-node resource management,
and leave distributed processing by integration with Docker
Swarm for future work.

Checkpointing and migration of running processes closely
relates to scheduling strategies. In this direction, Gu et al. [55]
tackle these issues for SGX enclaves. The challenge lies
in securely creating, transmitting and restoring an enclave
checkpoint while preserving all security guarantees, while not
introducing new attack vectors. Checkpointing a running SGX
process, however, already imposes some obstacles, since part
of the enclave metadata is not even accessible by the enclave
itself. Moreover, for consistency reasons, one must ensure
that all application threads do not continuously mutate the
state of the job being migrated. The authors deal with the
first issue by inferring the value of such unreadable metadata.
Then, they issue replay operations that lead to an identical
state. However, their approach rely on the cooperation of the
untrusted operating system, and therefore check afterwards
if it has behaved accordingly. The problem of achieving a
quiescent point, when all threads are guaranteed to not modify
the process state, is done by synchronization variables kept
inside the enclave, and by intercepting its entry and exit points.
By doing this, they force all threads to reach either a dormant
or a spinning state that will only be undone after restoring
the enclave at the target node. After successfully creating the
checkpoint, they still have to provide means to ensure that
it cannot be restored more than once (fork attack) nor that
an old one can possibly be recovered (rollback attack). That
is solved by means of a migration key transmitted through
secure channels built by leveraging SGX attestation and by a
self-destroy approach, which prevents the enclave from being
resumed after it was checkpointed. Overall, authors [55] show
a negligible performance overhead. Such mechanism could
eventually be integrated into our system, towards a globally
optimized EPC utilization through the migration of enclaves.
However, we stress that the problem of SGX enclave migration
(online or offline) is considered orthogonal to ours.

Similar to our work, MixHeter [56] also deals with schedul-
ing in heterogeneous environments. Since different sorts of
applications benefit from distinct hardware capabilities (e.g.,
GPUs for graph computing, RAM for sorting jobs, etc.),
distributed system schedulers that deal with mixed workloads

and take decisions disregarding this aspect may face poor
performance. To that end, MixHeter proposes a scheduler
based on or-constraints. The different resource requests are
translated into algebraic expressions to be satisfied. If preferred
resources are busy, non-preferred, but still compatible ones are
used instead, which can maximize the overall performance.
They evaluate the system on a popular scheduler for distributed
systems processing frameworks and show performance im-
provements up to 60%. We only consider SGX and non-SGX
jobs as characterizing features for orchestration decisions.
Our system would therefore benefit from such a scheme
considering a broader range of hardware capabilities, assuming
applications would support alternative solutions (e.g., AMD
Secure Encrypted Virtualization (SEV) [57], Trusted Platform
Modules (TPMs) [58], ARM TrustZone [22]) in the absence
of Intel SGX.

VIII. CONCLUSION

In this paper we have proposed a novel orchestrator for
containers running on heterogeneous clusters of servers, with
and without Intel Software Guard Extensions (SGX) support.
This technology allows users to deploy their software data
in the cloud without having to trust the providers. In SGX
enclaves, software runs at almost native speed, unlike with
cryptographic mechanisms that have severe limitations in
terms of performance and features.

The challenge in such deployments is to schedule containers
with security requirements to SGX machines in priority, which
are scarce, while at the same time carefully monitoring their
usage of SGX resources. In particular, when exceeding the
limited memory capacity of SGX enclaves, performance starts
degrading significantly so it is therefore important not to
overload SGX machines with too many resource-demanding
containers. To ensure proper monitoring of low-level SGX
metrics, we extended the SGX Linux driver to gather statistics
about the SGX runtime and feed them into the orchestrator,
based on Kubernetes. We developed a complete prototype that
we openly release [20], deployed it in a private cluster, and
conducted a detailed evaluation using Google Borg traces.
Our findings reveal that the scheduler must carefully take the
Enclave Page Cache (EPC) size into account to reduce the
overall turnaround time. Also, we observed that when half of
the jobs in the workload are SGX-enabled, there is virtually
no impact on general performance. Finally, our experiments
show that there is a small bootstrap time that SGX containers
must be ready to tolerate at startup.

As part of future research directions, we plan to extend our
orchestrator by integrating support for enclave migration as
well as hybrid processes running trusted and untrusted code.
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