
Token Account Algorithms: The Best of the Proactive and Reactive Worlds

Gábor Danner
University of Szeged, Hungary

Email: danner@inf.u-szeged.hu

Márk Jelasity
University of Szeged, Hungary and

MTA SZTE Research Group on AI

Email: jelasity@inf.u-szeged.hu

Abstract—Many decentralized algorithms allow both proactive
and reactive implementations. Examples include gossip pro-
tocols for broadcasting and decentralized computing, as well
as chaotic matrix iteration algorithms. In proactive systems,
nodes communicate at a fixed rate in regular intervals, while
in reactive systems they communicate in response to certain
events such as the arrival of fresh data. Although reactive
algorithms tend to stabilize/converge/self-heal much faster, they
have serious drawbacks: they may cause bursts in band-
width consumption, and they may also cause starvation when
the number of messages circulating in the system becomes
too low. Proactive algorithms do not have these problems,
but nodes waste a lot of time sitting on fresh information.
Here, we propose a novel family of adaptive protocols that
apply rate limiting inspired by the token bucket algorithm
to prevent bursts, but they also include proactive commu-
nication to prevent starvation. With the help of our traffic
shaping service, some applications approach the speed of the
reactive implementation, while maintaining strong guarantees
regarding the total communication cost and burstiness. Due
to the proactive component we can help maintain a certain
level of activity despite losing messages due to faults or the
application semantics. We perform simulation experiments in
different scenarios including a real smartphone availability
trace. Our results suggest up to a fourfold speedup in a
broadcast application, and an order of magnitude speedup
in the case of gossip learning, when compared to the purely
proactive implementation.

1. Introduction

Token bucket and leaky bucket algorithms and their
variants have long been used for traffic shaping in packet
switched networks. These algorithms control the rate at
which packets are sent from or forwarded by a networked
device. The primary motivation for applying such methods is
to prevent large bursts of traffic to protect the network and
also to enforce quality-of-service contracts by controlling
the rate of traffic.

In the application layer, decentralized applications are
also confronted by the issue of traffic shaping. However,
since applications have many other key characteristics to
worry about, such as performance and fault tolerance, traffic
shaping methods have not received much emphasis. Take
gossip-based broadcast, for example. The conventional ap-
proach is to simply adopt a proactive design pattern where
nodes gossip periodically in regular intervals [1]. This solves
the traffic shaping problem (we have a constant rate) so

we can focus on other design decisions that are related to
performance and fault tolerance.

In this study, we challenge this design philosophy. Our
main message is that fine details of traffic shaping actually
have a profound effect on many key global application
characteristics that seem unrelated to traffic shaping at first.
For example, as we will show in detail, when gossip-based
broadcast is implemented using our token account algorithm
instead of the periodic, round-based communication pattern,
convergence becomes dramatically faster, approaching the
speed of flooding, without sacrificing the rate limiting fea-
ture (as flooding does).

The techniques discussed here are applicable in many
decentralized asynchronous message passing applications
where the main goal is to reach a target global state quickly
and cheaply. These applications include gossip-based al-
gorithms, asynchronous (chaotic) numeric algorithms, and
distributed data mining as well. The common characteristics
of these applications include nodes receiving messages,
updating their state based on these messages, and sending
messages as a function of their state.

In such applications, there is typically a large degree
of freedom regarding the number and the scheduling of the
outgoing messages. Unlike in the networking layer, where
messages are simply forwarded, here the messages that are
received and sent might be decoupled. The current practice
does not exploit this design space fully; traffic shaping and
its side-effects have not been given enough attention. There
are two kinds of popular approaches, namely proactive and
reactive. In a proactive approach, each node sends messages
periodically, based on the information accumulated in the
previous round. The rounds of the nodes in the system may
or may not be synchronized. In a reactive approach, nodes
immediately send messages whenever their state changes
(typically after receiving a message).

In the proactive approach, time is often wasted, since
nodes frequently sit on new information, doing nothing until
the next round comes. However, traffic shaping is optimal
due to the constant rate. In the reactive approach, informa-
tion is spread much faster initially; however, the amount of
traffic and its burstiness is out of control, which might harm
the network as well as the application itself. Our goal here
is to propose techniques that inherit the best properties of
both approaches while avoiding their drawbacks.

We achieve this by generalizing the token bucket algo-
rithm, introducing a family of token account algorithms. In

885

2018 IEEE 38th International Conference on Distributed Computing Systems

2575-8411/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDCS.2018.00090

a nutshell, at each node, these algorithms grant one token
to the node in regular periods, and spend a token when
the node sends a message. The details of when to send
messages, how many, and how exactly to limit the number
of accumulated tokens are captured with two functions: the
proactive and reactive functions. This design space includes
the purely proactive and reactive protocols and a spectrum
of algorithms in between.

It should be mentioned that, unlike token bucket algo-
rithms, our token account protocols are targeted to serve the
application layer where they fulfill many functions at once,
all of which are equally important: rate limiting, speeding up
convergence and fault tolerance. The speedup effect is due
to the reactive behavior that reduces the idle time, during
which nodes sit on new information. Fault tolerance is due
to the proactive behavior that maintains a certain level of
messaging activity even when messages are lost due to faults
or due to the semantics of the application.

Our contribution here is twofold. First, we introduce
the token account service along with three different imple-
mentations. The parameters of these implementation allow
us to span the design space between proactive and reac-
tive algorithms. Second, we evaluate the proposed token
account protocols using three applications (gossip learning,
push gossip and chaotic power iteration) in simulation. Our
scenarios include a real smartphone trace that represents a
promising application domain for the class of asynchronous
message passing algorithms discussed here.

2. Background

Here, we describe our system model and the three appli-
cations we selected to test our token account service: gos-
sip learning, gossip-based broadcasting and chaotic power
iteration. These applications are all based on local message
passing and their goal is to converge to a desirable state
through an iterative process as quickly and as cheaply as
possible. Yet, they have a rather diverse set of requirements
that allow us to demonstrate the broad applicability of
our algorithms and to better cover their advantages and
limitations. We first present the most common, proactive
implementation of the demonstrator applications, and later
on we shall reformulate them over the token account API
(Algorithm 4).

2.1. System model

We model our system as a large set of nodes that com-
municate via message passing. In this study, we evaluate our
protocols assuming a reliable transfer protocol, which im-
plies that we do not consider message drop failure. However,
the protocols themselves do not require this assumption.
Nodes are allowed to leave the network at any time and
node failures are also permitted. We do not require time to
be synchronized over the nodes. At every point in time each
node is assumed to have a set of neighbors, typically a small
subset of the nodes. We assume that the failure of a neighbor
is detected by the node. The neighbor set can change over
time, but nodes can send messages only to their current

Algorithm 1 Gossip Learning Framework

1: (x, y)← local training example
2: currentModel ← initModel()
3: loop
4: wait(Δ)
5: p← selectPeer()
6: send currentModel to p

7: procedure ONMODEL(m)
8: m←updateModel(m,x, y)
9: currentModel ← m

neighbors. The set of neighbors might be a uniform random
sample from the network or it might be defined by any
fixed overlay network, depending on the application. When
sending a message, nodes access their neighbors through
the peer sampling service using the method SELECTPEER().
In this study we treat this method as a black box, noting
that many implementations are available [2], [3] that might
depend on the given networking environment and the appli-
cation requirements as well.

2.2. Gossip learning

Our first demonstrator application that can take advan-
tage of our token account service is gossip learning [4]. We
present the most common, proactive implementation. The
goal of this application is to learn from distributed data using
stochastic gradient descent (SGD) [5]. We assume that every
node in the network has only one training example (x, y),
but we can benefit from having more local data. The set of
these local examples form our machine learning database.
We would like to learn a model over these instances in a
fully distributed manner.

The basic idea is that in the network many models
perform random walks and are updated at every node using
the local example. The number of walking models is a
parameter of the protocol; it may be as many as the number
of nodes in the network. More precisely, every node executes
Algorithm 1. A node in the network first initializes a local
model, then iteratively sends its local model to a peer. When
a node receives a model, it updates it by its locally stored
training example using the SGD update rule, and then stores
the updated model as its local model. Using this protocol
the models stored by the nodes will converge to the same
global optimum.

We intentionally present the simplest form of gossip
learning, but more sophisticated techniques can also be
applied (for example, local model averaging) to speed up
convergence. These techniques also benefit from the token
account service as the communication pattern remains iden-
tical.

2.3. Push gossip

Our second example application is the classical push
gossip protocol [1], as shown in Algorithm 2.

In this simple setup, we assume that every node stores a
single update, and whenever a new, fresher update arrives, it

886

Algorithm 2 Push gossip

1: update ← null
2: loop
3: wait(Δ)
4: p← selectPeer()
5: send update to p

6: procedure ONUPDATE(m)
7: if m is fresher than update then
8: update ← m

Algorithm 3 Asynchronous iteration executed at node i

1: bki ← any positive value for all k
2: loop
3: wait(Δ)
4: xi ←

∑
k∈in-neighbors

i

Aikbki
5: p← selectPeer()
6: send weight xi to p

7: procedure ONWEIGHT(m)
8: k ← m.sender
9: bki ← m.x

replaces the old one. Furthermore, all the nodes periodically
push the update they know about to a neighboring node.
Here, we do not consider any stopping criteria as we assume
that updates arrive frequently and continuously.

Although the push-pull variant is superior to push ac-
cording to a number of performance metrics, and it could
also be used alongside our token account service, we chose
push for the sake of simplicity. This is because pull variants
have benefits mainly in the final phase of convergence,
which (as confirmed by our preliminary experiments) is not
actually observed in our setup here due to the continuous
stream of new updates.

2.4. Chaotic asynchronous power iteration

Our third example is power iteration. Given a square
matrix A, vector x is an eigenvector of A with eigenvalue
λ, if Ax = λx. Vector x is a dominant eigenvector if there
are no other eigenvectors with an eigenvalue larger than |λ|
in absolute value. In this case λ is a dominant eigenvalue
and |λ| is the spectral radius of A.

We concentrate of the abstract problem of calculating the
dominant eigenvector of a weighted neighborhood matrix
of some large network, in a decentralized way, when the
elements of the vector are held by individual network nodes,
one vector element per node. The matrix A is defined by
physical or overlay links between the network nodes. More
precisely, A contains the weights assigned to these links: let
matrix element Aij be the weight of the link from node j
to node i. If there is no link from j to i then Aij = 0.

In [6], Lubachevsky and Mitra present a chaotic asyn-
chronous family of message passing algorithms to calculate
the dominant eigenvector of a non-negative irreducible ma-
trix, that has a spectral radius of one. Algorithm 3 shows
an instantiation of this framework, that we will apply here.

In the algorithm, the values xi represent the elements
of the vector that converge to the dominant eigenvector.
The values bki are buffered incoming weighted values from
incoming neighbors in the graph. These values are not
necessarily up-to-date, however, as shown in [6], the only
assumption about message failure is that there is a finite
upper bound on the age of these values. The age of value
bki is defined by the time that elapsed since k sent the last
update successfully received by i. This bound can be very
large, so delays and message drop are tolerated to a very
large extent.

3. Token Account Algorithms

The example algorithms presented so far were fully
proactive sending messages in regular time intervals. This
provides excellent load balancing, but slows down conver-
gence. We could consider the naive reactive variants of these
algorithms, where, instead of a regular timer, every message
received would trigger message sending immediately. This
would result in a faster convergence but the uncontrolled
communication load would lead to large bursts of traffic. In
our framework we introduce an abstraction that allows for a
fine control over the tradeoff between these two approaches.

One idea to achieve this tradeoff is to apply the token
bucket algorithm. In this algorithm, a token is assigned to the
node in regular intervals of length Δ. The application works
in purely reactive mode, spending one token per message. If
no tokens are available, no sending is allowed (so sending
is either skipped or blocked, depending on the application
semantics). Our approach is similar in spirit, but it offers a
fine control over the proactive and reactive characteristics
of the application and it also allows for application specific
adaptation in a natural manner. This allows us to achieve al-
most optimal speedup while preventing bursts and providing
fault tolerance as well.

3.1. Token Account Framework

In our framework, each node has an account, which can
hold a non-negative integer number of tokens. We introduce
two functions that will control the proactive and reactive
behavior of the node as a function of the number of tokens.

The proactive function PROACTIVE(a) returns the proba-
bility of sending a proactive message as a function of the
account balance a. We require that the proactive function
should be monotone non-decreasing in a, that is, a higher
balance should not result in a lower probability of sending
a proactive message.

The reactive function REACTIVE(a,u) returns the number
of messages that the node will send as a reaction to an
incoming message, as a function of the account balance a
and the usefulness of the received message u. Clearly, the
higher the balance the more messages we might want to
send so the function should be monotone non-decreasing in
a. The usefulness u expresses the notion that some messages
are more important than others in most applications. For
example, in the broadcast application, the received message
is useful if and only if it contains new information for the

887

Algorithm 4 Token account

1: a← initial number of tokens
2: loop
3: wait(Δ)
4: do with probability proactive(a)
5: p← selectPeer()
6: m← createMessage()
7: send m to p
8: else
9: a← a+ 1

10: end do
11: procedure ONMESSAGE(m)
12: u← updateState(m)
13: x← randRound(reactive(a, u))
14: a← a− x
15: for i← 1 to x do
16: p← selectPeer()
17: m← createMessage()
18: send m to p

node. Currently we assume that u is a Boolean value (the
message is either useful or not). Finer grading is possible in
the future. The function should be monotone non-decreasing
in u as well, that is, more useful messages should not
result in fewer reactive messages being sent. Also, the value
returned is at most a (we do not allow overspending).

The purely proactive strategy is a special case given by
PROACTIVE(a) ≡ 1 and REACTIVE(a,u) ≡ 0. With relaxing
the non-negativity constraint of the balance, the purely
reactive strategy can be expressed as well as PROACTIVE(a)

≡ 0 and REACTIVE(a,u) ≡ k (or REACTIVE(a,u) ≡ uk) for
a constant k ≥ 1.

The pseudo-code for the token account algorithm is
shown in Algorithm 4. In each round, the node either sends a
message to a peer, or saves the token for later use; the former
occurs with probability PROACTIVE(a). When receiving a
message, the application-specific code updates the state of
the node using method UPDATESTATE() that also returns
the usefulness of the received message. Next, the reactive
function returns the number of messages to be sent and the
same number of tokens are removed from the account. The
return value r of the reactive function is probabilistically
rounded by sampling �r�+ ξ where ξ is a random variable
with the distribution ξ ∼ Bernoulli(r − �r�).

The framework can be instantiated by implementing
the proactive and reactive functions. We will discuss our
proposed implementations in Section 3.3. First, however, we
turn to the implementation of our three application examples
within the framework.

3.2. Applications within the framework

To implement our applications in the framework we
have to provide the application specific implementations of
two methods: CREATEMESSAGE() that is responsible for con-
structing a message to be sent based on the current state, and
UPDATESTATE(m) that is responsible for updating the current
state based on the new message that has been received. This

includes defining the usefulness of the received message m
because UPDATESTATE(m) has to return this information.

The implementation of CREATEMESSAGE() is simple in
all three cases: we just copy the current state. In the gossip
learning application, the state consists of a machine learning
model with a counter (age) that keeps track of how many
times the given model was updated. In the push gossip
application the state consist of an update with a timestamp.
In chaotic iteration the state is the value xi at node i.

In our three applications, the implementations of
UPDATESTATE(m) are given by ONMODEL, ONUPDATE and
ONWEIGHT, respectively. In addition, we have to return use-
fulness, as we explain below. In gossip learning, usefulness
is 0 if the current model of the node is older (in terms of
the number of visited nodes) than the received model, and 1
otherwise. In the former case, the state is unchanged, while
in the latter case, the received model is trained on the local
data and stored as the new state. Note that in our simulations,
we did not implement any actual machine learning tasks, but
just simulated the age of the models as this forms the basis
of our performance metric.

In the broadcast application, usefulness is 1 if and only
if the received message contains a newer update than the
locally stored update at the node. In our simulations, we
considered the following scenario: new updates are regu-
larly injected into random online nodes of the network. A
newer update makes older updates obsolete, that is, only
the freshest update known by the given node is stored
and propagated. Our performance metric is the difference
between the average timestamp of the freshest update known
by each node and the timestamp of the freshest update in
the whole network.

In the chaotic iteration application, usefulness is 1 if
and only if the received message causes a change in the
local state. Our convergence metric is the angle (or cosine
distance) between the approximation of the eigenvector and
the actual eigenvector that should converge to zero.

3.3. Implementations of the framework

Let us turn to the instantiations of the framework. In
order to implement the framework, one has to provide the
two functions PROACTIVE(a) and REACTIVE(a,u) taking into
account the constraints we described previously. We have
already described the implementation of the purely proactive
solution within the framework as an example. Here we
propose three additional implementations.

3.3.1. Simple token account. The first implementation is
called simple token account. This implementation serves as
a baseline, and it is similar to the token bucket algorithm
although there are important differences as well. We intro-
duce a parameter C ≥ 0 that controls the capacity of the
token account. That is, the maximal number of tokens will
be C. Using this parameter, we define

PROACTIVE(a) =

{
1 if a ≥ C

0 otherwise,
(1)

REACTIVE(a,u) =

{
1 if a > 0

0 otherwise.
(2)

888

Note that when C = 0 we have the purely proactive protocol
as a special case. The reactive part is identical to that of
the token bucket algorithm, however, this implementation
also shows proactive behavior but only when the account
is full. The account typically fills up with tokens when too
few messages are arriving relative to the allowed commu-
nication rate. This in turn happens most often when, due
to failures, fewer and fewer messages are circulating in the
network. The default proactive behavior helps maintain a
certain level of communication rate naturally even under
high message drop rates, which is impossible in a purely
reactive implementation. Of course, the effect of this error
correction strongly depends on the application semantics.

3.3.2. Generalized token account. Our second implemen-
tation is called generalized token account. Here, our goal
is to design a reactive function that is able to increase the
number of messages sent when the number of tokens is
high. In addition, we want to send twice as many messages
in response to useful messages. To achieve this goal, the
proactive function should be the same as the one in (1) and
we propose the following reactive function:

REACTIVE(a,u) =

{
�(A− 1 + a)/A� if u

�(A− 1 + a)/(2A)� otherwise,
(3)

where parameter A is a positive integer and it controls what
proportion of the available tokens we wish to use. Let us first
consider the case when the incoming message was useful
(u = true). Here, the reactive function is designed so that
when A = 1 we use all the available tokens. Increasing A
decreases the returned value. When A ≥ a, the function
returns 1. This also implies that the maximal meaningful
value for A is A = C in which case the reactive function
will be equivalent to equation (2). Now, let us consider the
case when u = false. Here, we simply divide the returned
value by two. This also means that, due to rounding the
output down to an integer, the function will return 0 when
A ≥ a. In other words, when the tokens are scarce, we do
not waste them for reacting to messages that are not useful.

3.3.3. Randomized token account. So far all the strategies
had the simple proactive function in equation (1). In the
randomized token account implementation we propose a
more fine-grained handling of proactive messages, while we
will treat reactive messages in a similar way to the general-
ized token account implementation. In addition, instead of
rounding it down to an integer, the reactive function will
use the value of a similar formula as the expected value of
a discrete distribution, from which a sample is returned.

Let us first discuss the proactive function given by

PROACTIVE(a) =

⎧⎪⎪⎨
⎪⎪⎩
0 if a < A− 1
a−A+ 1

C −A+ 1
if a ∈ [A− 1, C]

1 otherwise.

(4)

Parameters A and C have the same semantics as in previous
implementations: C controls the capacity of the account, A
controls the rate of spending the tokens. The actual formula
might seem slightly ad-hoc, but it is derived from a few

simple requirements. First, we wish the function to return
1 when a ≥ C as in all previous implementations. Second,
we wish to add some proactive behavior even when a < C,
so the returned value was chosen to be linear starting from
a = A − 1 until a = C. The starting point of this linear
segment was chosen to be A − 1 because if a < A then
the reactive function (to be discussed below) will be able
to send less than one messages on average (in other words,
we are not guaranteed to be able to respond to important
messages) so in that range we wish to maintain the purely
reactive behavior.

The reactive function is given by

REACTIVE(a,u) =

{
a/A if u

0 otherwise.
(5)

Note that this time we apply no rounding, so the returned
value might be less than 1. As shown in Algorithm 4, a
randomized rounding is performed on this value to get an
integer.

3.4. A note on rate limitation properties

The algorithm variants above have rather different reac-
tive functions, some of them allowing for spending the full
account at once. This means that the largest possible burst
of traffic is defined by the largest possible account balance.
Let us take a closer look at the maximum possible size of
the account balance. For an arbitrary implementation of the
token balance framework, let C be the smallest number for
which PROACTIVE(C)= 1 holds. If there is no such C, it
means the balance of the account might in principle grow
indefinitely, which is not a desirable property, since we wish
to limit the size of bursts. In our implementations we have
such a C, in fact, it is an explicit parameter. Due to the
definition of C, any additional tokens are guaranteed to be
spent immediately when the account has at least C tokens.
We call C the token capacity of the token strategy, that is,
the maximal number of tokens that can be accumulated. This
also gives an upper bound on the number of messages that
a node may send within a period of time t: a node cannot
send more than 	t/Δ
+C messages, where Δ is the length
of a proactive round.

4. Experimental Analysis

The overall goal of our experiments is to examine
the speedup of our token account solutions relative to the
baseline proactive implementations, while keeping the same
overall communication rate. In order to evaluate our pro-
tocols, we ran simulation experiments using the PeerSim
simulation environment [7]. Since one of our main targeted
application domain is smartphone networks, our experimen-
tal scenarios include a real smartphone trace as well with
realistic availability and churn patterns.

4.1. Experimental setup

The protocols we test consist of the combination of our
three applications (gossip learning, push gossip, and chaotic

889

iteration) and our three proposed instantiations of the token
account framework: simple token account, generalized token
account and randomized token account. These applications
and implementations are described in sections 2 and 3 in
detail. The token account protocols have two parameters: A
and C. In our experiments we explore this parameter space.

The baseline proactive protocol is given as a special case
of simple token account with C = 0; this variant is also
included in our experiments. Note that the other extreme
of the spectrum, namely the pure reactive strategy, is not
included as a baseline, since it is obviously not a viable
strategy. Without any rate control, our applications would
generate a continuous burst and use up all the available
bandwidth.

The number of initial tokens assigned to the nodes before
the start of the experiment is zero. The communication
topology (that is, the overlay network) was a fixed 20-
out network (each node had 20 out neighbors that did not
change through the experiment) and the network size was
N = 5, 000 or N = 500, 000. The fixed 20 neighbors
were drawn independently and uniformly at random. This
is perhaps the simplest practical approximation of uniform
peer sampling suitable for the applications we study here.
It can be implemented by maintaining 20 TCP connections
for the lifetime of the application. The value 20 allows for
a robust connected network while the cost of managing
the connections to all the 20 neighbors is still practically
affordable. The chaotic iteration experiment uses a different
topology as we describe later; this is because the 20-out
network mixes too well and power iteration converges too
fast over this topology.

As for timing, we simulate a virtual two-day period,
with Δ = 172.80 s, allowing for 1000 periods during the
two-day interval. This is a long period so we allow only
a very low utilization of the available bandwidth in all the
applications, which is consistent with the requirements in the
domains we target. In all the applications, we assume the
transfer time for one message to be 1.728 s, a hundredth of
the proactive period. Again, the point here is that we wish
to simulate a scenario where low bandwidth utilization is
required, because in such a scenario it is much harder to
achieve a convergence speed competitive with that of the
purely reactive solution that utilizes all the bandwidth.

Regarding the failure patterns, we simulate the protocols
in two scenarios. In the first scenario the communication
and the nodes are reliable. In the second scenario, we
simulate the protocols over a smartphone trace that captures
realistic failure and accessibility patterns. In both cases, the
same random 20-out network is used as the communication
overlay, as described above. The trace was collected by
STUNner [8]. In a nutshell, STUNner is an app that monitors
and collects information about charging status, battery level,
bandwidth, and NAT type.

Traces of varying lengths are available for 1191 different
users. We divided these traces into 2-day segments (with a
one-day overlap), resulting in 40,658 segments altogether.
With the help of these segments, we were able to simulate
a virtual 2-day period by assigning a different segment to
each simulated node.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 6 12 18 24 30 36 42 48

time (hours)

has been online
online
up
down

Figure 1. Proportion of users online, and proportion of users that have
been online, as a function of time. The bars indicate the proportion of the
simulated users that log in and log out (shown as a negative proportion),
respectively, in the given period.

To ensure that our algorithm is phone and user friendly,
we defined a user to be online (available) when the user
has a network connection and the phone is connected to a
charger, hence we never use battery power at all. In addition,
we also treated those users as offline who had a bandwidth
of less than 1 Mbit/s. Finally, we consider a user online only
after it spent at least one minute on a charger with a network
connection.

The observed churn pattern is illustrated in Figure 1
based on all the 2-day periods we identified. Although our
sample contains users from all over the world, they are
mostly from Europe, and some are from the USA. The
indicated time is GMT, thus we did not convert times to
local time. The diurnal pattern of availability is quite clear.
During the night, more phones are available (as they tend
to be on a charger), but the churn rate remains lower. Note
that during the simulated 2-day period, about 30% of the
users remain permanently offline based on our definition.

Let us now describe the specific settings for each appli-
cation.

4.1.1. Gossip learning setup. Our goal is to study the speed
of convergence. In the case of gossip learning, the learning
speed depends on how many nodes a given machine learning
model can visit in a given amount of time. The maximal
number of visited nodes at time t (let us denote this by
n∗(t)) is achieved by the pure reactive strategy, where no
model is ever delayed at any of the nodes. Since the transfer
time for one model was assumed to be 1.728 s, at any point
in time t we have n∗(t) = t/1.728. Our performance metric
is defined as the relative number of visited nodes compared
to this ideal number. More precisely, let ni(t)(≤ n∗(t))
denote the number of nodes that the model at node i has
visited up to time t. Our performance metric at time t is

1

N

N∑
i=1

ni(t)

n∗(t)
=

1

Nn∗(t)

N∑
i=1

ni(t), (6)

where N is the size of the network. This describes the
relative speed of our protocols compared to the maximal
speed. Note that no actual machine learning task is necessary
for this metric.

890

Figure 2. Token account strategies in the failure-free scenario for gossip learning (top row), push gossip (middle row) and chaotic iteration (bottom row).

4.1.2. Push gossip setup. In the case of push gossip,
the spreading of a single update is relatively difficult to
evaluate. For this reason, we inject new updates in regular
time intervals at randomly selected nodes in the network.
The period of inserting new updates is 17.28 s, that is, we
insert 10 updates in every proactive period. Updates have a
timestamp so every node can replace a locally stored update
by a newer one. Our performance metric at time t is based on
the average time lag experienced by the nodes relative to the
freshest update available anywhere in the network at time t.
For the sake of simplifying our notation, let us assume that
at time t the freshest update is the t-th update, and let node
i store the ti-th update (ti ≤ t). Our performance metric for
push gossip is

1

N

N∑
i=1

(t− ti) = t−
1

N

N∑
i=1

ti. (7)

In the churn scenario, nodes that come back online first send
a single initial pull request to a random online neighbor.
If this neighbor has tokens, a message is sent back with
the latest update (burning a token). Otherwise, no answer is
given so the pull request is unsuccessful.

4.1.3. Chaotic iteration setup. In this application the over-
lay network not only defines the communication channels
but it defines the computational task as well, since we are
calculating the eigenvector of the normalized adjacency ma-
trix itself. The 20-out matrix used in the other applications

is not suitable because it converges very fast due to the
good mixing properties of the network, which hides the
effects of the different protocols. Here, we use an overlay
network based on the Watts-Strogatz model in order to be
able to control (slow down) the speed of convergence [9].
The network is based on a ring in which every node is
connected to its closest 4 neighbors. In addition, we rewire
every link to a random target with a probability of 0.01. The
network size remains N = 5000.

The performance metric used in this application is sim-
ply the convergence rate of power iteration to the correct
eigenvector expressed as the angle of the current approxi-
mation and the correct eigenvector. An angle of zero means
a perfect solution. In the case of power iteration, there is
no natural optimally fast protocol since the convergence
speed also depends on the choice of the neighbors. Here,
we simply present the convergence as a function of time
for the different parameter settings, which still allows for a
clear comparison among the different options.

4.2. Experimental results

We first explored the parameter space of the protocols.
The parameter space included all the combinations defined
by A = 1, 2, 5, 10, 15, 20, 40 and C−A = 0, 1, 2, 5, 10, 15,
20, 40, 80 (note that we have to have A ≤ C). Based on
these runs a representative selection is shown in Figure 2
for our three applications in the failure-free scenario. We
performed 10 independent runs for every parameter combi-

891

Figure 3. Token account strategies in the smartphone trace scenario for gossip learning (top row) and push gossip (bottom row).

nation, and the average of these runs is shown in the plots.
On the plots showing push gossip we applied smoothing
based on averaging measurements over 15 minute periods.

Note that in general it makes little sense to set C much
larger than A, since a small A means an aggressive reactive
message strategy (we spend most of our tokens), while a
large C represents a very low probability of sending proac-
tive messages. This combination results in a very poor error
correction ability: if the number of messages in circulation
decreases due to faults or due to the application semantics,
we cannot replace them efficiently with proactive messages.
This is because the aggressive reactive strategy quickly
bursts all the tokens, but it takes a very long time until
the account is full again (and so proactive messages can be
sent).

The main conclusion from this exploration is that, rel-
ative to our purely proactive baseline, all the parameter
combinations result in a very significant performance im-
provement in the case of gossip learning and push gossip,
and we can also improve chaotic iteration significantly with
most parameter combinations.

In the case of push gossip most of the parameter set-
tings result in an almost identical performance, except two
settings that are inferior. Clearly, in the broadcast example, it
makes sense to be more aggressive in the reactive function
and spread the fresh information to multiple nodes when
possible; with A = C, only at most one reactive message
is sent. Gossip learning is more sensitive to the parameter
setting. Here, the key appears to be setting a large enough
C, which allows us to accommodate the maximal variance
in the number of random walks forwarded within a round.
Fortunately, settings as low as C = 20 already provide
close to optimal performance while still offering good rate
limiting as well. Note also that larger values of C have a
handicap in our experiments since we initialize the accounts
to have zero tokens. In the long run, this disadvantage

disappears.
It is interesting to note that some settings, such as

A = 10, C = 10, behave quite differently in different appli-
cations. This setting is among the worst in push gossip for
reasons mentioned above but it is the best in gossip learning
and chaotic iteration. At the same time, A = 10, C = 20 is
among the best in all three applications.

For the gossip learning application the results have an
interesting implication. In this case, machine learning mod-
els walk nearly without any delay but the overall commu-
nication in the system is not more than in the proactive
case. This is possible only if the number of models that
walk in the network is less than that in the proactive case.
In other words, the token account service has a side-effect
of reducing the number of models at the cost of speeding
them up at the same time. In fact, we can observe an
emergent evolutionary process in which random walks fight
for bandwidth and only those survive that happen to reach
a given node the soonest after the node received a token.

We performed the same exploration over the smartphone
trace as well. Figure 3 illustrates the same parameter com-
binations as shown in the failure-free case. Note that nodes
only receive tokens when online (and thus have a chance
of actually spending it) and only the online nodes were
considered when computing our performance metrics. The
chaotic iteration application is not shown here, because in
such an extremely dynamic setting with aggressive churn
it is not possible to define convergence for this application
and so our performance metric is not applicable. Apart from
the apparent diurnal pattern due to the variation of node
availability, the results are rather consistent with those in
the failure-free scenario. Relative to the proactive strategy
we achieve very significant improvements, of course, with
the same overall communication cost as in the proactive
strategy.

To illustrate the scalability of the protocols, we ran them
over a network of size N = 500, 000 in the failure free

892

Figure 4. Token account strategies in the failure free scenario and N = 500, 000 for gossip learning (top row) and push gossip (bottom row).

scenario. The results are shown in Figure 4. Comparing with
the plots in Figure 2, it is clear that in the case of push gossip
the protocols are still very robust to the parameter settings,
since all the settings that allow for an exponential spreading
of new updates (that is, where C > A) still have an
almost identical performance. Of course, the average delay
increases somewhat, but this is due to the larger diameter of
the network: a logarithmic increase is expected even with
flooding (the reactive variant) with increasing network size
(note that our overlay network has a logarithmic diameter).

In the case of gossip learning, we can see that some
of the best variants perform very similarly over different
network sizes, with two notable exceptions: A = 1, C = 5,
and A = 1, C = 10. These variants were among the
worst in the small network but they are among the best
in the large network. Note that these variants are the most
aggressive reactive variants, they replicate the good random
walks burning all the available tokens locally. The reason for
the dramatic difference is that—due to finite size effects—
in the small network all the random walks get stalled
periodically, effectively rendering the dynamics similar to
that of the proactive protocol. In the large network there
are proportionally more random walks and at every point in
time a few of these walks can still make progress and later
also replicate to replace those walks that were less lucky.

Nevertheless, even for gossip learning, there are robust
parameter choices, for example, A = 5, C = 10. This
parameter setting is also suitable for push gossip in all the
settings we examined.

As a final note, let us compare the performance of
our different algorithm variants. Even SIMPLE represents a
significant improvement over the proactive approach, but
GENERALIZED and RANDOMIZED outperform it robustly. Con-
sidering the best parameter settings, GENERALIZED has a
slight advantage over RANDOMIZED in the push gossip ap-
plication, and the reverse is true in gossip learning.

4.3. A Note on the Number of Tokens

Although this study has a strong experimental focus, for
completeness we present a short analytical derivation of the
average number of tokens in the system. This property is
interesting as the dynamics of the system depends on the
available tokens. We assume a failure-free scenario. We use
our previous notations, but here let a(t) denote the average
number of tokens over the nodes at time t and let w(t) be the
average number of messages sent (or, equivalently, received)
by a node until time t. Now, we can write the mean-field
model

da

dt
=

1

Δ
−

dw

dt
(8)

d2w

dt2
=

dw

dt
(reactive(a, u)− 1) +

1

Δ
proactive(a) (9)

The first equation states that a is increased by the
constant rate of generated tokens (one per each cycle of
length Δ) and decreased by the number of tokens used up.
The second equation states that the change of the message
sending rate is given by the number of reactive messages
triggered by the incoming messages (also taking into ac-
count the fact that the one incoming message is “replaced”
by the reactively generated messages triggered by it) and the
number of proactive messages that are sent once in every
cycle.

Now, assuming the equilibrium state when da/dt = 0
and d2w/dt2 = 0, solving the resulting equations gives us

1 = reactive(a, u) + proactive(a). (10)

This can be solved for a for a fixed u. For the most
promising version: randomized token account, solving the
equation gives us a = A ·C/(C +1) for u = 1 (this means
a ≈ A). The assumption u = 1 is acceptable for gossip
learning where most incoming messages are better than

893

Figure 5. Average number of tokens (gossip learning, failure free scenario).

the locally stored random walk. Indeed, our validation runs
(Figure 5) show a very good agreement with the predicted
value.

5. Related Work

Raghavan et al. [10] used a gossip protocol to implement
a distributed token bucket limiter, where the goal was to
control the global aggregate traffic through the cooperation
of individual rate limiters. This is orthogonal to our work,
because we wish to control the local traffic at all the
individual nodes, while at the same time we wish to optimize
a global application-specific performance measure, such as
speed of convergence.

Rodrigues et al. [11] used token buckets as part of their
adaptive broadcast solution. There, the emission rates were
adaptive and the token bucket was used to control the input
rate, that is, the rate at which a node accepts new events to
broadcast. The gossip protocol itself was purely proactive,
thus the efficiency of the broadcast under a fixed cost (the
focus of our work) was not addressed. Frey et al. [12]
applied token bucket rate limiting over the upload links to
evaluate the effect of limited bandwidth, but other options
for rate limiting were not investigated.

Wolff et al. [13] present a distributed data mining ap-
proach based on a decentralized algorithm to test whether
the Euclidean norm of the average of vectors is within a
threshold. They apply a leaky bucket algorithm for rate lim-
iting, which makes their system periodic (thus, proactive).
Here, a significant improvement in convergence speed could
be expected using simple token bucket algorithms instead,
and further optimization using our various token account
algorithms may be possible.

Another application area is decentralized replication
schemes where the dominant approach used to be reactive
(for example, replicate when the number of replicas is below
a threshold). First, Sit et al. [14] proposed a fully proactive
scheme to deal with bursts, and this was followed by several
hybrid proactive/reactive systems. For example, Duminuco
et al. [15] proposed an adaptive version of the proactive
scheme as well as a hybrid scheme that switches to purely
reactive operation when the availability of data is critically
low. Controlling the available repair-budget with the help of
a token account method is a promising approach in this area
as well.

6. Discussion and Conclusions

In this paper, we introduced the token account service
that serves as a communication layer for a large class of
decentralized applications. This class includes asynchronous
decentralized message passing applications such as gossip
broadcast, gossip-based machine learning, and chaotic itera-
tion methods. Any decentralized protocol might benefit from
the service that is based on some form of periodic proactive
local communication.

The main motivation was that we wanted to combine the
advantages of proactive and reactive communication models.
The reactive communication model has a crucial advantage:
it often results in very fast convergence in several different
applications. This is because nodes react immediately to
new information, there is no idle time. However, since the
number of messages is not controlled explicitly, they can
generate too many or too few messages. Too many messages
are generated when bursts occur due to cascading instanta-
neous reactions to propagating new information. But too few
messages can also be generated since messages are sent only
in response to other messages. If some of the messages are
never delivered due to failures or due to application specific
filters, the overall amount of communication can decrease
and the system might even arrive at a complete standstill.

The proactive communication model controls the num-
ber of messages explicitly, but it often results in an inferior
convergence speed due to sitting on new information until
the next round starts.

Token account algorithms were demonstrated here to
maintain a very tight control over the number of messages
we send, yet they were also shown to achieve a very signif-
icant speedup relative to a purely proactive implementation.
In the case of gossip learning, we saw that the token account
algorithm approximates the speed of a “hot potato” random
walk, when the walk wastes no time at any of the nodes.
In the case of the push gossip application, the delay of
receiving the freshest update is one third of that of the
proactive implementation. We achieved a significant speedup
even in the case of chaotic iteration.

In our future work we have several promising directions.
One such direction is to examine chaotic iteration in more
detail. Although we demonstrated that token account pro-
tocols are beneficial, we are convinced that we have only
scratched the surface regarding the potential optimizations of
chaotic iterations, a key tool in high performance computing.
Another direction is the exploration of the implications of
the method in decentralized data mining, our main area
of research. Our significant speedup here opens up the
possibility of the practical implementation of many complex
machine learning models while keeping the communication
cost low.

7. Acknowledgments

This research was supported by the Hungarian Govern-
ment and the European Regional Development Fund under
the grant number GINOP-2.3.2-15-2016-00037 (“Internet of
Living Things”).

894

References

[1] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms
for replicated database maintenance,” in Proceedings of the 6th
Annual ACM Symposium on Principles of Distributed Computing
(PODC’87). Vancouver, British Columbia, Canada: ACM Press,
August 1987, pp. 1–12.

[2] R. Roverso, J. Dowling, and M. Jelasity, “Through the wormhole:
Low cost, fresh peer sampling for the internet,” in Proceedings of
the 13th IEEE International Conference on Peer-to-Peer Computing
(P2P 2013). IEEE, 2013.

[3] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen, “Gossip-based peer sampling,” ACM Transactions on Com-
puter Systems, vol. 25, no. 3, p. 8, August 2007.

[4] R. Ormándi, I. Hegedűs, and M. Jelasity, “Gossip learning with linear
models on fully distributed data,” Concurrency and Computation:
Practice and Experience, vol. 25, no. 4, pp. 556–571, 2013.

[5] L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks:
Tricks of the Trade, ser. Lecture Notes in Computer Science, G. Mon-
tavon, G. B. Orr, and K.-R. Müller, Eds. Springer Berlin Heidelberg,
2012, vol. 7700, pp. 421–436.

[6] B. Lubachevsky and D. Mitra, “A chaotic asynchronous algorithm
for computing the fixed point of a nonnegative matrix of unit radius,”
Journal of the ACM, vol. 33, no. 1, pp. 130–150, January 1986.

[7] A. Montresor and M. Jelasity, “Peersim: A scalable P2P simulator,”
in Proceedings of the 9th IEEE International Conference on Peer-
to-Peer Computing (P2P 2009). Seattle, Washington, USA: IEEE,
September 2009, pp. 99–100, extended abstract.

[8] Á. Berta, V. Bilicki, and M. Jelasity, “Defining and understanding
smartphone churn over the internet: a measurement study,” in Pro-
ceedings of the 14th IEEE International Conference on Peer-to-Peer
Computing (P2P 2014). IEEE, 2014.

[9] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’
networks,” Nature, vol. 393, pp. 440–442, 1998.

[10] B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum, and A. C.
Snoeren, “Cloud control with distributed rate limiting,” in Proceed-
ings of the 2007 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications, ser. SIGCOMM
’07. New York, NY, USA: ACM, 2007, pp. 337–348.

[11] L. Rodrigues, S. Handurukande, J. Pereira, R. Guerraoui, and A.-
M. Kermarrec, “Adaptive gossip-based broadcast,” in International
Conference on Dependable Systems and Networks (DSN-2003), June
2003, pp. 47–56.

[12] D. Frey, R. Guerraoui, A.-M. Kermarrec, and M. Monod, “Boosting
gossip for live streaming,” in 2010 IEEE Tenth International Confer-
ence on Peer-to-Peer Computing (P2P). IEEE, August 2010, pp.
1–10.

[13] R. Wolff, K. Bhaduri, and H. Kargupta, “Local l2-thresholding based
data mining in peer-to-peer systems,” in Proceedings of the Sixth
SIAM International Conference on Data Mining, April 20-22, 2006,
Bethesda, MD, USA. SIAM, 2006, pp. 430–441.

[14] E. Sit, A. Haeberlen, F. Dabek, B.-G. Chun, H. Weatherspoon,
R. Morris, M. F. Kaashoek, and J. Kubiatowicz, “Proactive replication
for data durability,” in The 5th International Workshop on Peer-to-
Peer Systems (IPTPS’06), 2006.

[15] A. Duminuco, E. Biersack, and T. En-Najjary, “Proactive replication
in distributed storage systems using machine availability estimation,”
in Proceedings of the 2007 ACM CoNEXT Conference, ser. CoNEXT
’07. New York, NY, USA: ACM, 2007, pp. 27:1–27:12.

895

