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Abstract—Online services are becoming increasingly data-
centric; they collect, process, analyze and anonymously disclose
growing amounts of personal data. It is crucial that such systems
are engineered in a privacy-aware manner in order to satisfy
both the the privacy requirements of the user, and the legal
privacy regulations that the system operates under. How can
system developers be better supported to create privacy-aware
systems and help them to understand and identify privacy
risks? Model-Driven Engineering (MDE) offers a principled
approach to engineer systems software. The capture of shared
domain knowledge in models and corresponding tool support
can increase the developers’ understanding. In this paper, we
argue for the application of MDE approaches to engineer privacy-
aware systems. We present a general purpose privacy model and
methodology that can be used to analyse and identify privacy
risks in systems that comprise both access control and data
pseudonymization enforcement technologies. We evaluate this
method using a case-study based approach and show how the
model can be applied to engineer privacy-aware systems and
privacy policies that reduce the risk of unintended disclosure.

Index Terms—Privacy, Cloud, Risk, Model-driven engineering

I. INTRODUCTION

Motivation. Online services are becoming increasingly
data-centric, and a growing amount of personal information
about the user is collected, processed and analyzed. For the
purpose of this paper, privacy is defined as the ability of a user
to have control over their personal information, where users
will have different viewpoints of such privacy [1], i.e. one
user may care about keeping a piece of data private, whereas
another user may not care if the same data is made public.
However, as systems grow in complexity it becomes difficult
for developers who may not be experts in the domain of
privacy to ensure that such privacy properties are maintained.
How can developers identify the risks of potential privacy
breaches through unwanted/accidental disclosure (driven by
their design and implementation choices) that contradicts the
user’s control of their personal information?

Contribution. In this paper we focus on using system
models to: i) identify privacy risks during the development of
an online service, and ii) also monitor the privacy risks during
the lifetime of the service (as the users, data, and behaviour
may change). We argue that such a Model-Driven Engineering
(MDE) approach provides a principled method to engineer
solutions in order to ensure that privacy risks are managed at
different stages of system development. This is because, the

capture of shared domain knowledge (in privacy models) can
aid understanding across development teams, and also support
automated analysis of the system to identify privacy risks. This
paper proposes the following contributions:

• A formal model of user privacy captured as a Labelled
Transition System (LTS); here states in the model rep-
resent a user’s state of privacy, and labelled transitions
between states represent actions on the data. This model
is automatically generated from the design artifacts cu-
rated during the system design phase.

• A data-flow driven modelling framework. System devel-
opers specify their system in terms of a purpose-driven
data-flow diagram and a set of access policies. This
framework automatically generates the formal model,
such that multiple analyses can be carried out upon it.

• Automated risk analysis. The formal privacy model is
analysed to identify any privacy risks in the system’s op-
eration. The results can then be used by system designers
to inform further design or system operation decisions.

We evaluate these contributions using a case-study based
approach to highlight the frameworks ability to abstract a
system’s behaviour with regards to personal data and then
machine analyze the privacy risks. We demonstrate that the
privacy risks can be generated using this model-driven ap-
proach which can then inform the design of the system.

Structure. In Section II we define the data-flow modelling
framework which generates the formal model of user privacy.
Then in Section III the risk analysis method is presented. An
evaluation of the approach is provided is Section IV. Finally,
Section V examines the state of the art in privacy modelling
and analysis, and we draw conclusions in Section VI.

II. MODELLING PRIVACY AWARE SYSTEMS

In this section we describe a framework to model privacy
aware systems. This follows two steps. First, the developer
models their system; second, a formal model of user privacy
in this system is generated. Both systems under development
and existing systems can be modelled in this way.

A. Step 1: modelling a privacy aware system

The developers of the system create a set of artifacts that
model the behaviour and security properties of their system:

• A set of Data-Flow diagrams that model the flow of per-
sonal data within a system. In particular focusing on how



Fig. 1. Data-flow Diagrams for an example healthcare service.

data is exchanged between the actors and datastores. We
utilise data-flow diagrams because they are an existing
well-understood form of modelling that simply captures
data behaviours.

• The data schema and access control policies associated
with each datastore. That is a description of what data
is stored, and which actors have access to that data. For
the purpose of this paper, we assume traditional access
control lists and role-based access control; however, we
seek to extend the approach to consider alternative forms
of access control.

We now consider a use-case to illustrate how these elements
are created in practice (in this case a doctors’ surgery). Two
data-flow diagrams from this example are given in Fig. 1. The
nodes represent either an actor (oval) or a datastore
(rectangle). The datastores are labelled by two objects: the
first is the identifier for the datastore, and the second are the
data schemas. The actual data flow is represented by directed
arrows between the ovals and rectangles, henceforth referred to
as flow arrows. Each flow arrow is labelled with three objects:
the set of data fields which flows between the two nodes,
the purpose of the flow, and a numeric value indicating the
order in which the data flow is executed. We assume datastore
interfaces that support querying and display of individual fields
(as opposed to coarse-grained records).

B. Step 2: automatically generating an LTS privacy model

In this section we provide a formal model of user privacy.
User privacy is modelled in terms of how actor actions on
personal data change the user’s state of privacy. We define an
actor to be an individual or role type which can identify
the user’s personal data. Depending on the service provided,
each actor may or may not have the capability to identify
personal data. Hence, a user’s privacy changes if any of their
personal data has been or can be identified by an actor. Prior
models following this approach are: a Finite State Machine
(FSM) [2] [3] or a Labelled Transition System (LTS) [4]. The
common theme in both is that the user’s privacy at any point
in time is represented by a state, and that actions, executed
by actors, taken on their personal data can change this state.
We build upon these approaches and extend them to label
both states and transitions in such a way that the model can
be analysed to understand how, and why, the user’s privacy

Fig. 2. A State-based Model of User Privacy

changes. This novel contribution allows us to represent not
only the sharing of a user’s personal information, but also the
potential for a user’s personal information to be shared. This
is the case when personal information is stored in a datastore
that can be accessed by multiple individuals.

The key elements of our model (illustrated in Fig. 2) are:

• States: are representations of the user’s privacy. They are
labelled with variables to represent two pre-dominant fac-
tors: whether a particular actor has identified a particular
field, or whether an actor could identify a field. These
variables, henceforth known as state variables, take the
form of Booleans, and there are two for each actor-data
field pair (has, could). The state label s1 is given the table
values shown in Fig. 2; states s2, s3 and s4 have tables
with different values to represent different privacy states.

• Transitions: represent actions (collect, create, read,
disclose, anon, delete) on personal data performed by
actors. They are labelled according to i) an action,
ii) the set of data fields, iii) the data schema
that the data field is a part of, iv) the actor performing
the action. There are two optional fields: i) a purpose
that explains the reason a particular privacy action is
being taken, and ii) a privacy risk measure to
identify risks associated with this action (whose value
is calculated and annotated during risk analysis).

• Pseudonymisation: the disclosure of pseudonymised ver-
sions of each sensitive field is modelled using the anon
transition. State variables (i.e. can access, has accessed)
can be declared on these fields in the same way as for
standard fields. For example an analyst may have access
permission for the field weightanon but may not have



permission to access weight. This will mean that they
may be allowed access to pseudonymised weight data
for statistical purposes but should be prevented from
matching any value to an individual.

Model Generation. The LTS is generated based upon
the following information from the data-flow diagrams. The
actors present in the data flow. Here, there are five actors:
Receptionist, Doctor, Nurse, Administrator and Researcher.
The data fields present in the flow (six: Name, Date of Birth,
Appointment, Medical Issues, Diagnosis, Treatment Informa-
tion). There are two independent services here: a medical
service, and a medical research service. The example has three
datastores: Appointments, Electronic Health Records (EHR),
and an Anonymised EHR.

From this information, one can deduce that each state must
be labelled with 2 ∗ 5 ∗ 6 = 60 Boolean state variables.
Naturally, if one wished to visualise the state system that
is generated from this, each state would have to carry sixty
labelling variables; this means there are 260 possible privacy
states. This is why the data-flow models are central to the
framework; they simplify the generated model as follows:

• If data flows between a user and an actor, then this is
a collect action, where the actor is collecting the
information from the user.

• If data flows between two actors, then this is disclose.
• If data flows from an actor to a datastore, this is a
create action. Where it is an anonymized data store
then this is an anon action

• If data flows from a datastore to an actor, this is a read
action. This is similar to the case of the create action;
the effect on the privacy state depends upon how the
datastore is accessed.

• If there are multiple flows within a service, the flows can
be executed independently, provided the start node has
the correct data to flow.

Using the extraction rules above combined with the access
control lists, we create a state-based system. Let us begin
by only considering the Medical Service process. A visual
representation of the system of states using the extraction rules
above is given in Fig. 3. Note that we have suppressed the state
variables for this visual representation; as mentioned earlier,
each node has 60 state variables.

III. ANALYSING PRIVACY RISK

Privacy risk analysis is performed on the generated model.
It takes the user privacy control requirements and annotates
the model with their risk; hence there is an instance for each
user. The process can be executed with running users of the
system, or with simulated users in the development phase. For
the purpose of this paper we consider only two dimensions of
risk, but seek to expand this as the work progresses.

A. Risk of unwanted disclosure

Risk assessment has two primary dimensions: the assess-
ment of the impact, and the assessment of the likelihood that

the risk event occurs. To this end, we assume that two pieces
of information about the user are available:

1) Which services the user agrees to use based on its policy.
2) The user has particular sensitivities about certain

fields, represented by either a sensitivity category (low,
medium, high for example), or a number which takes a
value between 0 and 1 indicating how sensitive the user
is to disclosure of that data. We use the quantitative
measure throughout this paper, and explicitly define this
quantity as the sensitivity of σ(d) for the field d.

This information can be obtained directly from the user
through a questionnaire (if necessary). For the first point, we
have that the user has explicitly agreed that actors within the
chosen services can handle their personal data for particular
purposes in the course of providing that service. We shall refer
to these actors as allowed actors. An actor not associated with
those services is referred to as a non-allowed actor.

Impact. We make the assumption that if a user has agreed
to use a service, the user is insensitive to any actor using their
sensitive data. This assumption is built upon the requirement
that the privacy policy of the service is clearly presented to the
user. Therefore, we may write the sensitivity of a data field d
relative to an actor a as σ(d, a), where σ(d, a) = 0 if the actor
is allowed, and σ(d, a) = σ(d) if the actor is non-allowed.

In order to assess the impact of the disclosure of a user’s
personal data, we shall utilise the data field sensitivities.
Therefore, we need to define two elements: the sensitivity of
a collection of data fields, and the change in the sensitivity
when a transition occurs. The sensitivity of a collection of
data can be computed by making the following assertion:
a collection of data fields is only as sensitive as the most
sensitive data field. In addition, we also assume that a user will
be equivalently sensitive if the data field has been identified
or the data field could be identified by a non-allowed actor.
Therefore, the definition of the sensitivity of a privacy state
is the maximum sensitivity amongst the data fields that have
either been identified or could be identified.

Now, for any transition, we assess how the sensitivity
changes when the transition occurs. We define the change,
as the change that occurs relative to the absolute privacy state
(where all state variables are false). For example, consider the
create action for a single field d to a datastore that a non-
allowed actor has access to. The sensitivity of this action is
therefore σ(create) = σ(d), as the absolute privacy state has
no sensitivity. We shall use the maximum sensitivity change
as the measure of the impact dimension of risk.

Let us now address likelihood. In this model, each transition
could have an associated probability of execution, given the
initial state before the transition has occurred. This requires
storing the probability for each possible initial state. If we
knew nothing about the system, we would have to store the
information for 260 possible states per transition. However,
this can be simplified as follows:

• A data flow representation of the services exists and de-
scribes known behaviour within the system, simplifying
the set of possible states.



Fig. 3. The state system for the Medical Service process as an LTS.

• Specific actions allow for actors to identify personal data;
namely, the read and disclose actions.

• Transitions are classified by their type.
We shall assume that the disclose action will only occur

during the course of a service, and hence if a user has not
agreed to use that service, the disclose action will not
be engaged. This leaves one action: read that impacts the
likelihood of a disclosure of a user’s personal data. From the
access control lists, we determine the non-allowed actors with
potential access to the data. We can then attach a probability
that an actor will identify a data field outside of their agreed
service use. This probability can be assessed by considering
the following situations:

• Accidentally access. For example, a datastore query re-
turns a small subset of users, the actor may identify fields
whilst searching for the information they need about a
different user.

• If an actor maintaining the service needs to delete the
data, the system may first show the data to be deleted.

• If an actor begins the execution of a service that the user
did not agree to use. In this instance, one must then look
at the full service and determine the implications on the
user’s privacy using the generated state model.

Each of these scenarios will have a probability that they
will happen; the resulting probability will be the sum of
the probabilities of these scenarios occurring, as they are
intrinsically uncorrelated situations.

Once both the dimensions of risk are established, we can
attach a risk label associated with the read action. For
this purpose, we categorise the impact and likelihood into
categories (low, medium and high), and then use a table to
determine a risk level. The categorisation of the impact and
likelihood, as well as the table to determine the risk level,
should be specified according to the type of service.

B. Pseudonymisation Risks

We now discuss how pseudonymisation risk information is
added to the LTS model for the developers chosen method of

pseudonymisation. There are two key types of risk:
1) Re-identification: The risk that a person whose personal

data is pseudonymised within a disclosed data set can
be re-identified.

2) Value: Risk of a sensitive value being matched to an indi-
vidual. Techniques such as k-anonymization [5] prevent
re-identification but do not guarantee that there is not
still a value risk. For example, if after k-anonymization
a k-set about human physical attributes contains 10
records, 9 of which have a weight over 100kg, if an
non-allowed actor knows their target is in that k-set they
can be 90% certain the target has a weight over 100kg.

In this version of the model, we focus on value risk. A risk that
a given actor (a) can access a given sensitive field (f ) is said to
be present in every state in the LTS where the pseudonymised
version of f (fanon) has been accessed by a. If a only has
access rights to fanon and not f , transitions will be added to
the LTS starting from each of these at-risk states. For these
transitions (referred to as risk-transitions) we calculate risk
scores or declare policy associated with these transitions.

It is important to identify that the approach is to model
the risk associated with a choice of pseudonymisation. For
example, the above is a risk of k-anonymization that is
removed when l-diversity [6] is considered; hence, we are
modelling these properties not proposing a solution that is
akin to l-diversity.

Calculating Risk Scores. For each transition a risk score
is calculated. Consider a read transition on f from a state
where fanon has already been read. We call this state, N .

1) The anonymised fields which have already been read at
N are collected together as the input field set fieldsread.

2) The fields not in fieldsread are masked and the data
is divided into sets, each of which contain only records
which now appear to be identical.

3) An individual value risk score is calculated for f in
each record. This score is the marginal probability of
the value associated with an individual record (r) for f
from within its set s. It is calculated as risk(r, f) =



frequency(f)/size(s) where frequency(f) is the
number of occurrences of the value associated with f
and r within s and size is the total size of that set.
Note, an occurrence of a given value does not require
exact equality. A user may specify a range so that
frequency(f) is the number of values in s which are
close enough to the original value.

Using Risk Scores. The Risk score described above can
only be calculated when data is present. Hence, simulated data
can be used at design time, whereas the model can be applied
to the running system to get a more accurate picture of risk.
The risk score is used to choose pseudonymisation techniques
or find out if a technique provides acceptable risk versus
data utility. The resulting pseudonymised dataset with values
removed can be tested for utility, by comparing statistical
qualities like means and variances between the original data
and the pseudonymised data. If a technique requires too much
data removal and utility is shown to be likely adversely
affected, the technique used would clearly be not appropriate.

IV. EVALUATION

We present and evaluate two simple case studies to provide
initial evidence of the benefits of the model-driven methods.

A. Identifying unwanted disclosure

Here, we considered a user in the doctors’ surgery example.
This user agreed to use the Medical Service, but not the
Medical Research Service. We profiled the user to be sensitive
about the Diagnosis field, such that the impact of that personal
data being read by a non-allowed actor was High.

We used the framework and created models to generate
an LTS upon which risk-analysis was performed. This first
determined the actors that are non-allowed (the Administrator
and Researcher), as they are not involved in the provision of
the Medical Service. To highlight an unwanted disclosure, the
LTS showed that the Administrator has read access to the EHR
datastore after the user has used the Medical Service. Using
the example risk table, the transition is labelled with a risk
level of Medium for this event occurring. This risk level may
be deemed unacceptable if one is designing a system with
privacy in mind. The access policies were changed accordingly
and the risk level was reduced to Low for this event.

In practice, this case shows there is no need to explicitly
draw a formal state model. The visualisation occurs at the
data-flow diagram level, and the analysis of the system can
occur using the state-based model. The primary advantage
of the output state model is that a developer can determine
which actors can identify which data during the course of a
service (in conflict with user preferences) and in turn engineer
systems that assure the data subject of the transparency of
any processing of their data. If such information is returned
to users; identifying the risks associated with any processing
enables greater understanding by the data subjects which in
turn would encourage them to take responsibility themselves
for their own data Hence, there is the potential for the

TABLE I
RISK VALUES FOR 2-ANONYMISATION DATA RECORDS

Age Height Weight Height Age Age Height
(cm) (kg) risk risk risk

30-40 180-200 100 2/4 2/2 2/2

30-40 180-200 102 2/4 2/2 2/2

20-30 180-200 110 2/4 3/4 2/2

20-30 180-200 111 2/4 3/4 2/2

20-30 160-180 80 1/2 1/4 1/2

20-30 160-180 110 1/2 3/4 1/2

Violations: 0 2 4

Fig. 4. Pseudoanonymisation risk analysis output

information output from the analysis to form part of the
privacy policy explained to users.

B. Identifying pseudomysation risk

For this case, we prepared the health record datastore
records to undergo 2-anonymisation. A researcher then has
access to this data but does not have access to the original data.
The policy violation that we wish to avoid is the researcher
being able to predict an individual’s weight to within 5kg
with at least 90% confidence. Age and height are quasi
identifiers. In these situations we can say that the risk of
value re-identification is over 90%. Table I provides six sample
records input to the model analysis process and shows how,
as more identifying fields become available to the researcher,
the number of violations of this policy increases.

Our system is represented in the generated LTS (Fig. 4).
Dotted lines indicate potential policy violations. A system
administrator has the option of loading the six records given
as examples above into the LTS. They would then see the
violation scores 0, 2 and 4 as shown in this figure. This may
cause them to consider increasing their k value or reconsider
their pseudonymisation entirely. Alternatively, at the design
phase, a system designer could declare that a number of
violations above 50% is unacceptable. The system would
now throw an error if the above data was used, forcing the
administrator to choose another form of pseudononymisation.



V. RELATED WORK

Privacy Modelling. Both Fischer [3] and Kosa [2] define
formal models of privacy in terms of state machine represen-
tations. Their purpose to demonstrate that a system complies
with privacy regulations and requirements. Such models offer
strong building blocks that our formal privacy model builds
upon; in particular moving from hand-crafted specifications to
auto-generated models that underpin the privacy engineering
process and privacy risk analysis. MAPaS [7], is a model-
based framework for the specification and analysis of privacy-
aware systems. Centred upon a UML Profile, purpose-based
access control systems are modelled and the framework allows
queries to be executed to identify errors in the design.

Privacy Risk Analysis. LINDDUN [8] is a framework
for performing privacy threat analysis on the design of a
system in order to select privacy enforcing mechanisms that
mitigate the threats. This combines a data flow model of the
system with a privacy threat catalogue to provide a design-
time methodology to assess privacy risks. We similarly employ
a data-flow oriented methodology but explore the extent risk
can be analysed automatically via the generation of an under-
pinning formal model. Further, we consider the use of MDE
methods beyond the design phase (and in particular analysis
of running systems with real users). The increasing prevalence
of data anonymisation adds different types of privacy risk [9].
There are a number of tools available to anonymise data,
which also provide some risk analysis feedback. The ARX
Tool [10] provides methods for analyzing re-identification
risks following the prosecutor, journalist and marketer attacker
models on a number of anonymisation algorithms. The Cornell
Anonymization Toolkit (CAT) [11] performs Risk Analysis
in terms evaluating the disclosure of risks of each record in
anonymised data based on user specified assumptions about
the adversarys background knowledge. These tools offer im-
portant insights to identify privacy risks; and in our approach
we seek to integrate similar capabilities into our methodology.

Privacy Policy Analysis. A system’s behaviour should
be matched against it’s own privacy policy. [12] models a
system’s behaviour in terms of a Business Processing Model
Notation (BPMN) diagram and then the goal is to check
whether this is compliant with the system’s P3P privacy policy.
[13] integrate links to the privacy policy in the system’s
workflow (e.g. the BPEL specification), these are then checked
by an analysis tool at design time to determine if the workflow
agrees with the policy. [14] provide a similar method; rather
than having a designer merge the workflow and policy, the
approach converts both models (a BPEL specification and P3P
policy) into a graph representation before formally analyzing
the correctness of the graph. However, all of these solutions
only check if a system behaves according to its stated privacy
policy (our LTS can be similarly analysed); there has been
limited research into the evaluation of a system in terms of
privacy risk. The method presented in this paper seeks to better
unify the design of a system with its privacy policy while
also allowing the engineers the ability to identify and mitigate

against potential privacy risks.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed the consideration of model-
driven methods to support the design and engineering of
privacy-aware systems by developers who may not be privacy
experts. Specifically, we have presented a framework to create
design models that can be used to generate a formal model
of user privacy that can then be analysed to identify risks
including unwanted disclosure of sensitive personal data, and
sensitive information inferred from pseudonymysed data.

Our preliminary evaluation highlights the potential of the
approach; and therefore the areas of future work will seek to
concretise the methods further via the development of better
tool support that will then be utilised by real-world system
developers. Our research methodology (using qualitative meth-
ods involving system developers) will then seek to answer the
questions: to what extent does the tool and method reduce the
effort of a developer in creating a privacy-aware system; and
how valuable is the information highlighted by the analysis.
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