Liquid Mail - A client mail based on CUBE model

Clay Palmeira da Silva, Nizar Messai, Yacine Sam, Thomas Devogele
Département Informatique
Université Frangois Rabelais
Tours, France
clay.palmeiradasilva@etu.univ-tours.fr,
{nizar.messai,yacine.sam,thomas.devogele } @univ-tours.fr

Abstract—Nowadays we live with a large number of different
connected devices with various operating systems. This is leading
us to a lack of technological resources to deal with this multiple
connected devices owned by the same user. Thus, a new way
to create applications is required in order to enhance the user-
experience without being a concern with the operating system of
the device. In this work, we present a client mail, based on CUBE
model principals, with allowing the user changing device while
using a mail service without losing session/data or connection.
Preliminary results demonstrate its feasibility moving from a
windows system to Android keep mail service running.

Index Terms—Multi-device, Web Services, Liquid Software,
CUBE model.

I. INTRODUCTION

In our daily lives, that we have at our disposal an important
number of different types of computing devices. We try to
bring for our daily tasks all these technologies. However, when
we think of the user-side, what should be a good thing in
order to help our tasks can, in fact, be the opposite. Actually,
we spend too much time and effort in order to use the same
services in the different devices we own.

When this perspective is expanded to the number of con-
nected devices, e.g. tablets, watches, and so on, we realise the
insufficient resources to deal with this amount of devices at the
same time. This scenario meets the goals of Liquid Software,
which proposes fluently moving applications and services
between devices sharing their behaviour and complexities.

In order to position our contribution, we will not address
the liquid contributions at the Server-side, such as Apple’s
Handoff, Nextbit’s Baton or Google Docs, once they are
limited to certain operating systems. Insted, based on the
CUBE principals, our implementation make synchronization at
USER-SIDE and respecting the user-experience and context
regardless the operating system.

As an example of our implementation, the use case in
Figure 1 shows how a user can start a service (e.g., a client
e-mail) and be able to switch between devices while moving,
and also can be able to take a previously used device (Retake
Device 2), then, at the final destination finish the message in
another device.

In this paper, we extends the work presented in [1] through
a client mail addressing the following challenges: (i) Create
an environment to share behavior/session/connection; (ii) Al-
lowing the user to easily change devices as to her/his needs;

(iii) Continue to use a given available server and services; (iv)
Allowing liquid software principals and (vi) Improving user
mobility across multi-platform.

Some works as seen in [2], [3] and [4], had tried to address
the multi-device service migration - but not multi-OS (e.g.,
Android and iOS), and all used Android as a platform.

For summarizing, the existing work at the State-of-Art,
try to bring together some aspects of the Liquid software
principals (e.g. fluidity), for that, they use different techniques
as interface mismatches [5], middleware, synchronization [6],
cross-device [2], among others. However, their approaches
don’t bring together the concepts proposed at the CUBE, that
means, both the multi-(device/OS) in order to move fluently
from services and devices.

Device 2 Device 3

“ioblle Laptop
Client (hingcar) Client Client at
office home

Time and
_.Space

‘Actor 1 Actor 1

Fig. 1: A use case model describing our contribution.

Until today, we are not able to obtain a simple data-flow of
web services without depending from the Server-side. To the
best of our knowledge, there is no existing approaches which
aims to solve the above mentioned problems at the User-side.

II. SYSTEM MODEL

We briefly describe the CUBE model principals where our
contribution is based on in order to deal with connected multi-
devices owned by the same user.

A. Architecture

The content management system Figure 2 101 includes two
application portions 103 and 105, two applications program
interface (API) portions 102 and 106, developed in JavaScript,
and a database portion 104.

From the portion 100, the content management system 101
will interact on two fronts, user’s and services side. First, at
100, a device is specified as the first one. Its choice is made
from the available devices and owned by the same user. Then,
at 107, the CUBE will be able to receive and respond different

& Application Programming Interface (Hosts
102 connections) INNER CUBE

B i o
Service S————] Conversation ||
Component

—
<——| Session / Data[«—=] Layer
(REST) Store (RESTful) ||

& Application Programming Interface (Services
106 connections) OUTER CUBE

Fig. 2: CUBE works with multiple devices and services

types of requests made by the 100. Meanwhile, services are
synchronized in at API 106.

Next, the INNER CUBE 102 interact with the user’s devices,
allowing change it during the service execution. While services
and devices changes, all the information, and sessions retrieved
are stored at 104 via module 103. Thus, when any change of
device is required, the user does not need to start from scratch
in order to retrieve or fill in her/his information.

Working as a pool area, the application portion 105 its also
an API built under RESTful principles and is responsible for
changing information across the multi-platform environment.
Moreover, this part of the module provides a secure connection
for the user devices through a token created in the INNER
CUBE 102 by the join of User ID from device’s and service
which are provided by the OUTER CUBE 106. This type of
addressability through a resource identification allows the pool
to ensure a stateless interaction between services. Also relies
at pool area make requests at external services, portion 107.

III. IMPLEMENTATION INSIGHTS

Were considered SQL or NoSQL model to authenticate and
synchronization, which are deployed as a callback procedure
for good performance. Regarding the Internet connection, we
manage a local (sign up/login in), also allows synchronizing
this authentication step when a connection is available. In
addition, we got IMEI and MAC addresses of the device and
associate them to the user login.

rres

BWeI%ome to the

(a) Windows (b) Android

Fig. 3: CUBE deploys in a multi-OS without changing its code

Using a hybrid programming model, our proposal connects
through a desktop using web services principals in a Windows

and i0S platform. We also achieve connection in the Android
platform, through a tablet Samsung Galaxy tab4 with Android
4.4.2, as shown in Figure 3 (b).

The first connection in the CUBE may take a while as
the user must specify her/his own device among all devices
displayed. Then, other callback functions create the user-
centric environment shown available devices ready to be used.

The feasibility test is shown in Figure 4. We developed a
small client email, Figure 4 (a), integrated with the Gmail API
with the following fields: to, cc, subject and body, Figure 4 (b).
Thus, we were able to start the CUBE with our email service
in one device and successfully move to other devices retrieving
the data already typed and just add new information until send
the mail. We notice was no Server-side synchronization to
ensure data fluidity between devices.

CUBE Gmail Send

(a) Local Inbox

(b) Local Sending

Fig. 4: Created e-mail deployed locally using Gmail API

IV. CONCLUSIONS

Throughout a User-Centric approach and combining prin-
ciples of REST and RESTful models, our application, based
on CUBE model principals, is able to converge multiple and
heterogeneous environments having different behavior and
complex systems. Thus, it displays the ability required in
dealing with the challenges of the Internet platform in a
multi-device environment allowing fluently moving from both
services and devices regardless the operating system.

REFERENCES

[1] C. P. da Silva, N. Messai, Y. Sam, and T. Devogele, “Diamond - a cube

model proposal based on a centric architecture approach to enhance liquid

software model approaches,” in Proceedings of the 13th International

Conference on Web Information Systems and Technologies - Volume 1:

WEBIST,, INSTICC. ScitePress, 2017, pp. 382-387.

P. Hamilton and D. J. Wigdor, “Conductor: Enabling and understanding

cross-device interaction,” in Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, ser. CHI "14. New York, NY,

USA: ACM, 2014, pp. 2773-2782.

D. Wolters, J. Kirchhoff, C. Gerth, and G. Engels, Cross-Device Integra-

tion of Android Apps. Cham: Springer International Publishing, 2016,

pp. 171-185.

[4] A. N. Iyer and R. T., “Extending android application programming
framework for seamless cloud integration,” in Proceedings of the 2012
IEEE First International Conference on Mobile Services, ser. MS 12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 96-104.

[S] M. Autili, P. Inverardi, F. Mignosi, R. Spalazzese, and M. Tivoli,
Automated Synthesis of Application-Layer Connectors from Automata-
Based Specifications. Cham: Springer International Publishing, 2015,
pp. 3-24.

[6] J.Lee, S.J. Lee, and P. E. Wang, “A framework for composing soap, non-
soap and non-web services,” IEEE Transactions on Services Computing,
vol. 8, no. 2, pp. 240-250, March 2015.

[2

—

3

=

