
Spatio-temporal Analysis of HPC I/O and
Connection Data

Jinoh Kim∗ Jinhwan Choi∗ Alex Sim†
Texas A&M University, Commerce, TX 75428, USA ∗

Lawrence Berkeley National Laboratory, Berkeley, CA 94720 †

Email: jinoh.kim@tamuc.edu, jchoi8@leomail.tamuc.edu, asim@lbl.gov

Abstract—The HPC system consists of a set of layers of
software and hardware for I/O and networking. System logs are
helpful resources to understand what is going on in the system.
A challenge is that it is non-trivial to analyze the logs maintained
in various levels of the stack. Independent analysis might lead
to an incomplete conclusion due to the limited coverage of each
log. This work takes a comprehensive approach to analysis that
incorporates the logs in the multiple layers and components,
in order to facilitate the detection of anomalous activities. This
research aims to identify and predict potential performance
bottlenecks in the HPC system, by capturing the temporal
variation patterns from heterogeneous, high-dimensional, and
non-linear log data. In this paper, we share our preliminary
efforts for spatio-temporal analysis of HPC I/O and connection
data, with our initial observations from the analysis of one-week
HPC log data sets collected from one of NERSC systems.

I. INTRODUCTION

High-performance computing (HPC) systems have achieved
significant advancements in capacity and scale. At the same
time, the complexity of the system has also considerably
increased, which makes it hard to identify and predict per-
formance bottlenecks and anomalous events impacting perfor-
mance and reliability. In particular, data access and sharing
has become more important for many HPC applications in
the big data era. For example, a single cosmology application
generates 20 PB of data, which is exchanged among dispersed
computing facilities [1]. Identifying I/O and network bottle-
necks should thus be one of the first-class requirements to
improve efficiency and scalability in HPC systems.

The HPC system consists of a set of layers of software
and hardware for I/O and networking. System logs are helpful
resources to understand what is going on in the system. For
example, Luster Monitoring Tool (LMT) records I/O activities
to a log, while the network transfer activities are logged
using various tools such as NetFlow. A challenge is that
it is non-trivial to analyze the logs maintained in various
levels of the stack. Independent analysis might lead to an
incomplete conclusion due to the limited coverage of each log.
For example, the CPU load of meta-data server (MDS) may
affect the I/O performance of a specific HPC application [2].
This work takes a comprehensive approach to analysis that
incorporates the logs in the multiple layers and components,
in order to facilitate the detection of anomalous activities.

This research aims to identify and predict potential perfor-
mance bottlenecks in the HPC system, by capturing the tem-
poral variation patterns from heterogeneous, high-dimensional,

and non-linear log data. Recently, data analysis has been
considerably improved with the disruptive advances of ma-
chine learning technologies. However, we still see several
challenges. One challenge is that the increasing volume of data
would be a critical barrier to analyze them in a comprehensive
manner. In addition, many learning-based techniques assume
the presence of the associated labels to analyze; however
constructing labels is highly laborious with human expert
support, and hence not available in practice. To attain the
research goal, there is no doubt that employing machine
learning technologies will be essential, but it may not be easy
to simply apply learning methods to analyze the log data in
the system due to such challenges.

In this paper, we share our preliminary efforts for spatio-
temporal analysis of HPC I/O and connection data. Rather than
simply relying on machine learning, we manually analyzed
the log data to find out potential behavioral correlations that
could cause performance bottlenecks. We present our initial
observations from the analysis of one-week (January 1–6,
2018) HPC log data sets collected from a NERSC Cori HPC
system1. The data set in this study includes the metadata server
CPU load, file system logs sampled once every 5 seconds, and
TCP connection records.

This paper is organized as follows. The following section
provides a summary of the related studies on performance
bottleneck problems in HPC environments. Section III de-
scribes our method to analyze the HPC log data with the
overview of the HPC system model. In Section IV, we share
our observations from the analysis work. Finally, we conclude
our presentation in Section V with a summary.

II. RELATED WORK

There has been a substantial body of work to identify
performance problems in a cluster computing environment.
The authors in [3] used fingerprints generated from micro-
benchmarks. to identify performance bottlenecks through ma-
chine learning techniques. The work in [4] relies on predefined
rules to identify performance bottlenecks of HPC applications.
In [5], the authors designed a tool that correlates hardware
events with source code to identify performance bottlenecks
of parallel applications. Another work [6] presented a variable
selection technique based on performance prediction to enable
scalable log analysis.

1http://www.nersc.gov/users/computational-systems/cori/



Fig. 1. Data flows view to the HPC storage

PATHA [7] has been developed to classify performance
characteristics and also to identify performance bottlenecks for
scientific workflow applications in the HPC environment. To
figure out time-consuming operations in the application, this
tool performs the execution time analysis. In addition, PATHA
also provides a function for data dependency performance
analysis to figure out data dependencies that may cause
performance bottlenecks. The focus of this past work is on
providing users with an interactive tool for promoting the users
understanding about the performance of their applications.

Another work in [2] analyzed performance bottlenecks in
the HPC system for a specific application of Adaptive Mesh
Refinement (AMR). From the analysis of the parallel I/O
subsystem logs, this past work found some bottleneck points
that reduce I/O bandwidth significantly by up to 40 times. All
of these past studies are closely related to our research, but
our interest is more on the system-wide analysis (rather than
the focus of the HPC application performance). In addition,
our work incorporates the I/O and network data to expect a
greater degree of comprehensiveness in analysis.

III. METHODS

This study focuses on the wide area network data transfer
throughput performance and the storage I/O performance
based on the parallel file system. Scientific data centers
typically consists of networking nodes for the wide area data
transfers, with parallel file systems in the backend. When
the storage systems are shared with other HPC jobs for data
I/O, the data transfer throughput performance through the
networking nodes get affected by the other HPC I/O activities.
Figure 1 shows a high-level view of data flows to the HPC
storage with wide area network data transfer traffic and local
data traffic with computing nodes [8]. Data Transfer Nodes
(DTNs) as a part of the Science DMZ are dedicated systems
for wide area data transfers with special configuration and
proper transfer tools for high throughput performance. All
DTNs at NERSC have four 10-gigabit Ethernet links for
wide area network and two FDR IB connections to the each
underlying file system.

Figure 2 shows a simplified view of Lustre file system, one
of the parallel file systems at NERSC with about 30PB of

Fig. 2. Simplified view of Lustre file system

storage with 248 Object Storage Targets (OSTs). The Lustre
file system is composed of a set of IO servers and disks called
Object Storage Servers (OSSs) and Object Storage Targets
(OSTs), respectively. A file is usually striped for read and write
operations accessing multiple OSTs concurrently to increase
I/O performance.

This work studies on integrating performance logs from two
key levels of parallel I/O subsystems from Cori at NERSC:
application-level POSIX and Message Passing Interface (MPI)
I/O traces, coming from the Darshan logs, and activity logs
from LMT, a monitoring tool for the OSTs and MDSs of
the Lustre parallel file system. The network traffic data set
contains the tstat logs, collected to analyze how various
network tuning settings impact TCP behavior and network
throughput. tstat rebuilds each TCP connection by looking
at the TCP header in the forward and reverse direction. The
details about the tstat tool can be found in [9].

IV. EXPERIMENTAL RESULTS

In this section, we report our initial observations learned
from the analysis of the traces collected between January
1–6, 2018 from the Cori system. Figure 3 shows the OST
I/O activities the network throughput over the six days. To
see if there is any potential performance bottleneck, we also
monitored the MDS CPU load with the intuition that storage
I/O and network transmission might be slowed down if the
meta-data server is busy to service the requests (or due to
something else internally).

We observed that the MDS CPU load is less than 60% over
99% of the collection period. In this analysis, we assumed that
MDS is busy if the CPU load is greater than 60%. In Figure 3,
the solid dots indicate the time points at which the MDS CPU
load is equal to 60% or above. As can be seen from the figure,
storage read/write rates are quite small in case that MDS is
busy. It is almost the same for network throughput, but we
also observed a couple of cases that the throughput is higher
than the average even in the case of MDS busy.

To see if there is any impact to data access rate and network
throughput once MDS is busy, we closely look at the time
intervals when the MDS CPU usage is greater than 60%.
Figure 4 demonstrates the monitored result in the interval from



(a) Aggregate OST read (b) Aggregate OST write

(c) Ingress traffic throughput (d) Egress traffic throughput

Fig. 3. Aggregated OST read/write and tstat ingress/egress traces over six days. The solid dots indicate the time points at which the MDS CPU load is equal
to 60% or above.

t=55100 to t=55200. Figure 4(a) shows the MDS CPU load
and aggregated read/write rates. From the figure, we can see
that MDS is busy in t=20–35. Within that busy interval, it is
observed that the storage read rate decreases quickly but gets
back once the MDS load goes down at t=40. The write pattern
also shows the access rate goes higher at t=35 which is the
starting point that the MDS load goes down.

To see further details, Figure 4(b) and 4(c) show the
individual OSTs read and write activities, respectively, in terms
of ∆ = current window data rate - past window data rate
(window size = 5 seconds). Thus, the positive indicates the
increase of data rate compared to the past window, and vice
versa. From the figures, we can see that the majority of OSTs
changed to a downturn at t=5 and t=35, respectively, at which
the CPU usage is relatively high.

Figure 4(d) and 4(e) demonstrate the individual OSTs
data access contributions. We selected a subset of OSTs to
demonstrate since there are too many OSTs (248 OSTs in
total). The selected OSTs have at least 150 MB in any time
window over the time interval. In the contribution graph, one
bar indicates an aggregated data rate of the selected OSTs in
a 5-second window; that is, the first bar shows the data rate
observed within the interval of t=0–4. For read, we can see
that the OST data rate is significantly reduced from t=25–29
to the next time interval of t=30–34. The data rate decreased
once again in t=40–44 (right after the second CPU peak at
t=35). For write, it shows a significant downturn in t=25–29,
but no critical change is observed at the second CPU peak.

Unlike the OST read and write, we observed little impact
of the MDS load to the ingress and egress network throughput

in any time interval.
Figure 5 shows another example at t=126220–126320, dur-

ing which there are two CPU usage peaks at t=45 and t=55.
From the figure, we can see that write throughput changes
inversely against the CPU usage in the peak time interval
(t=40–60); that is, write throughput significantly decreased at
the first peak interval, goes up at t=50, and then goes down
again at the second peak. For read throughput, there is little
change in the first peak, but it goes up at t=50 when the CPU
usage goes down. Then read throughput is also reduced after
the second peak. Thus, this interval also shows a degree of
correlation among the MDS load and I/O rates.

V. CONCLUSION

Identifying and predicting performance bottlenecks in the
HPC system are the crucial concern. For this, capturing the
temporal variation patterns is an essential task from hetero-
geneous, high-dimensional, and non-linear log data, As an
initial study, we analyzed HPC I/O and connection data to
understand the potential correlation among MDS CPU usage,
I/O rates, and network traffic throughput. We observed that
the MDS load may affect the I/O rates from the temporal
patterns, while network throughput does not show any clear
correlation. We also observed some OSTs showed a degree
of correlations with the MDS load patterns in an inversely
proportional fashion. This work is an on-going work and still
in the initial stage. We plan to extensively analyze a long term
data spanning months to collect the indication of correlations
among different logs and data sources.



(a) Metadata server CPU usage and aggregated I/O rates

(b) OST read delta

(c) OST write delta

(d) OST read contribution

(e) OST write contribution

Fig. 4. A closer look within the interval of t=55100–55200

Fig. 5. Metadata server CPU usage and aggregated I/O rates at t=126220–
126320

ACKNOWLEDGMENT

This work was supported by the Office of Science, of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. This research used resources of the National
Energy Research Scientific Computing Center.

REFERENCES

[1] Rajkumar Kettimuthua, Zhengchun Liua, David Wheelerd, Ian Fostera,
Katrin Heitmanna, and Franck Cappello. Transferring a petabyte in a
day. In IEEE/ACM SC17 Workshop on Innovating the Network for Data
Intensive Science (INDIS 2017), 2017.

[2] Peter Harrington, Diagnosing Parallel I/O Bottlenecks in HPC Ap-
plications, International Conference for High Performance Computing,
Networking, Storage and Analysis (SC17), ACM Student Research Com-
petition (SRC), 2017.

[3] Wucherl Yoo, Kevin Larson, Lee Baugh, Sangkyum Kim, and Roy H.
Campbell. Adp: Automated diagnosis of performance pathologies using
hardware events. In Proceedings of the 12th ACM SIGMETRICS/PER-
FORMANCE Joint International Conference on Measurement and Mod-
eling of Computer Systems, SIGMETRICS ’12, pages 283–294, 2012.

[4] Martin Burtscher, Byoung-Do Kim, Jeff Diamond, John McCalpin, Lars
Koesterke, and James Browne. Perfexpert: An easy-to-use performance
diagnosis tool for hpc applications. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’10, pages 1–11, 2010.

[5] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent. Hpctoolkit: Tools for performance analysis
of optimized parallel programs http://hpctoolkit.org. Concurr. Comput. :
Pract. Exper., 22(6):685–701, April 2010.

[6] Jonathan Wang, Wucherl Yoo, Alex Sim, Peter Nugent, and Kesheng
Wu. Parallel variable selection for effective performance prediction. In
Proceedings of the 17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, CCGrid ’17, pages 208–217, 2017.

[7] Wucherl Yoo, Michelle Koo, Yi Cao, Alex Sim, Peter Nugent, and
Kesheng Wu. PATHA: performance analysis tool for HPC applications.
In 34th IEEE International Performance Computing and Communications
Conference, IPCCC 2015, Nanjing, China, December 14-16, 2015, pages
1–8, 2015.

[8] Eli Dart, Lauren Rotman, Brian Tierney, Mary Hester, and Jason Zu-
rawski. The science dmz: A network design pattern for data-intensive
science. 2013 SC - International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), pages 1–10, 2013.

[9] M. Mellia, R. Lo Cigno, and F. Neri. Measuring ip and tcp behavior on
edge nodes with tstat. Comput. Netw., 47(1):1–21, January 2005.


