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Abstract—Web browsing is the most important Internet ser-
vice, and offering the best performance to end-users is of
prime importance. The World Wide Web Consortium (W3C)
has brought along the Page Load Time (PLT) metric as a
QoE (Quality of Experience) and QoS (Quality of Service)
benchmarking indicator, which is nowadays the de facto web
metric used by researchers, large service companies and web
developers. Although alternative web metrics have been intro-
duced to measure part of the loading process, the techniques used
need additional computing power and timings are not offered
in real-time. In order to provide real-time fined-grained timings
during web browsing measurement campaigns, we present in this
paper the TFVR (Time for Full Visual Rendering), a technique
being browser-based to calculate the Above-The-Fold (ATF)
offering the loading time of the visible portion at first glance
of a web page. The TFVR exposes fine-grained timings such as
networking and processing time for every downloaded resource.
Based on a measurement campaign on top 10,000 Alexa websites,
we have been able to better quantify and identify web page
loading inefficiencies through a tool we have designed, namely,
MORIS (Measuring and Observing Representative Information
on webSites).

Keywords— Web metrics, Web browsing, Performance,
QoE, QoS

I. INTRODUCTION

Web browsing needs to offer optimal experience during end-
users’ web navigation process. The Web was originally meant
to deliver static contents being mainly texts and images, but
evolved drastically towards dynamic web pages, composed
of various types of objects (images, scripts, audio, video,
etc.) delivered by CDNs (Content Delivery Networks) by a
plethora of web servers. Through time proxy-based networking
architectures as well as new transport protocols, HTTP/2 [1]
and QUIC (Quick UDP Internet Connections) [2] have been in-
troduced in the whole process. In order to benchmark QoE and
QoS, the W3C has brought along the PLT (Page Load Time).
This de facto used web metric by researchers or industries has
nevertherless started being put into question lately as it offers
overall loading times during web browsing measurements and
is inadequate to measure dynamic web pages, particularly
when benchmarking QoE. In order to measure web pages’
loading, the ATF, SpeedIndex, RUM (Real User Monitoring)
or Paint Timing API have been introduced, but there still
exists inefficiencies either regarding the techniques used to
calculate these metrics limiting real-time measurements or not

universely implemented by web browsers. In order to ease the
calculation of these aforementioned techniques, we present in
this paper an ATF-browser based metric, namely the TFVR
(Time for Full Visual Rendering) which measures the needed
time to load the visible portion of a web page, being browser
and web page type (static or dynamic) independent, calculated
in real-time by using the browser’s DOM (Document Object
Model). Futhermore, through the browser’s exposed network-
ing logs, the TFVR offers rich information regarding the DNS,
request, response and processing time as an overall timing
or in a unit-wise manner for each downloaded and processed
resource in this time gap.
This paper is structured as follows: We first remind in sec-
tion II the existing web metrics and related works meant to
measure web page load timings. Then we present in section III
the identified limits of these web metrics and in section IV
we present how the TFVR works, its implementation and how
is exposed the rich-information. In section V we expose the
results obtained when using the TFVR to benchmark QoE and
QoS and finally conclude in section VI.

II. BACKGROUND AND RELATED WORK

Every browser uses distinct processing algorithms and poli-
cies to render web pages and standardization bodies such as
the W3C or large services companies have brought along a set
of web metrics to better qualify and quantify web browsing.

The PLT [3] is the time between the start of navigation
until the load event (onLoad) kicks in, meaning, as defined,
that the web page has been entirely loaded. The Performance
Timeline [4] provides a unifying interface with Navigation
Timing exposing timings regarding web page navigation and
load events while the Resource Timing provides information
regarding the collected resources such as the protocol used,
initiator or networking information (which may be null if a
distant server does not provide a Time-Allow-Origin HTTP
header). The Paint Timing API [5] exposes the First Paint
(FP) which is the moment when anything being different
prior to the navigation process appears on the screen. The
web measurement community and large services companies
have brought along the ATF [6] exposing the needed time
to respectively load the visible surface area of a web page
at first glance without scrolling. The Speed Index exposes
a score representing the visible surface area occupancy of



(a) Page Load Time (b) Visible portion of web page

Fig. 1: PLT vs Browser window sizes

a web page. The RUM (Real User Monitoring) uses the
Resource Timing and browser’s DOM information to calculate
the corresponding SpeedIndex.
Previous work on web browsing measurement is mostly dealt
at investigating the performance of internet protocols on
specific websites, trusting the PLT offered by the browser.
Cook and al. [7] studied the impact of using different internet
protocols with regards to network conditions (wifi, ADSL or
mobile networks) and measured the perceived QoE. Megyesi
and al. [8] compared the performance of internet protocols,
with respect to web pages being different in size and number
of objects. Other research work [9], [10], [11], [12], [13]
compared the performance of internet protocols and their cor-
responding adoption rate, looking into the resultant bandwidth
and impact of adblockers or advertisements on end-users’
QoE. These studies do trust the PLT offered by the browser
although websites have been changing their inner structure
and only an overall loading time as a whole is offered. But
additional studies did start to question the versatility and
objectiveness of the PLT to measure end-user’s QoE [14], [15],
[16] putting emphasis that what the user really sees should be
measured in order to better benchmark QoE and QoS and thus
demystify web page abandonment.

III. IDENTIFICATION OF ACTUAL WEB METRICS
INEFFICIENCIES

Automated web measurement campaigns have been con-
ducted over a 4 months period over the top 10,000 Alexa1 web-
sites through a tool, that we have designed, namely MORIS
which is a user-orientated measurement tool to better qualify
and understand the perceived QoE and QoS. We present in
this section the inefficiencies observed from 25 different web
pages (each having an average number of 527 measurements)

1https://www.alexa.com/

which are static or dynamic, representative of the different
types of websites belonging to different categories (e.g News,
Recreation, Kids and Teens, Science, Sports, etc.).

A. The Page Load Time

While smartphones, tablets, laptops or desktop screens all
come in different sizes, we have been measuring the PLT
timings with respect to different screen sizes as per Fig. 1.
The Fig. 1a shows the mean PLT of 10 websites over a set
of browser window sizes. Fig. 1b on the other end shows that
as per the end-user’s browser window size and corresponding
web page overall surface area, the visible portion (visible
surface area at first glance without scrolling) of the website
itself increases proportionally. Unfortunately the PLT does not
take into account this fact as the web metric is defined to
measure the overall loading process. The PLT as measured is
constant over time, except some fluctuations due to networking
conditions. When trying to measure finely end-user’s QoE, the
PLT does not evolve as much through the eyes of the end-user.

B. The Above-the-Fold

Through our tool, we have been measuring the ATF, as
proposed in the literature, i.e by performing a recording of the
web browsing session in different video formats, extracted the
screenshots and analyzed the changes in pixels, leading to the
visible loading time. We have also implemented the process
of ATF estimation by retrieving the screenshots automatically
performed by the Google-Chrome browser (since chrome v.60
and exposed through chrome devtools [17]) to lift up the
burden of making video recordings. An analysis of these two
methods did bring some irregularities:

Processing time: To detect accurately the pixels change
from screenshots, the higher the video quality illustrating the
loading process, the more accurate the pixels’ comparison will
be, which firstly requires external tools for video recording



(a) Dynamic youtube.com (b) Dynamic forgeofempires.com (c) Static w3schools.com

Fig. 2: ATF vs PLT

and secondly more computing requirements, resulting in an
increased computing time of 12%. If the screenshots are
directly extracted from the Google-Chrome browser, chrome
devtools can not be simply accessed from the console and a
chrome extension is needed to retrieve them which increases
the computing time by 7%. In both cases, these extra process-
ings impact the collected measurements and do not represent
the native end-user environment.
ATF under and over estimation: The estimation process
needs to firstly classify pixels as being static or dynamic
ones in order to obtain the ATF cut-off [6], which may be
subjective on the long run and dependent on the quality of the
screenshots.
Types of web pages: Web pages on the other hand can be
static or dynamic. Fig. 2 depicts the mean web page loading
times through a Google-Chrome browser with window size
1920x1080, where Fig. 2c (namely w3schools.com) represents
a static website mainly composed of texts and static images
and Fig. 2a and 2b dynamic websites. We compared the ATF
estimated timings obtained by comparing screenshots from
video (frame rate 30 and libx264 codec) and screenshots
retrieved from the chrome devtools which bring along close
estimations. As per Fig. 2c, where all events are fired before
the onLoad event, the ATF estimation represents in the case
of using an adblocker 63% of the PLT and 76% of the
overall web page is visible at first glance to the end-user. The
Fig.2a (namely youtube.com) represents a dynamic web page
where all events are fired before the onLoad event, composed
of texts, images and scripts. When retrieving screenshots
from chrome devtools, we simply take into consideration the
onLoad event exposed by the browser but in the case of
extracting screenshots from a video, 45 seconds of additional
video was taken due to the presence of dynamic advertising
fields. The Fig. 2b (namely forgeofempires.com) represents a
dynamic web page where events are fired after the onLoad
event, with a permanent web page visible portion of 100%.
While the exposed browser-PLT is 700 ms, this timing only

exposes the time needed to download a main asynchronous
javascript (identified through the browser’s HTTP Archive).

C. The Real User Monitoring

The RUM main aim is to calculate the SpeedIndex but can
also be used for the ATF estimation by making use of the
browser-exposed DOM information. During our measurement
campaign, we have also used the RUM and in the case where
we had static websites or dynamic websites having all events
fired before the onLoad event, the estimations only had an
average difference of 10% compared to the classical ATF
estimation technique. But the RUM uses the Resource Timing
API (resources downloaded in the PLT gap time) to identify
the list of resources to be looked into the DOM information
and in the case that events are fired after the onLoad event,
the estimation is totally innacurate. When performing web
browsing measurements for ryanair.com, the RUM exposes
an ATF estimation of 400 ms for the web page, not taking
into account resources downloaded after the onLoad event
and rendered in the visible portion of the web page.

IV. TFVR: TIME FOR FULL VISUAL RENDERING

We present in this section how our proposed technique
yields more representative timings and its implementation
details. To calculate the TFVR, our tool through Selenium
[18] drives real on-market browsers where a simple
javascript code is sent to the browser’s command line
during a web browsing session. We first retrieve the FP
timing, indicating the starting time of the visible rendering
process. We then calculate in real-time on-the-fly the
visible portion of the web page as per the end-user’s
browser window size (innerWidth and innerHeight)
versus the web page scrollable size (scrollWidth and
scrollHeight) which represents the surface area where
all objects are to be visually rendered. The entire list of
resources downloaded during the navigation session for the
web page is obtained from the browser’s networking logs



Fig. 3: TFVR for youtube.com

Fig. 4: TFVR for forgeofempires.com

through chrome.devtools.network.getHAR()
for the Google-Chrome browser and
extensions.netmonitor.har for the Mozilla-Firefox
browser taking into consideration all events fired before and
after the onLoad event (we purposely do not use the Resource
Timing API which only exposes events loaded before the
onLoad). The main web page code is then parsed to retrieve
the needed resources on the webpage (since resources may
also be downloaded for further navigation process being
stored in the browser’s cache and unnecessary on the first
instance [19]). We then retrieve the DOM browser-exposed
information through getElementsByTagName("*"). By
crossmatching the resources’ uri from the networking logs
and web page code, we obtain a precise list of resources to
be rendered by the browser for the entire web page.
Images Each object to be painted is referenced with
its url name baseURI, width (innerWidth), height
(innerHeight) and (x,y) coordinates through
offsetTop and offsetWidth. The coordinates together
with the object width and height brings along a rectangle
which can be assessed if being in the visible surface area.
We thus obtain through time the rendering times for each
resource to be displayed in the visible portion of the browser
window.
Texts and scripts These resources are not rendered visually,
so we retrieve their processing time through the devtools
Performance tab where each resource is referenced by its url
name baseURI.
By adding this processing time information to exposed
network logs offered by the browser, we obtain the neworking
and processing time for all the resources needed to render
the visible portion of the web page. The TFVR calculation
process only represents a mean extra computational time
of 0,156 seconds and processing time of 0,014%. The
TFVR calculation is totally opaque to the end-user and has
no incidence on the web browsing measurement process

since no external tool or storage capabilities is needed.
Furthermore, the TFVR provides networking time as well as
processing time for each resource thus improving QoE and
QoS benchmarking and allows troubleshooting.

V. RESULTS

We expose in this section the results covering 47,291
measurements representing automated web browsing of 25
distinct websites through our tool MORIS in headless mode,
where all cookies are deleted and cache emptied at the start
of every measurement. These web browsing measurements
have been conducted in Lannion (France) all day round, with
or without adblocker (Adblock Plus v3.27), with different
window sizes (360x640, 962x620, 1600x900 and 1920x1080),
using HTTP/1.1, HTTP/2 or QUIC protocol, different network
access (ADSL, Wifi and Fiber), collected by three different
machines with Intel Core i5 and 8Go RAM. Our tool MORIS
written in python is driven by chromedriver2 v2.37, gecko-
driver3 v0.19, Chrome v64, Firefox v58 and Selenium v3.4.

A. The TFVR

The Fig. 3 and 4 represent the web browsing loading
times for youtube.com and forgeofempires.com made with the
Google-Chrome browser, window size 962x901, using Ad-
Block Plus, preferred internet protocol being QUIC (fallback
to HTTP/1.1 or HTTP/2 is allowed if a distant host can not
reply in QUIC) and fiber network access (96,7Mb/s down,
84,9Mb/s up).
Events before onLoad. As depicted in Fig. 3, the PLT covers
all events triggered before the onLoad event, and the FP is
909,2 ms where 10 resources (1 html, 2 css, 1 xml and 6
images) are downloaded in this time interval. An end-user
sees at first glance without scrolling the web page 47% of its
contents which is visually rendered in 770,6 ms (17 resources

2https://sites.google.com/a/chromium.org/chromedriver/
3https://github.com/mozilla/geckodriver
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Fig. 5: Protocol distribution android.com

(a) TFVR (b) PLT

Fig. 6: Measurements facenama.com

downloaded in 416,5 ms namely 4 in HTTP/2 and 13 in QUIC
and have a processing time of 354,1 ms). The overall TFVR
time is 1679,8 ms which represents 61,9% of the PLT time.
Events after onLoad. As depicted in Fig. 4, the PLT offered
by the browser is not representative since the PLT is exposed
as being 1915 ms, where 4 resources compose the FP of 200,7
ms (1 html, 1 css, 1 xml and 1 javascript). The javascript
downloads 3 more resources in the FP-PLT lapse of time (1
image and 2 asynchronous javascripts) and these asynchronous
javascripts are fired after the onLoad event. By comparing
the network logs from devtools, we easily identify that more
resources are needed by the browser so that visible portion
of the website is rendered. In this case, the PLT is 43,9%
short and does not take into consideration the additional
download of 290 resources (networking time of 938,6 ms and
processing time of 562,2 ms) needed to fully render the visible
portion of the website. Through our measurements, we could
easily identify other websites (e.g adidas.co.uk, ryanair.com,
blog.me, etc.) where the PLT timing is inacurate and where
the TFVR provides representative timings.

B. Internet protocols distribution

When performing web browsing measurements, it is impor-
tant to take into account the internet protocols being used since
some large service companies firewalls or network operators
do block some internet protocols (e.g QUIC on UDP). We have
thus conducted experiments based on HTTP/1.1 (deactivating
HTTP/2 and QUIC), HTTP/2 (deactiving QUIC) and QUIC,
by allowing a fallback to a subsequent internet protocol
if a distant content server can not dialogue in a specific
protocol (e.g activating QUIC allows a fallback to HTTP/2
and HTTP/1.1). Fig. 5 shows the internet protocols through
which the resources are downloaded on Google-Chrome when
calculating the TFVR and PLT for the website android.com
with a wifi network access (15,7Mb/s down, 1.1Mb/s up).
The Fig.5a shows the internet protocols through which the
resources are delivered during the TFVR time lapse and further
helps to understand the obtained timings when multiplexing,
pipelining of the resources or delivery through TCP or UDP
happen. The Fig. 5b shows as a whole the resources delivery
through specific internet protocol during the PLT lapse of time.
We have also been able to identify through the TFVR timings



that following the end-user’s network access (namely fiber
access), extra resources can be downloaded by the browser,
stored in the cache for further web browsing on the same
domain.

C. Impact of internet protocols on QoE

When measuring the QoE of end-users, it is important to
be able to detect bottlenecks during web page loading. As
depicted in Fig. 6 the preferred internet protocol has an impact
on the end-user’s QoE. This measurement has been performed
on the website facenama.com with an ADSL network access
(20,1Mb/s down,2,7Mb/s up), involving 529 distinct measure-
ments (after removing the 5th and 95th percentile). When
taking the average TFVR (Fig. 6a) into consideration, the
offered timing is 2252,4 ms (when preferred protocol QUIC,
1% H1, 2% H2 and 47% HQ for the 35 downloaded resources)
and the mean PLT (Fig. 6b) is 8264,6 ms (when preffered
protocol is QUIC, 10% H1, 4.29% H2 and 85,71% HQ for
the 70 downloaded resources) with window size 1600x900.
The contents are delivered over 5 different content servers
(with same authoritative servers) located in Asia, and allows
QUIC to perform better due to a 1-RTT (First requests are
always performed in HTTP/2). Thanks to the TFVR, offering
networking and processing timings for each resource, we
can easily identify the bottleneck in this case which is two
resources (advertisements) delivered over HTTP/1.1 with a
DNS and response time of 1200 ms and processing time of
120 ms, thus having a mean FP of 1800 ms.

D. Browsers

When performing measurements on the Google-Chrome
browser, at the launch of the browser itself, mandatory re-
sources needed by Google services are downloaded before
the navigation start. When performing our measurements on
the website google.com or youtube.com we could identify
from browser’s networking logs that an average number of
5 resources were loaded from the browser’s cache. The TFVR
helps to identify these situations where a comparison between
the number of resources needed to render a web page might
be totally different when using different web browsers. This
behavior has also been identified with Mozilla-Firefox when
accessing Mozilla services, which confirm that each browser
has a different policy when delivering contents to end-users.
In order to be representative in our exposed timings, these
resources downloaded by the browser before the navigation
start are also exposed as having a processing time but no
networking time.

VI. CONCLUSION

In this paper, we have highlighed the importance of mea-
suring web browsing sessions as per what an end-user sees
at first glance on a web page without scrolling. We have
also presented a measurement technique which is browser-
based, offering timings in real-time as per real on-market
browsers, and take advantage of the rich-information exposed
by the browser itself. The TFVR as opposed to actual ATF

measurement techniques offers representative timings as a
whole regarding the visible web page loading process but also
exposes fine-grained information regarding the networking and
processing times of every downloaded resource. The TFVR
also helps in identifying any bottleneck during the loading
process as we also expose network timings. Our future work
will be dealt in making the TFVR calculation available through
a plugin for Chrome and Firefox browser and we will be
performing additional web browsing measurement campaigns
at different geographic locations to better investigate end-
users’ QoE and QoS.
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