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Abstract—In Online Social Networks (OSNs), privacy issue is
a growing concern as more and more users are sharing their
candid personal information and friendships online. One simple
yet effective attack aims at private user data is to use socialbots
to befriend the users and crawl data from users who accept
the attackers’ friend requests. With the attackers involving,
individual users’ preference and habit analysis is available, hence
it is easier for the attackers to trick the users and befriend them.
To better protect private information, some cautious, high-profile
users may refer to their friends’ decisions when receiving a friend
request. The aim for this paper is to analyze the vulnerability of
OSN users under this attack, in a more realistic setting that the
high profile users having a different friend request acceptance
model. Specifically, despite the existing probabilistic acceptance
models, we introduce a deterministic linear threshold acceptance
model for the cautious users such that they will only accept
friend requests from users sharing at least a certain number of
mutual friends with them. The model makes the cautious users
harder to befriend with and complicates the attack. Although the
new problem with multiple acceptance models is non-submodular
and has no performance guarantee in general, we introduce
the concept of adaptive submodular ratio and establish an
approximation ratio under certain conditions. In addition, our
results are also verified by extensive experiments in real-world
OSN data sets.

Index Terms—Adaptive Crawling, Online Social Network,
Adaptive Non-submodular Optimization

I. INTRODUCTION

The Online Social Networks (OSNs) have become a rich
source for user information and then a target for attackers,
because many users of OSNs provide genuine information
about themselves in their online profiles. In order to harvest
private user information, attackers can simply befriend the
normal users [1] since users usually give their friends the
access to a large portion of their personal profiles. Although
the attack is simple, it can be used to support severe attacks
like spear phishing and account compromise with the collected
user information [2]. Because of its importance, there is an
emerging need of analyzing the attacks that befriend users
and the vulnerability of OSNs to support future protection
schemes. The problem of crawling information via befriending
users, termed as Adaptive Crawling, has been studied in
literature [3], [2], [4], [5], [6], [7]. The name adaptive is
from the assumption that the attackers only have incomplete
knowledge of the OSN and their knowledge of the OSN is
updated each time a friend request is accepted.

One important aspect of the problem is how the users accept
friend requests. The existing works all assume the users accept
friend requests according to a probability. The probability
either follows a known distribution [3], [4], [5] or an empirical
linear function with the number of mutual friends between the
user and the attacker as the only variable [2], [6], [7]. The
assumption leads to sound theoretical guarantees, yet it treats
all users the same. In reality, as the attackers can deliberately
design the accounts to look inviting for normal users to accept
the friend requests [8], some high-profile users may not make
acceptance/rejection decisions based on the requests alone as
they are more cautious about their private information. Instead,
they may observe how many friends of them are already
friends of the request sender, and only accept the request if
the number of mutual friends is above a threshold. Under this
setting, we reach to a deterministic linear threshold model
for the high-profile and cautious users, which is new for the
adaptive crawling problem.

In this paper, our focus is to study the adaptive crawling
with cautious users problem (ACCU). The goal of ACCU is
to obtain the most benefit from the users by sending a fixed
number of friend requests. As discussed above, it considers a
more practical situation that both probabilistic and determinis-
tic friend request acceptance models can co-exist. In addition
to the challenge imposed by the incomplete OSN information
as in the existing adaptive crawling problems, there are two
main challenges specific to ACCU. Firstly, the existence of
multiple friend request acceptance models makes it difficult to
design a general yet efficient strategy to befriend the users. The
decision of sending requests to the cautious users needs special
consideration. Secondly, with the cautious users, the objective
function of ACCU is no longer submodular, which means
that the well-known greedy algorithm cannot guarantee the
(1−1/e) approximation ratio and we need to find alternatives
to bound the theoretical performance of the algorithm that
solves ACCU.

To deal with the challenges, we introduce the notion of
adaptive submodular ratio, which extends the submodular
ratio in [9] and characterizes how “submodular” an objective
function is in the adaptive setting. With the help of the ratio,
we are able to theoretically bound the performance of the
greedy algorithm to ACCU in certain cases. Our contributions
are summarized as follows.
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• We formally define the ACCU problem, which is a
more realistic variation of the existing adaptive crawling
problems.

• We propose an efficient greedy-based solution, adaptive
benefit maximization (ABM) to ACCU and theoretically
bound its performance under certain conditions with the
introduction of the novel notion, adaptive submodular
ratio.

• We demonstrate the superior performance of ABM to
several alternative algorithms via extensive experiments.
Further, we conduct sensitivity analysis and provide in-
sights on how the introduction of cautious users can shape
the behavior of attackers.

Related Works. Existing literature [10], [8], [11] showed
that the information of users in OSNs can be crawled via
socialbots. A manually controlled socialbot can successfully
befriend important users such as members of security agencies
[10], and automated socialbots can effectively befriend a large
number of users [8] or even infiltrate organizations [11].
Therefore, understanding the crawling attacks by socialbots
is crucial [12].

The main line of research toward the crawling attacks [3],
[2], [4], [5], [6], [7] aims at understanding the befriending
strategies of the attackers, which can in turn reveal the key
users to protect. In [3], [2], [6], [7], the authors studied
the strategy that the attacker sends one request at a time.
In [4], however, sending multiple requests at the same time
was considered for higher efficiency of the attack. Further,
[5] discussed a collaborative attack with multiple socialbots.
The existing works all assumed probabilistic friend request
acceptance models. In [3], [4], [5], the probability is random
following a distribution, while [2], [6], [7] considered an
empirical acceptance function that the the probability increases
with more mutual friends between the attacker and the user.

A few works analyzed the performance of greedy algorithm
for optimization problems, when the objective function is non-
submodular. A curvature based concept was introduced in [13]
for non-adaptive maximization problem and extended in [6],
[7] to the adaptive context. The submodular ratio [9] is another
approach to handle non-adaptive non-submodular objectives,
it was further discussed in [14]
Organization The rest of the paper is organized as follows. In
Section II, we define the related models in OSNs and formally
define our ACCU problem. We then discuss our solution to
ACCU in Section III and analyze its performance guarantee.
Section IV presents our experimental results and Section V
concludes the paper.

II. PROBLEM FORMULATION

In this section, we introduce the various models used in the
paper and formally define the problem.

A. Models

Network Model. We abstract the Online Social Network as
an undirected graph G = (V,E, p), where the node set V
is the collection of users and the set E is the collection of

user friendship relations. As the attacker usually does not have
access to the complete network topology, the edges in the
network are all probabilistic. The function p : E → [0, 1]
defines the link existence probabilities for all edges. For
example, p(u, v) = p(v, u) is the probability that an edge
exists between nodes u and v. For simplicity, we also write
it as puv or pvu. We denote s ∈ V as the attacker, who
initially has no connections to other nodes. When the attacker
successfully befriends a user u, we add the relation to E with
psu = pus = 1.

From the attacker’s point of view, there are three groups of
users: (1) friends (2) friend-of-friends and (3) strangers.

• Friends. The users are direct neighbors of the attacker s.
We denote the set as F = {u|u ∈ V, (s, u) ∈ E, u 6= s}.

• Friend-of-friends. The users are two-hop neighbors of
the attacker. We denote the set as FOF = {v|N(v) ∩
N(s) 6= ∅, (v, s) /∈ E, v ∈ V, v 6= s} where N(v) is the
neighborhood of node v.

• Strangers. The users are not friends nor friends-of-
friends of the attacker. We denote the set as S =
{w|N(w) ∩N(s) = ∅, w ∈ V,w 6= s}.

Friend Request Acceptance Models Based on how cautious
the users are, they may have different behavior in accepting
a friend request. Less cautious users may accept an arbitrary
friend request, while a more cautious user will only accept
a friend request from someone they share a certain number
of mutual friends with. Hence, we propose to use different
acceptance models for the two types of users. Denote the
subset of less cautious (or reckless) users as VR and the set
of more cautious users as VC . where VR ∪ VC = V and
VR ∩ VC = ∅. A friend request to u ∈ VR is accepted with
probability qu. For a user v ∈ VC , however, friend request
acceptance is not based on probability. Instead, we introduce
a threshold θv ∈ Z+. A friend request from s is accepted if
and only if |N(v) ∩ N(s)| ≥ θv . Without loss of generality,
We assume that each user v ∈ VC has enough friends in
VR so that it is not impossible to befriend them (if it is not
the case, we can simply remove the users from the network
as they will not impact the attack at all). In other words,
|N(v) ∩ VR| ≥ θv,∀v ∈ VC . Also, we assume that the links
among users in VC can be neglected as the links are not likely
to be utilized in the attack. That is, N(v)∩VC = ∅,∀v ∈ VC .
Benefit Model. The benefits that an attacker can collect from
the users are based on how the users are related to the attacker.
For user u ∈ F , the attacker can collect the benefit of Bf (u).
If the user u is in the set FOF , the amount of benefit to the
attacker is Bfof (u). For the same user u, we have Bf (u) ≥
Bfof (u) as all information accessible by a friend-of-friend is
also accessible by a friend, but not vice versa. Additionally,
we assume that befriending the cautious users is much more
beneficial than befriending other users. The reason is that the
cautious users are usually high-profile users, so that being their
friend is more valuable. We argue that this assumption is valid.
Since the network is gigantic and the resource available to
the attacker is limited, it is beyond the scope of the attack to



befriend a cautious user who has limited benefit to the attacker.
Hence, we can ignore them and limit VC to high-profile users
with a high benefit.

B. Problem Definition

Based on the above models, the goal of the attacker s is
to obtain the most information benefit from the friends and
friends-of-friends, with a budget k on the number of friend
requests to be sent.

Definition 1 (Adaptive Crawling with Cautious Users
(ACCU)). Given a social network G = (V,E, p), where V is
the set of user accounts, E is the set of potential friendships
between users and p is the link existence probability function,
the benefits Bf , Bfof , friend request acceptance parameters
q, θ as defined earlier. The problem asks us to find a sequence
of at most k ∈ Z+ users Q = {v1, v2, . . . , vk}, v1, . . . , vk ∈ V
to befriend with, such that the total expected benefit gain from
friends F and friends-of-friends FOF is maximized.

Notice that the sequence Q is selected iteratively. Let
Qi = {v1, . . . , vi}, the decision for picking node vi is made
after all the response of the request to nodes in Qi−1 are
observed and the attacker’s knowledge to the network is
updated accordingly. We term the whole decision making
process as an adaptive attack strategy π. When a user u accepts
the friend request of s, the neighborhood of u, N(u), will be
available to s and is no longer probabilistic.

In order to deal with the stochastic nature of the problem, we
apply adaptive stochastic optimization as in earlier works [2],
[5], [6], [4]. First, we introduce our notations. Since whether
a user u ∈ VR will accept the friend request sent by s and
the friendship relations among normal users are all unknown
to the attacker, we will introduce random variables to depict
the randomness. For each user u ∈ VR, let Xu ∈ {0, 1, ?}
denote the state of u. Xu = 1 means that u accepts the
friend request from s, 0 means the rejection of the friend
request and ? represents the unknown state, that is, u has
not received a request from s yet. Notice that we do not
define X for users in VC as the acceptance criteria for them
are deterministic. Similarly, for each edge (u, v) ∈ E, we
introduce the random variable Xuv ∈ {0, 1, ?}. The state is
? when the friend request to u or v was rejected or not sent
yet. When the friend request to u or v is accepted, whether
the edge exists or not is revealed. Xuv = 1 if the edge (u, v)
exists and 0 otherwise. Initially, the state of all Xs and Y s
should be ?. Let Ω be the collection of all possible states of
G and φ = {Xv}v∈V ∪ {Xuv}(u,v)∈E → Ω be a possible
state, called a realization. Also, let φ(u) be the state of node
u and φ(u, v) the state of edge (u, v) under realization φ.
The realizations must be consistent. That is, each node and
edge in each realization must be in one and only one of the
states {0, 1, ?}. Clearly there are many possible realizations.
We denote Pr[φ] as the probability distribution followed by
the realizations. Also, let Φ be a random realization and
Pr[φ] = Pr[Φ = φ] over all realizations.

Under the notations, when the attacker s sends a friend
request to u, the state Φ(u) will be observed. If Φ(u) = 1, the
states Φ(u, v), v ∈ V will be observed. Let Q(π, φ) denote
the sequence of nodes selected by strategy π under realization
φ. When part of the states is available to the attacker, we
represent the observations as a partial realization ω. Also, we
use dom(ω) to refer to the domain of ω, that is, the set of nodes
and edges already observed in ω. We call a partial realization
ω consistent with a realization φ if they are equal everywhere
in the domain of ω and write it as φ ∼ ω. When ω, ω′ are
both consistent with some φ and dom(ω) ⊆ dom(ω′), we call
ω a sub-realization of ω′ or simply write ω ⊆ ω′.

We can calculate the total benefit gain of a strategy π under
realization φ as follows:

f(π, φ) =
∑

u∈F (π,φ)

Bf (u) +
∑

v∈FOF (π,φ)

Bfof (v) (1)

where F (π, φ) and FOF (π, φ) denotes the friend and friend-
of-friend set of the attacker with strategy π under realization
φ, respectively.

Thus, we can formulate the problem ACCU as:

max E[f(π,Φ)|Φ] (2)
s.t. E[|Q(π,Φ)||Φ] ≤ k

III. THE ADAPTIVE GREEDY ALGORITHM AND ITS
THEORETICAL GUARANTEES

In this section, we provide our first algorithm towards the
ACCU problem, followed by the proofs of its theoretical
guarantee.

A. The Greedy Algorithm

In a typical greedy algorithm, the elements are picked itera-
tively to maximize the marginal gain. In ACCU, however, this
approach may not be effective enough since the existence of
cautious users VC makes the benefit function non-submodular
(we will discuss about the adaptive submodular property later
in this section). Hence, we need to take into account how the
friendship with a user will facilitate befriending the cautious
users when making the greedy selections. In order to do so, we
define a potential function for calculating the marginal gain of
befriending a user, which considers both the direct benefit gain
and the indirect gain of increasing the chance of befriending
the cautious users later. The potential function is defined as
follows:

P (u|ω) = q(u)(wDPD + wIPI)

Where P1 denotes the direct benefit gain and P2 denotes
the indirect benefit gain. wD, wI are tunable parameters that
denotes the relative importance of direct/indirect gains. Note
that the potential function is applicable to all users. For users



in VC , PI is always 0 since we assume that the cautious user
are not connected to each other. Specifically:

PD = Bf (u)− 1FOF (u)Bfof (u)

+

 ∑
v∈N(u)\N(s)

puv(1− 1FOF (v))Bfof (v)

 .

The indicator function 1FOF (u) = 1 if u ∈ FOF and
1FOF (u) = 0 otherwise.

PI =
∑

v∈N(u)∩VC ,θv>|N(s)∩N(v)|

puv
(Bf (v)−Bfof (v))

θv − |N(s) ∩N(v)|

The indirect gain favors the users who (1) are friends with
more cautious users that are not yet friends of the attacker (2)
the cautious friends of the user have high benefit and (3) the
number of mutual friends among the cautious friends of the
user and the attacker is close to reach the thresholds. Note
that we remove the friend-of-friend benefit from indirect gain
since if the cautious user is not yet a friend-of-friend of the
attacker, the potential benefit is considered in PD already.

With the potential function, we are ready to describe our
greedy algorithm, Adaptive Benefit Maximization (ABM). At
a high-level, ABM iteratively performs the following two steps
until a total of k requests are sent: (1) Greedy Selection: the
potential gain of each user u /∈ F is calculated and the user
u∗ with the highest gain is selected and (2) Observation: a
friend request is sent to the selected user u∗ in the first stage
and the result is observed. If the friend request is accepted,
the attacker is also able to observe the neighborhood of u∗,
N(u∗). The updated knowledge is used to aid the attacker for
future decisions.

Algorithm 1: Adaptive Benefit Maximization (ABM)
Input: Graph G = (V,E, p), Bf , Bfof , q, θw1, w2, and

k ∈ Z+

Output: A sequence Q of users for s to be friend with.
1 Q← ∅;ω ← ∅
2 while |Q| < k do
3 foreach u ∈ V \Q do
4 P (u|ω) = q(u)(wDPD + wIPI)

5 Select u∗ ∈ arg maxu ∆(u|ω)
6 Add u∗ to Q
7 Send a friend request to u∗

8 if u∗ accepts the friend request then
9 Update ω with new observed N(u∗)

10 Return Q

B. Theoretical Guarantee

In this section, we first show why the benefit function of
the ACCU problem is not adaptive submodular and hence the
renowned (1−1/e) approximation ratio is not applicable to the
greedy algorithm described above. Then, we extend existing

notions from non-adaptive non-submodular optimization to
show that an approximation exists for the greedy algorithm
of ACCU under certain conditions.

Before starting our analysis, we introduce several notations
and definitions.

We already defined the benefit of a strategy π under real-
ization φ in equation (1). Here we slightly abuse the notation
to denote the gain of a partially executed strategy. Assume the
observed partial realization is ω, then the benefit of the par-
tially executed strategy under realization φ is f(dom(ω), φ).
With this notation, we can define the expected marginal gain
of befriending a user u conditioned on having ω, which is as
follows:

∆(u|ω) = E[f(dom(ω) ∪ {u},Φ)− f(dom(ω),Φ)|Φ ∼ ω]

Next, we state the following definitions, which are defined
in [15].

Definition 2 (Strongly Adaptive Monotone). A function f(·)
is strongly adaptive monotone with respect to the distribu-
tion Pr[φ] if the following condition holds. For all ω, all
v /∈ dom(ω), and all possible states o of node v such that
Pr[Φ(v) = o|Φ ∼ ω] > 0, we have:

E[f(dom(ω),Φ)|Φ ∼ ω]

≤ E[f(dom(ω) ∪ {v},Φ)|Φ ∼ ω,Φ(v) = o] (3)

Definition 3 (Adaptive Submodularity). A function f(.)
is adaptive submodular w.r.t the distribution Pr[φ] of all
realizations if for all ω and ω′ such that ω ⊆ ω′ and for
all v ∈ V \dom(ω′), we have:

∆(v|ω) ≥ ∆(v|ω′) (4)

According to [15], an adaptive greedy algorithm achieves
the (1 − 1/e) ratio when the objective function is strongly
adaptive monotone and adaptive submodular. Unfortunately,
the benefit function of ACCU is not adaptive submodular.
Consider the following example with only two normal users
v1, v2 and an attacker s. v1 is a cautious user who will only
accept the friend request of s if s and v1 share at least 1
mutual friend. Also let Bf (v1) > Bfof (v1) > 0. v2 is not a
cautious user and will accept the friend request from s with
probability 1. Then, consider two partial realizations ω1, ω2.
ω1 = ∅, which means that the attacker has not sent any
friend requests. ω2 = {v2, (v1, v2)}, which means that the
attacker already sent a friend request to v2. v2 accepted the
request, thus s observed that the edge (v1, v2) exists. Clearly
ω1 ⊆ ω2. Based on the above definitions, ∆(v1|ω1) = 0,
since v1 will not accept the friend request in any realization.
However, ∆(v1|ω2) = Bf (v1) − Bfof (v1) > 0 since v1 will
accept the friend request from s when its friend v2 is also
a friend of s. Since ∆(v1|ω2) > ∆(v1|ω1) and ω1 ⊆ ω2,
adaptive submodularity does not hold.

Because the objective is non-submodular, the immediate
idea is to adopt an existing proof technique for obtaining an
approximation ratio for adaptive non-submodular problems.
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Fig. 1: An example showing the benefit function of ACCU
is non-submodular

One such technique was the adaptive total primal curvature
defined in [6], [7]. It captures the total change in the marginal
gain of befriending a user u under realizations ω, ω′ such that
ω ⊆ ω′.

The adaptive total primal curvature can be calculated as

Γ(u | ω′, ω) =
∆(u | ω′)
∆(u | ω)

It was showed in [7] that the greedy algorithm has a (1−(1−
1
δk )k) approximation ratio for a non-submodular maximization
problem, where

δ ≥ Γ(u | ω′, ω),∀u, ω, ω′

.
However, this technique is not able to guarantee a ratio

for the greedy algorithm of ACCU. Consider a cautious
user u1 and two partial realizations ω1 = ∅ and ω2 that
satisfies |N(u) ∩ dom(ω2)| ≥ θu1 . That is, at least θu1 users
in u1’s neighborhood are friends of the attacker s under
partial realization ω2. Clearly ω1 ⊆ ω2. Based on our friend
request acceptance model for cautious users, the request will
be accepted with probability 1 under ω2 and will never be
accepted under ω1. Hence, ∆(u1|ω1) = 0 and ∆(u1|ω2) > 0,
which makes Γ(u1 | ω2, ω1) unbounded. Thus, δ, which is the
upper bound of all Γs, can be positive infinite. In this case,
the ratio (1− (1− 1

δk )k) will go to 0.
Note that if the friend request acceptance model of cautious

users can be more generalized, that is, accept the attacker’s
request with probability q1 when the number of mutual friends
is less than the threshold and increase the probability to q2

when the number of mutual friends reaches the threshold, an
approximation ratio do exist with δ = maxu∈VC

qu2
qu1

. When
qu1 for all u ∈ VC are positive, δ is bounded and we have a
non-zero approximation ratio. As a numerical example, when
δ = 10 and k = 20, the ratio is 0.095. In practice, however, δ
is likely to be unbounded as it is highly possible that someone
will not accept the friend request from a stranger (so q1 = 0).

With the above analysis, we need a new technique to analyze
the performance of the greedy algorithm of ACCU in its
current form. The submodularity ratio was introduced in [9]
and further discussed in [14]. It is defined for a set function
f(.) (which is not adaptive) and is the largest scalar λ such
that the following inequality holds:

∑
u∈T\S

ρ{u}(S) ≥ λρT (S),∀T, S ⊆ V (5)

In the inequality, for two subsets S1, S2 ⊆ V , ρS1
(S2) =

f(S1 ∪S2)− f(S2). As in [14], λ ∈ [0, 1] for non-decreasing
functions. The higher the λ, the more submodular the non-
decreasing function f(.) is. f(.) is submodular when λ = 1.

Now consider a single realization φ of ACCU and two arbi-
trary sub-realizations of φ, ω1, ω2. We can rewrite inequality
(5) as: ∑
u∈dom(ω2)\dom(ω1)

ρ{u}(dom(ω1)) ≥ λρdom(ω2)(dom(ω1)),

∀ω1, ω2, s.t. φ ∼ ω1, φ ∼ ω2 (6)

We claim that we will always have a positive λ under certain
conditions.

Lemma 1. If Bf (u) − Bfof (u) > 0,∀u ∈ V , λ is strictly
positive under realization φ.

Proof. Observe that λ will only reach 0 if the lhs of (6) is 0
and ∆(dom(ω2)|ω1) > 0. When Bf (u)−Bfof (u) > 0 holds
for all u ∈ V , the lhs of (6) will never be 0 as each individual
∆(u|ω1) must be positive since u /∈ dom(ω1). Therefore, λ >
0 under realization φ.

We can then define a realization-specific adaptive submod-
ular ratio (RASR) λφ with inequality (6).

Definition 4 (RASR). The RASR of function f under realiza-
tion φ is the largest scalar λφ such that inequality (6) holds.

With the definition of RASR, we have our adaptive sub-
modular ratio definition, as follows.

Definition 5 (Adaptive Submodular Ratio). The adaptive
submodular ratio λ of function f is the smallest RASR of all
possible realizations.

λ = min
φ
λφ

Corollary 1. λ > 0 if Bf (u)−Bfof (u) > 0,∀u ∈ V .

Proof. As Lemma 1 holds for all realizations when the con-
ditions Bf (u) − Bfof (u) > 0,∀u ∈ V are met, λ > 0 is
guaranteed.

In the following, we will prove the approximation guarantee
of our ABM algorithms towards ACCU, under the condition
that wI = 0 and Bf (u) − Bfof (u) > 0,∀u ∈ V . The reason
why we need wI = 0 is that the theoretical result requires a
pure greedy strategy based on the direct benefit function, so
the indirect benefits are not considered in the proof. However,
we will demonstrate in our experiments that taking indirect
benefits into account will improve the performance of the
algorithm, so the gap between the solution of the ABM
algorithm in general and the optimal solution is smaller than
the one stated here in practice.

We will proceed for the approximation ratio in two steps.
Firstly, we will develop a relation among the optimal strategy,
the adaptive greedy strategy based on our ABM algorithm
with wI = 0 and a single greedy selection step. The optimal
strategy sends exactly k requests, while the greedy strategy



may send an arbitrary number of requests. Secondly, we will
remove the single greedy selection step from the formula and
obtain a relation between the optimal and greedy strategies,
which will serve as the approximation guarantee.

For convenience, we denote Q(π, φ) to be the sequence of
users to send friend requests under realization φ for policy
π. It is equivalent to dom(ω(π,Φ)) where ω(π, φ) is the sub-
realization resulted from applying policy π to realization φ.

For the proof, we introduce the policy concatenation opera-
tion. For policies π1, π2, the concatenation π1@π2 is a policy
that first sends requests based on π1 and then sends requests
based on π2. That is, for a realization φ, we first obtain the two
sequences Q(π1, φ), Q(π2, φ) based on the individual policies,
next send out the requests to the users in Q(π1, φ) sequentially,
then send requests to the users in Q(π2, φ)\Q(π1, φ) while
maintaining the original order.

We start with the commutative property of policy concate-
nation, in the case of greedy and optimal policies.

Lemma 2. For greedy policy π1, optimal policy π2 and
realization φ, we have f(π1@π2, φ) = f(π2@π1, φ) when
Bf (u)−Bfof (u) > 0,∀u ∈ V .

Proof. First of all, both policies π12 = π1@π2 and π21 =
π2@π1 will send requests to the same set of users Q(π1, φ)∪
Q(π2, φ) and their only difference is the order of friend
requests that are sent. Clearly, if F (π12, φ) = F (π21, φ), then
the benefits of the two strategies are the same. Hence, in order
for the benefits to be different, we must see a difference in
F (π12, φ) and F (π21, φ).

Without loss of generality, let’s assume that there exists a
user v such that v ∈ F (π12, φ) but v /∈ F (π21, φ). We claim
that the user must not belong to the reckless user set VR.
As users in VR accept friend requests based on probability,
when the requests to them are sent has no impact on whether
the requests are accepted or not. For the same realization, we
must have v in both F (π12, φ), F (π21, φ) or in neither of them.
Then, such a user must belong to the cautious user set VC .

We then claim that it is not possible for such a user to exist.
If the request to v is rejected when executing policy π21, it
means that it was rejected when executing a policy that has
it in sequence Q. 1 However, as the friend request acceptance
model for cautious users is deterministic, any policy should
know that the request will be rejected before it was sent.
Hence, when there exists enough users in VR to befriend with
and to collect benefits, this situation will never happen for the
greedy algorithm, which aims at the largest marginal gain, or
for the optimal solution. In the extreme case that both greedy
and optimal policies have to send requests to cautious users
without getting benefit, the requests in π12 or π21 will both
be rejected and will not impact the equation. Based on the
above arguments, the commutative property of concatenation
for greedy and optimal policies is proved.

1It is possible that both policies decide to send request to user v, but this
fact is not necessary for the claim.

Next, we consider the optimal policy π∗k that sends k
requests and the greedy policy πgl that sends l requests. Let
favg(π) = E[f(π,Φ)|Φ] for simplicity.

Lemma 3.

favg(π∗k)− favg(πgl ) ≤ k

λ
(favg(πgl+1)− favg(πgl ))

Proof. It is clear that f is monotone. Hence, we have

favg(π∗k) ≤ favg(π∗k@πgl ) = favg(πgl @π∗k) (7)

The equality is due to Lemma 2. Then,

favg(πgl @π∗k)

= E[f(πgl @π∗k,Φ)|Φ]

= E[f(πgl ,Φ) + ρQ(π∗
k,Φ)(Q(πgl ,Φ))|Φ]

≤ E[f(πgl ,Φ) +
1

λΦ

∑
u∈Q(π∗

k,Φ)\Q(πg
l ,Φ)

ρ{u}(Q(πgl ,Φ))|Φ]

(8)

≤ E[f(πgl ,Φ) +
1

λ

∑
u∈Q(π∗

k,Φ)\Q(πg
l ,Φ)

ρ{u}(Q(πgl ,Φ))|Φ]

(9)

≤ E[f(πgl ,Φ) +
k

λ
ρ{Q(πg

l+1,Φ)\Q(πg
l ,Φ)}(Q(πgl ,Φ))|Φ] (10)

= E[f(πgl ,Φ)|Φ]

+ E[
k

λ
(f(πgl+1,Φ)− f(πgl ,Φ))|Φ]

= favg(πgl ) +
k

λ
(favg(πgl+1)− favg(πgl )) (11)

Inequality (8) is due to the definition of RASR and inequality
(9) is based on adaptive submodular ratio. Inequality (10)
is from the property of the greedy algorithm: the marginal
benefit from the greedy selection, the single user in set
Q(πgl+1,Φ)\Q(πgl ,Φ), must be higher than the marginal ben-
efit from all other users that are not selected yet. Combining
(7) and (11), we can obtain the desired result.

Finally, we apply the result of Lemma 3 to obtain the
approximation ratio of the greedy algorithm.

Theorem 1.

(1− e−lλ/k)favg(π∗k) < favg(πgl )

When l = k, Alg. 1 has approximation ratio of 1− e−λ when
wI = 0 and Bf (u)−Bfof (u) > 0,∀u ∈ V .

Proof. As in [15], denote δl = favg(π∗k)− favg(πgl ). Then we
can rewrite the result of Lemma 3 as:

δl ≤
k

λ
(δl − δl+1)

Hence, δl+1 ≤ (1− λ
k )δl and we have

δl ≤ (1− λ

k
)lδ0 ≤ e−lλ/kδ0



We utilized the inequality (1−x)l < e−lx to obtain the result.
Since δ0 = favg(π∗k), we have

favg(π∗k)− favg(πgl ) ≤ e−lλ/kfavg(π∗k)

Therefore,

(1− e−lλ/k)favg(π∗k) ≤ favg(πgl )

When l = k, 1 − e−lλ/k reduces to 1 − e−λ and hence the
result.

Note that we recovers the result in [9] in the adaptive setting.
Although the adaptive submodular ratio is problem-specific,
we are able to provide some insights about what λ may be
based on the subset of cautious users, VC .

Observation 1. When VC = ∅, λ = 1.

When there exists no cautious users, the problem ACCU
degenerates to a problem that is similar to those considered in
[4], [5] and is submodular. Hence λ reaches 1.

Based on the observation, λ is only related to the sub-
realizations that involve the cautious users. Since λ is the
minimum of all λφs, we can focus on one realization that
results in the lowest λΦ. When discussing such a realization,
we will treat it as a deterministic graph and use notations
similar to the original definition of submodular ratio in (5).

We first consider the simplest case that has only one
cautious user vc. Then, we must have vc ∈ T, vc /∈ S for
the two sets S, T in (5) in order to obtain the minimum λ. If
vc is included in S or in none of the sets, the lhs will be at
least ρT (S) and λ cannot be the minimum. In this case, we
derive the following results for λ.

Lemma 4. When VC = {vc}, let B′(u) = Bf (u) −
1|N(u)\N(vc)|>1Bfof (u), where 1|N(u)\N(vc)|>1Bfof (u) = 1
if |N(u)\N(vc)| > 1 and 0 otherwise.
If dvc = 1 and N(vc) = {u}, then

λ =
B′(u)

Bf (vc) +B′(u)

If dvc > 1, then

λ = min{ min
U∈N(vc),|U |=θvc

∑
u∈U B

′(u)

Bf (vc) +
∑
u∈U B

′(u)
, (12)

min
u∗∈N(vc)

B′(u∗)

B′(vc) +B′(u∗)
} (13)

Proof. When dvc = 1, we have vc, u ∈ T and vc, u /∈ S,
as in this case we will have vc accepting the request when
sending all requests in T and rejecting the request when the
requests are sent individually. In order to minimize λ, we want
to reduce the benefit collected from u given the request sent in
S. If u has friends other than vc, we will include those friends
in S, so that sending a friend request to u will only obtain
Bf (u)−Bfof (u) benefit. Considering the fact that u may not
have other friends, we write the benefit from u as B′(u). Also,
we claim that T = {vc, u}. If we add other users to T , we
will increase both the denominator and numerator by the same

amount, which will result in a larger fraction. Combining the
analysis, we obtain the λ value when dvc = 1.

For dvc > 1, we consider two situations. 1) T contains vc
and θvc friends of vc and S ∩ N(vc) = ∅. In this situation,
by similar reasoning as in the case of dvc = 1, we obtain
(12). Note that dvc may be larger than θvc and we only need
the size θvc subset of N(vc) that results in the smallest λ.
Any subset larger than θvc will increase λ. 2) T contains vc
and only one user in N(vc), while S contains exactly θvc − 1
friends of vc. In this situation, we need to find a single friend
of vc to include in T for the smallest λ, hence we obtain (13).
Since we cannot determine the relationship between (12) and
(13) without the actual benefit values, we take the minimum
between them as λ.

Note that when Bf (u) − Bfof (u) = 0 for some u ∈ V , it
is possible that λ = 0. That is why we require the condition
of Bf (u)−Bfof (u) > 0,∀u ∈ V .

When we have more than 1 cautious users, we can still
easily calculate λ when the cautious users do not have mutual
friends: we first calculate a λ for each cautious user as if it is
the only cautious user as in Lemma 4, then take the minimum
of all such λs. However, λ may be very small if one friend is
shared by many cautious users.

Lemma 5. When u ∈ ∩i=1,...,rN(vic), λ is upper bounded by

Bf (u)∑
i=1,...,r B

′(vic) +Bf (u)

Proof. we can easily achieve the upper bound by having
u, v1

c , . . . , v
r
c in T and let S include exactly φvic − 1 friends

for each cautious user vic.

IV. EXPERIMENT RESULTS

In this section, we first demonstrate the performance of the
ABM algorithm by comparing it against several alternative
algorithms in various data sets. The data sets are summarized
in Table I. Then, we study how the parameters in the ABM
algorithm impact the befriending strategy. Finally, we examine
the behavior of the ACCU problem by sensitivity analysis.

A. Experiment Setup

Parameter Selection. Throughout the experiments, we assign
edge existence probabilities and friend request acceptance
probabilities uniformly randomly between [0, 1). The edge
existence probabilities are only generated for edges in the
data sets. Also, we only generate friend request acceptance
probabilities between the attacker and the users in VR. As for
the benefits, we fix Bf (u) = 2,∀u ∈ VR and Bfof (u) =
1,∀u ∈ V . The reason why we keep the friend-of-friend
benefit of users in VR and VC the same is that the cautious
users tend not to share much to their indirect friends. The
benefit of successfully befriending a cautious user varies in the
experiments. Other variables include the threshold θv,∀v ∈ Vc
and the weights wD, wI of the ABM algorithm.
Cautious User Selection. Since we have limited information
of whether the users are cautious or not, we select them



Network Nodes Edges Kind
Facebook 4k 88k Social
Slashdot 77k 905k Social
Twitter 81k 1.77M Social
DBLP 317k 1.05M Collaboration

TABLE I: Statistics of the data sets. All networks are from
SNAP [16].

randomly among nodes having degree within the range of
[10, 100]. The reasoning behind the filtering is that nodes with
really high degrees are not likely to be cautious, while nodes
with low degrees are usually not important and can be ignored
by the attacker. Also, we iteratively select the cautious users
to make sure that there are no direct edges among them. In
each network, we select 100 cautious users.
Algorithms for Comparison. We compare ABM with the
following algorithms:
• MaxDegree: Iteratively pick the target users with highest

degree in the network.
• PageRank: Pick target users in the network with highest

PageRank scores.
• Random: Randomly select target users. The result of the

random algorithm is averaged over 100 runs to mitigate
fluctuation.

Note that we do not explicitly compare with the existing
greedy algorithm [3], [2], [6] since ABM converges to the
classical greedy with wD = 1, wI = 0.

Because of the randomness in both data set generation and
algorithm execution, we generate 100 sample networks for
each data set and run the algorithms 30 times in each sample
network. The presented results are averaged over all outputs.

B. Performance of the Algorithms

We first compare ABM with the alternative methods us-
ing the most straightforward metric: the amount of benefits
collected by the attacker. For all data sets, we let Bf (u) =
50,∀u ∈ Vc. The threshold θv is set as 30% of the degree
of the corresponding user. As for the weights for ABM, we
set wD = wI = 0.5 to equally emphasize on the direct and
indirect benefits.

In Fig. 2, we illustrate the amount of benefits obtained
varying the number of friend requests k in all five data sets.
We can observe that ABM has significant better performance
comparing with the other algorithms in most of the times. The
random algorithm is constantly the worst except for higher
number of friend requests in the Facebook data set. The
PageRank algorithm and MaxDegree algorithms are in the
middle, with PageRank always slightly better than MaxDegree,
except for the DBLP dataset, where the difference is much
larger. An interesting finding is that the lines of ABM in
Slashdot and Twitter share a common behavior: the lines are
not perfectly concave. There exists one segment in each line
showing convexity. It means that the average marginal benefit
gain for sending one friend request within that segment is
lower than the gain of some requests sent later.

To find the cause for this behavior, we consider the average
marginal gain of every friend request, breaking it down to
benefits from cautious users and those from reckless users
in Fig. 3. The idea behind this change is that the behavior
did not show up in existing literature when the cautious users
do not exist. From Fig. 3, we conclude that the decrease in
marginal gain is directly related to the process of befriending
the cautious users. In each data set, the orange region indicates
a high concentration of requests sent to cautious users (and
hence higher benefits from them). We can observe that the
orange regions in Slashdot and Twitter heavily overlap with
regions that have lower average marginal gain than later
requests (around request 50 for Slashdot and around request
80 for Twitter). The root reason is that the potential function of
ABM (with wD = wI = 0.5) assigns high values to the friends
of cautious users when the cautious users are not friends
of the attacker yet. The high values lead to ABM sending
requests to those users, but the actual gain from them can
be low. The reason why Facebook and DBLP did not clearly
show this behavior are different. For Facebook, befriending
a cautious user is quite significant, since there exists only a
few users with very high degree. Therefore, the high gains
from cautious users mitigate the low gains from the friends of
cautious users, and overall the marginal gain is monotonically
decreasing. For DBLP, however, there are too many users
with high benefits. Based on the potential function, they are
favored over the cautious users. Hence, ABM selects very
limited amount of cautious users in DBLP and maintains a
monotonically decreasing marginal gain.

C. Impact of Parameter Selection in ABM

In the previous subsection, we notice that ABM may send
requests to users that result in lower marginal gain than
later requests in some data sets. Since the target selection is
determined by the potential function, we will explore how
the selection of wD, wI affects the performance of the ABM
algorithm in this subsection.

We first consider the overall benefit after sending 500
requests and the number of cautious friends in the Twitter data
set. We let wI vary between 0 and 0.6 and set wD = 1−wI .
The result is displayed in Fig. 4. It is clear that the number
of cautious friends grows monotonically with wI , however,
higher wI may not lead to higher benefit. The benefit peaks
at wI = 0.2 and drops when wI is larger or smaller. Hence, it
is necessary to achieve a balance between direct and indirect
benefit for better performance. Note that wI = 0 corresponds
to the pure greedy strategy as in earlier adaptive crawling
papers (e.g. [4]). With a proper parameter setting, ABM
outperforms pure greedy in the ACCU problem.

We also illustrate the times that the cautious users become
friends of the attacker in Fig. 5. Specifically, we consider the
fraction of times request X is sent to a cautious user among all
generated graphs and algorithm execution repetitions, where
X ∈ [1, 500]. We can observe that with a higher wI , ABM
not only chooses to befriend more cautious users, but also
tends to befriend the cautious users earlier. When wI is large,
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Fig. 3: Average marginal benefit from cautious and reckless users.
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Fig. 4: Benefits and # cautious users obtained using ABM in
Twitter, varying wI .

ABM may over-emphasize the importance of cautious users
and prioritize befriending them, which may be detrimental for
overall benefit.

D. Sensitivity Analysis of the Modeling Parameters

In this subsection, we test the impact of two modeling
parameters: the friend benefit Bf (u) and the acceptance
threshold of the cautious users.

In the following figures, we use heat maps to measure the
collected benefit and the number of cautious friends when both
parameters are changing. The experiments are run on Twitter
data set with k = 500, wD = wI = 0.5.

In Fig. 6 and Fig. 7, we illustrate how the collected
benefit and number of cautious friends change with the two
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Fig. 5: Fraction of requests sent to cautious users.

modeling parameters. In general, higher friend benefit and
lower acceptance threshold for cautious users lead to higher
total benefit and more cautious friends. The only exception
is when the friend benefit is only 20 for cautious users. In
this case, if we make befriending cautious users harder by
increasing the acceptance threshold, we actually obtain higher
benefit. The reason is similar to what we discussed in the
earlier section: over-emphasizing the importance of cautious
users can sometimes degrade performance.

V. CONCLUSION

In this paper, we introduced the cautious users to consider
the Adaptive Crawling problem in a more realistic setting. The
friend request acceptance model of the cautious users broke
submodularity in existing problems, making the new problem,
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Fig. 7: Heat map for # cautious friends when varying friend
benefit and acceptance threshold for cautious users.

named ACCU, more complicated. Nonetheless, we proposed
a new notion, the adaptive submodular ratio, based on which
we could provide a theoretical bound for the greedy algorithm
that solves ACCU in certain conditions. We evaluated the
performance of our algorithm, ABM, in various data sets,
demonstrated its advantage over a few alternative algorithms.
Also, we performed sensitivity analysis to provide insights on
the ACCU problem.
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