
An Optimal Vector Clock Algorithm for
Multithreaded Systems

1st Xiong Zheng
Electrical and Computer Engineering

The University of Texas
Austin, USA

zhengxiongtym@utexas.edu

2nd Vijay K. Garg
Electrical and Computer Engineering

The University of Texas
Austin, USA

garg@ece.utexas.edu

Abstract—Tracking causality (or happened-before relation)
between events is useful for many applications such as debugging
and recovery from failures. Consider a concurrent system with
n threads and m objects. For such systems, either a vector
clock of size n is used with one component per thread or a
vector clock of size m is used with one component per object.
A natural question is whether one can use a vector clock of
size strictly less than the minimum of m and n to timestamp
events. We give an algorithm in this paper that uses a hybrid
of thread and object components. Our algorithm is guaranteed
to return the minimum number of components necessary for
vector clocks. We first consider the case when the interaction
between objects and threads is statically known. This interaction
is modeled by a thread-object bipartite graph. Our algorithm
is based on finding the maximum bipartite matching of such a
graph and then applying König-Egerváry Theorem to compute
the minimum vertex cover to determine the optimal number of
components necessary for the vector clock. We also propose two
mechanisms to compute such an vector clock when computation
is revealed in an online fashion. Evaluation on different types
of graphs indicates that our offline algorithm generates a size
vector clock which is significantly less than the minimum of m
and n. These mechanisms are more effective when the underlying
bipartite graph is not dense.

Index Terms—optimal vector clocks, bipartite matching

I. INTRODUCTION

A fundamental problem in parallel and distributed systems
is to determine the order relationship between events of a
distributed computation as defined by Lamport’s happened-
before relation [9]. The problem arises in many areas including
debugging and visualization of parallel and distributed pro-
grams.

Vector clocks, which were introduced independently by
Fidge [4]–[6] and Mattern [11], and their variants [10] are
widely used to capture the causality between events in parallel
and distributed systems. To capture the causality, each event is
timestamped with the current value of the local vector clock
at the time the event is generated. The order relationship
between two events can then be determined by comparing their
timestamps. A vector clock contains one component for every
process in a distributed system. This results in message and
space overhead of N integers in a distributed system consisting
of N processes. In shared-memory based systems, there are

This work was partially supported by NSF CSR-1563544,CNS-1812349

two kinds of vector clocks. Consider a concurrent system with
n threads and m objects. For such systems, either vector clocks
of size n is used with one component per thread or a vector
clock of size m is used with one component per object. A
natural question is whether one can use a vector of size strictly
less than the minimum of m and n to timestamp events. We
show that this is indeed possible in this paper.

Consider the example in Fig. 1 to understand why it is
feasible to use a smaller vector clock to order events. In this
example, T1, T2, T3, T4 are threads, O1, O2, O3, O4 are objects
which are used by the above threads. Each circle represents
an operation. To order those operations, traditionally, either all
threads or all objects are exploited as components of vector
clock so as to indicate the causal order. However, notice that
all the operations are related to either thread T2 or object O2

or object O3. Therefore, we can use a vector clock composed
of T2, O2, and O3 to timestamp all events. This mixed-vector-
clock has the size of 3 which is smaller than the number of
threads and the number of objects. This example answers the
question that a vector of size strictly less than minimum of m
and n can be obtained to timestamp a computation.

Fig. 1. A computation of threads operating on shared objects

A computation of threads operating on objects can be
represented as a bipartite graph and the minimum vertex cover
of a bipartite graph is no greater that the minimum of the
number of left nodes and number of right nodes. Recall the

ar
X

iv
:1

90
1.

06
54

5v
1

 [
cs

.D
C

]
 1

9
Ja

n
20

19

definition of a vertex cover of a graph: a set of vertexes
such that each edge in the graph is incident to at least one
vertex of the set and notice that an edge in a bipartite graph
actually corresponds to an event in a computation. Therefore,
by converting such a computation to a thread-object bipartite
graph (to be introduced in section III), we can make use of the
minimum vertex cover of this bipartite graph to timestamp the
events in the computation. Thus, the minimum vertex cover is
used to determine the components of the vector clock for this
computation. On this basis, we give an offline algorithm that
makes use of a hybrid of thread and object components which
is smaller in size than traditional vector clocks to timestamp
a computation. Our offline algorithm is guaranteed to return
the minimum number of components necessary for a vector
clock. This algorithm is based on finding a maximum bipartite
matching in the thread object bipartite graph and then applying
König-Egerváry Theorem [1] to determine the optimal number
of components necessary for the vector clock.

We also consider the case when the interaction between
threads and objects is not known a priori. We propose two
mechanisms to address this problem and compare performance
with the traditional solution.

In summary, this paper makes the following contributions:
• We introduce the notion of a mixed-vector-clock that sat-

isfies the vector clock condition with fewer than thread-
based or object-based clock.

• We give an optimal algorithm to determine which threads
and objects should be used for a mixed-vector-clock.

• We give two mechanisms to compute the mixed-vector-
clock when events of a computation is coming in a online
fashion.

II. SYSTEM MODEL AND NOTATION

In this section, we present our model of a concurrent system.
The system consists of N sequential processes (or threads)
denoted by P = {p1, p2, . . . , pn} performing operations on m
objects denoted by Q = {q1, q2, . . . , qm}. In the remaining
section, we use threads or processes interchangeably. A com-
putation in the happened before model is defined as a tuple
(E,→) where E is the set of events and → is a partial order
on events in E. Each process executes a sequence of events.
Each event is performed on a single object. We assume that
all operations on any single object are performed sequentially
(for example, by using locks). For an event e ∈ E, e.thread
denotes the process on which e occurred and e.object denotes
the object on which e occurred.

Then Lamport’s happened-before relation (→) on E is the
smallest transitive relation such that:

1. If e.thread = f.thread and e immediately precedes f
in the sequence of events in process e.thread, then e→ f .

2. If e.object = f.object and e immediately precedes f in
the sequence of events on the object e.q, then e→ f

Two events e and f are said to be comparable if e → f
or f → e. If e and f are not comparable, they are said to be
concurrent and this relationship is denoted by e ‖ f .

We define process-object graph as the undirected bipartite
graph G = (P,Q, T) where T is the set of edges between the
set of processes P and the set of objects Q defined as

T = {(p, q)|the object q is accessible to process p}

In most applications, we do not expect G to be dense, i.e,
a process typically has references to only a small subset of
objects.

The set of events E with the order imposed by Lamport’s
happened before relation defines a partially ordered set or
poset. A subset of elements C ⊆ E is said to form a chain iff
∀e, f ∈ C : e → f or f → e. By our definition of processes
all operations done by a single process form a chain. Similarly,
all operations done on a single object also form a chain.

Process-based vector clocks maintain a vector V of size
|P | with each process and object. Whenever, a process p
executes an operation e on object q it gets the timestamp e.v as

e.v = max(p.v, q.v); e.v[e.thread] + +;

Both p and q update their vector to e.v.
Object-based vector clocks maintain a vector V of size
|Q| with each process and object. Whenever, a process p
executes an operation e on object q it gets the timestamp e.v as

e.v = max(p.v, q.v); e.v[e.object] + +;

Both p and q update their vector to e.v.
In this paper, we design a vector clock called mixed vector-

clock that uses a combination of processes and objects for its
components. Clearly, process-based and object-based vector
clocks are special case of our scheme. Moreover, the total
number of components in a mixed vector clock is always less
than or equal to the minimum of the process and object based
vector clocks.

III. AN OFFLINE ALGORITHM

In this section, we first introduce the thread-object bipartite
graph for a computation. Next, we give an offline algorithm
to compute the optimal mix-vector-clock by computing the
maximum bipartite matching of the thread-object bipartite
graph and obtaining a minimum vertex cover. Then we show
the mix-vector-clock given by this offline algorithm is optimal
in terms of size.

A. The Thread-object Bipartite Graph

A thread-object computation is composed of events which
are in the form of some specific thread doing some operations
on a specific object. Notice that such a computation only
involves two parties: threads and objects. An operation relates
an thread and an object. Therefore, such a computation could
be modeled as a bipartite graph if we only focus on the relation
between the two parties, i.e, for thread p and object q, we only
care about whether p has any operation on q or not and ignore
exactly how many operations that p has on q. If a thread has at
least one operation on an object, then there is an edge between
them in the bipartite graph. We call such a bipartite graph as

thread-object bipartite graph herein. The computation shown
in Fig. 1 can be converted to the thread-object bipartite graph
given in Fig. 2. The filled vertices represent the minimum
vertex cover of this bipartite graph or the components of our
mix-vector-clock.

t1

t2

t3

t3

o1

o2

o3

o4

Fig. 2. Thread-Object Bipartite Graph of A Computation

Let G = {T ∪O,E} be the thread-object bipartite graph of
a given computation. T denote the set of threads involved in
the given computation. O denotes the set of objects to which
threads in T have operations on in the given computation. For
any thread t ∈ T and object o ∈ O, there is an edge between
thread t and object o in the thread-object bipartite graph iff
thread t has at least one operation on object o in the given
computation.

B. The Offline Algorithm

Assuming that the thread-object graph representing a com-
putation is given or constructed by the trace generato, we show
how to obtain our mix-vector-clock by computing a minimum
vertex cover of this bipartite graph. In order to compute such
a vertex cover, we use König-Egerváry Theorem.

Theorem 1 (König-Egerváry Theorem): In any bipartite
graph, the maximum size of a matching equals the minimum
size of a vertex cover.

Based on König-Egerváry’s theorem, we can first compute a
maximum matching of the thread-object bipartite graph, which
has many algorithms. One simple and efficient such algorithm
is the bipartite matching algorithm given by Hopcroft and Karp
[3], which achieves a time complexity of O(n5/2).

The basics of this matching algorithm is stated as below: at
each iteration, this algorithm searches for shortest augmenting
paths denoted as {Q1, Q2, ..., Qt} relative to existing matching
M and augment the current matching. The new matching M ′

is obtained by M ⊕Q1 ⊕Q2 ⊕ · · · ⊕Qt, where ⊕ represents
symmetric difference. When there is no augmenting path in the
bipartite graph, the maximum matching is found. The details
of this algorithm can be found in [3].

Next, given the maximum matching, we can directly apply
König-Egerváry Theorem to convert the maximum matching

to minimum vertex cover so as to get the mix-vector-clock.
The pseudocode to compute the mix-vector-clock is given in
Algorithm 1.

In this algorithm, we first compute a maximum matching
M∗ of G. Given M∗, the set of unmatched threads can be di-
rectly obtained, denote this set as S. Line 3-9 is the procedure
to convert the maximum matching M∗ to a minimum vertex
cover. Z is the set of nodes in the graph which are connected
by M∗−alternating paths to S. The minimum vertex cover
C∗ can be computed as (T −Z)∪ (O ∩ Z). This procedure
can be found in the proof for König-Egerváry Theorem in [1]
(Theorem 5.3). For completeness, we include the proof here.

Algorithm 1 Minimum Mixed-vector-clock
1: Finding a maximum matching of G, denoted as M∗
2: Compute the set of unmatched threads, denoted as S
3: Let Z := S
4: for s ∈ S do
5: Start from s, BFS search via alternating paths
6: Let Bs denote the set of vertexes traversed by BFS
7: Z := Z ∪Bs

8: end for
9: Return C∗ = (T − Z) ∪ (O ∩ Z)

Lemma 1: Algorithm 1 computes a minimum vertex cover
of a graph.

Proof: First, let’s show that C∗ is a vertex cover. Let
(t, o) be any edge from E. There are two possible cases.

Case 1: Edge (t, o) belongs to an alternating path p ∈ P ,
then it’s right endpoint is in C.

Case 2: Edge (t, o) does not belong to any alternating path.
If (t, o) is matched, then it’s left endpoint t couldn’t be in any
alternating path (otherwise (t, o) belongs to such an alternating
path. Thus, t ∈ (T − L). If (t, o) is unmatched, then its left
endpoint t cannot be in any alternating path, for such a path
could be extended by adding (t, o) to it.

Second, let’s prove C∗ is minimum. Every vertex in C∗ is
matched. For, every vertex in (T −L is matched because L is
a superset of S, the set of unmatched left vertices. And every
vertex in (O ∩ L) must also be matched, for if there existed
an alternating path to an unmatched vertex then changing the
matching by removing the matched edges from this path and
adding the unmatched edges in their place would increase the
size of the matching. However, no matched edge can have
both of its endpoints in C∗ . Thus, C∗ is a vertex cover of
cardinality equal to M, and must be a minimum vertex cover.

Given the minimum vertex cover of the thread-object bi-
partite graph, the mix-vector-clock is simply constructed by
assigning each thread or object in the minimum vertex cover
as a component in the vector clock.

C. Timestamping Events Using Mix-vector-clock

The offline algorithm gives a mix-vector-clock. To times-
tamp events in a thread object computation, we let each thread
and each object keep a mix-vector-clock. Now let us look

at how each thread modify its mix-vector-clock in order to
track causality of operations. For thread p, while performing
operation e on object q, thread p needs to check whether
itself or object q is in the mix-vector-clock and increases
the component correspondingly. Here is how to update the
timestamp of event e:

if q ∈ v then : e.v = max(p.v, q.v); e.v[e.object] + +;

if p ∈ v then : e.v = max(p.v, q.v); e.v[e.thread] + +;

Both thread p and object q update their mix-vector-clock to
be e.v.

Fig. 3 shows the timestamp for each event in the computa-
tion given in Fig. 1. The components in the mix-vector-clock
correspond to thread T2, object O2 and object O3, respectively.
Initially, the mix-vector-clock for all threads and objects are
[0, 0, 0]. Let [p, q] represents the event that thread p performs
an operation on object q. In Fig. 3, the mix-vector-clock
of [T2, O1] is smaller than vector of [T3, O3], so we have
[T2, O1] → [T3, O3]. From the computation, we know that
[T2, O1] → [T2, O3] and [T2, O3] → [T3, O3], we also have
that [T2, O1]→ [T3, O3].

Fig. 3. Timstamping Events Using Mix-vector-clock

D. Proof of Correctness and Optimality

Let e be an operation in the computation, e.p be the asso-
ciate process of e, e.q be the associate object of e, e.c be the
component which is in the mix-vector-clock. e.c = e.p ∧ e.q.
Let s and t be any two operations in the computation. We
show the correctness and optimality by the following Lemma
and Theorems.

Lemma 2: Let s 6= t. Then,

s9 t⇒ t.v[s.c] < s.v[s.c]

Proof: If s.p = t.p, then it follows that t ≺ s. Before
executing operation s, the vector clock kept in process p
must be no less than t.v, since p updates its vector to be
the same as t.v after operation t. At operation s, s.v =
max(s.p.v, s.q.v)ands.v[s.c] + +, thus t.v[s.c] < s.v[s.c].
Otherwise, s.p 6= t.p. Since s will increase s.v[s.c] will
increase its component by at least one and this increase

could not have been seen by t, since s 9 t, it follows that
t.v[s.c] < s.v[s.c].

Theorem 2: (Correctness:) The mix-vector-clock is a valid
vector clock.

Proof: In order to show the mix-vector-clock is a valid
vector clock, we need to show that it satisfies the constraint:
∀s, t : s→ t⇔ s.v < t.v.

(⇒) s→ t⇒ s.v < t.v
Case 1: s.p = t.p As we can see from the vector clock

algorithm, within the same thread, each event will first set
its new vector clock to be the max of previous vector clock
and vector on object. Thus s.v < t.v. Case 2: s.q = t.q. s
immediately precedes t in the sequence of events on object s.q.
Therefore, s.v[s.q] = t.v[s.q] + 1 and for ∀j 6= s.q: s.v[j] =
t.v[j]. Thus, s.v < t.v.

(⇐) s9 t⇒ s.v ≮ t.v
From Lemma 2, we have s9 t⇒ t.v[s.c] < s.v[s.c]. Thus,

s.v ≮ t.v.
Theorem 3: (Optimality:) The mix-vector-clock is optimal

in size.
Proof: The offline algorithm makes use of the compo-

nents of minimum vertex cover v of the thread-object bipartite
graph as the mix-vector-clock, which is also a valid vector
clock of the computation. We need to show this v is minimum
in size. Since timestamping all events in a computation re-
quires the vector clock being able to order each event. Suppose
there exists a smaller vector clock v′ which timestamps all
events. The fact that events in computation corresponds to
edges in its bipartite graph indicates that v′ is also a vertex
cover of the bipartite graph, thus contradicts |v| ≤ |v′|. So, the
mix-vector-clock obtained by the offline algorithm is optimal
in size.

IV. MIX-VECTOR-CLOCK FOR ONLINE COMPUTATION

In this section, we consider the case when the computation
is not given in advance; instead, each event of the computation
is revealed in an online fashion. We assume that only one event
is revealed at any time. Thus, in the online setting, we need
to maintain a valid dynamic vector clock when events of a
computation arrive one at a time. The thread-object bipartite
graph for the computation changes when events arrive in the
online fashion. When an event e = (t, o) is revealed, there
could be two cases. Either the thread t has already performed
some operation on object o, i.e, there is already an edge
between t and o in the current thread-object bipartite graph.
In this case, the thread-object bipartite graph does not change.
For the other case, thread t has never performed any operation
on object o, i.e, there is no edge between t and o in the current
thread-object bipartite graph. In this case, an edge between t
and o should be added into the thread-object bipartite graph.
Note that in the online setting the idea of using minimum
vertex cover to be the components of mix-vector-clock cannot
be applied, since the minimum vertex cover of the thread-
object graph is changing and the existing components in a mix-
vector-clock should not be modified as a new event arrives.
That is, we can only add new components to the vector clock.

The conventional naive solution is to always choose thread
or always choose object as components of the vector clock as
a new event occurs. This mechanism would result in a vector
clock with size equal to the number of threads or objects for
all computations. Another intuitive mechanism is to randomly
choose the object or the thread to add into the vector clock with
equal probability. Notice that the hardness of timestamping an
online computation stems from the unpredictability of future
events. We can only estimate the future using information we
already have. Therefore, we propose another mechanism which
makes use of the partial computation occurred so far to predict
the future events. Specifically, when a new event occurs, if the
associated object is more ”popular” than the associated thread,
then we choose the object, otherwise, we choose the thread.
We propose the definition of popularity as below.

Definition 1: The popularity of a vertex v in a bipartite
graph G = {U ∪ V,E} is pop(v) = degv

|E| , where degv is the
degree of vertex v and |E| is the total number of edges in the
graph. We say one node is more popular than another node if
it has higher popularity.

We assume that only one event can occur at a single time.
An event comes in with its associated thread and object. We
are not supposed to modify components existing in the mix-
vector-clock. The three mechanism are formally listed as:

1. Naive: Always choose threads or objects.
2. Random: Randomly choose the associated object or

thread of the new event with equal probability.
3. Popularity: Based on popularity of threads and objects.

When a new event comes in. If one of the associated thread
or object is already in the vector clock, the the vector clock
remains same. Otherwise, compute the popularity of the asso-
ciated thread and object, add the one with higher popularity
into the vector clock.

V. EVALUATION

In this section, to evaluate the performance of our offline al-
gorithm and compare the performance of the three mechanisms
we proposed for online setting, we consider the following two
Scenarios:

Uniform: Evaluating on a uniformly and randomly generated
thread-object bipartite graph, i.e, each thread and object have
same popularity.

Nonuniform: Evaluating on a thread-object bipartite graph
in which a small fraction of objects and threads are much more
popular than other threads and objects.

The bipartite graph in Uniform scenario could be generated
by adding a edge between each thread and each object with
a same specific probability. For Nonuniform scenario, the
bipartite graph can be generated by adding an edge between
popular threads and objects with a higher probability and non-
popular threads and objects with a smaller probability.

In our first evaluation we consider how graph density affects
the vector clock size of the three mechanisms. We set the
number of threads and objects in the computation to be
50, respectively, i.e, each side of the thread-object bipartite
graph has 50 nodes. We compute the final vector clock size

by applying the above three mechanisms to the above two
different scenarios, as the density of thread-object bipartite
graph increases. The results are shown in Fig. 4. The first
important conclusion we get is that when the density of
the bipartite graph is small Random and Popularity method
produce significantly smaller vector clock size than the Naive
method. However, when the density of graph exceeds a certain
threshold, their performance becomes worse than Naive. In
addition, we found that Random and Popularity mechanism
can obtain much better solution in the Nonuniform case than
the uniform case. Thus, we can conjecture that those two
methods are better suited in the computation in which some
objects or threads are more popular than other objects and
threads. Comparing performance of Random and Popularity,
we found Popularity is a slightly better than Random. This
can be explained by the fact that by choosing popular nodes
as vector clock component, we can cover more edges. Thus,
the vector clock size would be smaller.

Fig. 4. Vector Size Varies as Graph Density Increases.

In our second evaluation, we fix the density of graph to be
0.05 and evaluate the performance of the three mechanisms as
we increase the number of nodes in the thread-object bipartite
graph. From Fig. 5, we can notice that as the number of nodes
in the graph increases, i.e, the number of threads and objects
increases in a computation, the vector size increases. When
the number of nodes is below a certain threshold, 70 here,
Random and Popularity generates smaller vector clock size
than Naive. Once the number of nodes exceeds that threshold,
Naive is better, which means by simply choosing either all
threads or objects as vector clock components gives a smaller
vector clock. Therefore, we can get the conclusion that these
two techniques are more effective in simple computations, i.e,
in computations which involves relatively small number of
threads and objects.

In our third evaluation, we want to know how far the online
case drifts from the static case. We choose the Popularity
mechanism for the online case. We also consider the Naive

Fig. 5. Vector Size Varies as Number of Nodes Increases

mechanism , which can both be applied to online case and
static case and generates the same vector clock. For the static
case, we use our offline algorithm proposed in Section III. For
the experiment, we first apply the Popularity mechanism as we
reveal the edge of the graph one by one. Then, after we have
the whole graph, we apply the offline algorithm. Fig. 6 shows
the results we get when we set the number of nodes to be 50
and increase graph density. Fig. 7 shows the results we get
when we fix the density to be 0.05 and increase the number
of nodes in the graph. First, we can notice that our offline
algorithm generates a vector clock with significantly smaller
size than the Naive solution. For example, Naive has a vector
clock of size 50 and the offline algorithm reduces that to be
around 35, when there are 50 threads and the graph density
is 0.05. Besides, in online setting, although the Popularity
mechanism cannot completely achieve as small vector size
as the optimal solution does, the gap is within a reasonable
number. For example, Popularity generates a vector of size
round 56 while the optimal is round 48, when there are 70
threads and the graph density is 0.05. Also, as graph density
or number of nodes in graph increases, the gap is increasing
which again indicates the Popularity mechanism is not suitable
for relatively dense graph.

Combining the results of the above evaluations, for the on-
line problem, a practical mechanism would be to set thresholds
for both graph density and number of nodes in graph. At the
beginning, we adopt the Popularity mechanism and as more
events come in we adopt the Naive approach if the graph
parameters exceeds the thresholds.

VI. RELATED WORK

Several techniques have been proposed to reduce the over-
head imposed by Fidge/Mattern’s vector clocks [4]–[6], [11].
Singhal and Kshemkalyani [12] present a technique to reduce
the amount of data piggybacked on each message. The main
idea is to only send those entries of the vector along with

Fig. 6. Vector Size Varies as Graph Density Increases

Fig. 7. Vector Size Varies as Number of Nodes Increases

a message that have changed since a message was last sent
to that process. Hélary et al [8] further improve upon Singhal
and Kshemkalyani technique and describe a suite of algorithms
that provide different trade offs between space overhead and
communication overhead. The ideas described in the two pa-
pers are actually orthogonal to the ideas presented in this paper
and, therefore, can also benefit our timestamping algorithm by
reducing its overhead.

Agarwal and Garg [2] have proposed a class of logical
clock algorithms, called chain clock, for tracking dependencies
between relevant events based on generalizing a process to
any chain in the computation poset. Their algorithm reduces
the number of components required in the vector when the
set of relevant events is a small fraction of the total events.
Our work is mot closely related to this work. They provide
two different algorithms: the first algorithm adds any newly
arrived event to a chain with the guarantee that no more that

|P | chains are necessary. The second algorithm uses online
chain decomposition of a poset to guarantee that no more that
(w+1)w/2 chains are necessary where w is the width of the
poset. In this paper, our algorithm uses components that are
either for the process or for the object and guarantees that the
number of components is never more than min(|P |, |Q|).

Garg, Skawratananond, and Mittal [7] have proposed an
algorithm to timestamp messages in a distributed system.
They assume that all messages are synchronous and show
that such systems can have timestamps of vector clocks with
dimension less than N . They define the notion of an undirected
communication graph with the set of vertices as processes and
the edges denoting which processes can communicate. They
show that the number of components required is equal to the
number of stars and triangles the communication graph can
be decomposed into. Our technique of using vertex cover is
inspired from that work even though their work is strictly for
distributed systems and they do not consider mixed-clocks. We
have two types of entities in our system — threads and objects
and the dimension of the vector clock reduces to a vertex cover
of the bipartite graph that represents the interaction between
these entities.

VII. CONCLUSIONS

This paper proposes an offline algorithm to compute a
mixed vector clock composed of a mix of threads and objects,
which is shown to be a correct vector clock and have optimal
size, to timestamp events in a computation. Thread-object
bipartite graph is constructed based on the given computation
and then the minimum vertex cover of this bipartite graph
is computed and the threads and objects in this vertex cover
are adopted as the components of the mix vector clock. In a
online computation in which events are coming one by one,
two mechanisms are proposed, the Random mechanism which
randomly choose the associated thread or object as vector
clock component and the Popularity mechanism which choose
the thread or object based on their popularity. By evaluating
on thread-object bipartite graphs with different characteristics,
we get the conclusion that the Popularity mechanism shows
best performance on non-uniform graphs.

REFERENCES

[1] Bondy J. A. and Murty U. S. R. Graph Theory with Applications. North
Holland, 1976.

[2] A. Agarwal and V. K. Garg. Efficient Dependency Tracking for Relevant
Events in Shared-Memory Systems. In Proceedings of the, ACM
Symposium on Principles of Distributed Computing (PODC), pages 19–
28, 2005.

[3] Hopcroft John E. and Richard M. Karp. An n5/2 algorithm for
maximum matchings in bipartite graphs. SIAM Journal on computing,
2(4):225–31, Dec 1973.

[4] C. J. Fidge. Timestamps in Message-Passing Systems that Preserve
the Partial-Ordering. In K. Raymond, editor, Proceedings of the
11th Australian Computer Science Conference (ACSC), pages 56–66,
February 1988.

[5] C. J. Fidge. Partial Orders for Parallel Debugging. In Proceedings of
the ACM/ONR Workshop on Parallel and Distributed Debugging, pages
183–194, January 1989.

[6] C. J. Fidge. Logical Time in Distributed Computing Systems. IEEE
Computer, 24(8):28–33, August 1991.

[7] Vijay K. Garg, Chakarat Skawratananond, and Neeraj Mittal. Times-
tamping messages and events in a distributed system using synchronous
communication. Distributed Computing, 19(5-6):387–402, 2007.

[8] J.-M. Hélary, M. Raynal, G. Melideo, and R. Baldoni. Efficient
Causality-Tracking Timestamping. IEEE Transactions on Knowledge
and Data Engineering, 15(5):1239–1250, 2003.

[9] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. Communications of the ACM (CACM), 21(7):558–565, July
1978.

[10] K. Marzullo and L. Sabel. Efficient Detection of a Class of Stable
Properties. Distributed Computing (DC), 8(2):81–91, 1994.

[11] F. Mattern. Virtual Time and Global States of Distributed Systems.
In Parallel and Distributed Algorithms: Proceedings of the Workshop
on Distributed Algorithms (WDAG), pages 215–226. Elsevier Science
Publishers B. V. (North-Holland), 1989.

[12] M. Singhal and A. Kshemkalyani. An Efficient Implementation of Vector
Clocks. Information Processing Letters (IPL), 43:47–52, August 1992.

	I Introduction
	II System Model and Notation
	III An Offline Algorithm
	III-A The Thread-object Bipartite Graph
	III-B The Offline Algorithm
	III-C Timestamping Events Using Mix-vector-clock
	III-D Proof of Correctness and Optimality

	IV Mix-vector-clock for Online Computation
	V Evaluation
	VI Related Work
	VII Conclusions
	References

