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Abstract—Distributed synchronous stochastic gradient descent
(S-SGD) with data parallelism has been widely used in training
large-scale deep neural networks (DNNs), but it typically requires
very high communication bandwidth between computational
workers (e.g., GPUs) to exchange gradients iteratively. Recently,
Top-k sparsification techniques have been proposed to reduce
the volume of data to be exchanged among workers and thus
alleviate the network pressure. Top-k sparsification can zero-out
a significant portion of gradients without impacting the model
convergence. However, the sparse gradients should be transferred
with their indices, and the irregular indices make the sparse
gradients aggregation difficult. Current methods that use All-
Gather to accumulate the sparse gradients have a communication
complexity of O(kP ), where P is the number of workers, which
is inefficient on low bandwidth networks with a large number of
workers. We observe that not all top-k gradients from P workers
are needed for the model update, and therefore we propose a
novel global Top-k (gTop-k) sparsification mechanism to address
the difficulty of aggregating sparse gradients. Specifically, we
choose global top-k largest absolute values of gradients from
P workers, instead of accumulating all local top-k gradients to
update the model in each iteration. The gradient aggregation
method based on gTop-k sparsification, namely gTopKAllRe-
duce, reduces the communication complexity from O(kP ) to
O(k logP ). Through extensive experiments on different DNNs,
we verify that gTop-k S-SGD has nearly consistent convergence
performance with S-SGD, and it has only slight degradations
on generalization performance. In terms of scaling efficiency, we
evaluate gTop-k on a cluster with 32 GPU machines which are
interconnected with 1 Gbps Ethernet. The experimental results
show that our method achieves 2.7−12× higher scaling efficiency
than S-SGD with dense gradients and 1.1 − 1.7× improvement
than the existing Top-k S-SGD.

Index Terms—Deep Learning; Stochastic Gradient Descent;
Distributed SGD; Gradient Communication; Top-k Sparsifica-
tion; gTop-k;

I. INTRODUCTION

With the increase of training data volume and the grow-
ing complexity of deep neural networks (DNNs), distributed
computing environments (such as GPU clusters) are widely
adopted to accelerate the training of DNNs. The data-parallel
synchronous stochastic gradient descent (S-SGD) method is
one of the commonly used optimizers to minimize the ob-
jective function of large-scale DNNs [1][2]. Compared to
SGD on a single worker, S-SGD distributes the workloads

*Corresponding author.

TABLE I
COMMUNICATION COMPLEXITY OF GRADIENT AGGREGATION

ALGORITHMS

Aggregation Algorithm Complexity Time Cost

DenseAllReduce O(m) 2(P − 1)α+ 2P−1
P

mβ
TopKAllReduce O(kP ) log(P )α+ 2(P − 1)kβ
Ours (gTopKAllReduce) O(k logP ) 2 log(P )α+ 4k log(P )β

Note: m is the number of model parameters. P is the number of workers.
k = ρ ×m is the number of local gradients to be aggregated. α and β
are system dependent constants.

to multiple workers to accelerate the training, but it also
introduces the communication overhead of exchanging model
parameters or gradients in each iteration. Assume that there
are P workers training a single DNN model with S-SGD. In
every iteration, all workers take different mini-batches of data
to calculate the model gradients in parallel. Then they need to
average the gradients before updating the model parameters,
which involves significant data communications [3]. Since
the computing power of computational units (e.g., GPUs and
TPUs) grows much faster than the growth of network speed,
network communication performance has now become the
training bottleneck, especially when the communication-to-
computation ratio is high [4]. Many large IT companies use
expensive high-speed networks such as 40/100Gbps IB or
Ethernet to alleviate the communication pressure, but still
many researchers and small companies can only use consumer-
level GPUs connected by low-bandwidth networks such as
1Gig-Ethernet.

To conquer the communication challenge, one can either
increase the workload of workers by choosing a large batch
size or reduce the required data communications in each
iteration. Very recently, many large-batch SGD techniques
have been proposed with sophisticated optimization strate-
gies [5][6][7][8][9] to increase the scaling efficiency with-
out losing the model accuracy. On the other hand, gradi-
ent sparsification, quantification and compression methods
[10][11][12][13][14][15][16] have been proposed to dramati-
cally reduce the size of exchanged gradients without affecting
the convergence rate. Among the model/gradient size reduc-
tion techniques, the Top-k sparsification is one of the key
approaches [17][12][18] that can sparsify the local gradients
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to just about 0.001 density (99.9% gradients are zeros and
there is no need to transfer these zero-out values) [11][12].

Top-k sparsification has been a successful gradient com-
pression method with empirical and theoretical studies in
[17][12][16], in which researchers have verified that only a
small number of gradients are needed to be averaged during
the phase of gradient aggregation without impairing model
convergence or accuracy. However, the sparsified gradients
are generally associated with irregular indices, which makes
it a challenge to accumulate the selected gradients from all
workers1 efficiently. The ring-based AllReduce method used
on dense gradients (DenseAllReduce) has an O(P + m)
communication complexity [19], where P is the number of
workers and m is the size of parameters (or gradients). In Top-
k sparsification, assume that the density of gradients is ρ on
each worker, k = ρ×m, and the corresponding indices of non-
zero values are irregular from different workers and iterations;
thus it generally needs to transfer 2k number of values (gra-
dients and indices) in each iteration. However, with the sparse
gradients, the DenseAllReduce method cannot be directly used
to accumulate all the sparse gradients with irregular indices,
and a recent solution uses the AllGather collective [20],
which requires an O(kP ) communication complexity. We use
TopKAllReduce to denote the method of averaging irregularly
indexed top-k gradients by adopting AllGather. When scaling
to a large number of workers (i.e., P is large), even high
sparsification ratios still generate significant communication
overheads.

The main idea of Top-k sparsification is based on the fact
that gradients with larger absolute values can contribute more
to the model convergence. Theoretical analysis on this idea
has been proposed in [21][16][18]. Therefore, one can further
select Top-k gradients from the accumulated results from P
groups of top-k values generated by P workers. That is, even
though P workers can generate a maximum number of k×P
non-zero gradients after aggregation, the top-k gradients (in
terms of absolute values) would be the most important for
the model updates. Based on this observation, we propose an
efficient Top-k sparsification method to tackle the difficulty
of TopKAllReduce with little impacting on the model con-
vergence. Specifically, instead of accumulating the irregularly
indexed non-zero gradients from all workers, we choose the
global Top-k (gTop-k) gradients in terms of absolute values.
gTop-k2 can elegantly make use of a tree structure to select
the global top-k values from all workers, which we call
gTopKAllReduce, such that the communication complexity
is reduced from O(kP ) to O(k logP ). We summarize the
communication complexities of different gradient aggregation
solutions in Table I.

In this paper, we first implement the gTopKAllReduce
algorithm which provides much more efficient global Top-k
sparse gradients aggregation from distributed workers. Then

1Worker and GPU are interchangeable in this paper.
2In this paper, we mainly discuss the decentralized S-SGD with AllRe-

duce to apply gTop-k sparsification. But it is also applicable to the Parameter
Server based distributed SGD.

we integrate our proposed gTopKAllReduce to gTop-k S-
SGD under PyTorch3, which is one of the most popular deep
learning frameworks and MPI4. On a 32-node GPU cluster
connected by 1-Gbps Ethernet, gTop-k S-SGD achieves 2.7-
12.8x speedup than S-SGD with highly optimized libraries
Horovod [22] and NCCL5. Compared to Top-k S-SGD, gTop-
k S-SGD is generally around 1.5 times faster on the evaluated
experiments on various DNNs and datasets. Our contributions
are summaries as follows:

• We observe that the accumulating results of Top-k spar-
sification can be further sparsified before being updated
to the model.

• We propose an efficient global Top-k sparsification al-
gorithm on distributed SGD, called gTop-k S-SGD, to
accelerate distributed training of deep neural networks.

• We implement the proposed gTop-k S-SGD atop popular
framework PyTorch and MPI, and we also release all our
experimental parameters for reproducibility6.

• gTop-k S-SGD achieves significantly improved scaling
efficiency on the real-world applications with various
DNNs and datasets under low-bandwidth networks (e.g.,
1 Gig-Ethernet).

The rest of the paper is organized as follows. We introduce
the preliminaries in Section II, in which some background
information and the main problem is clarified. In Section
III, we present our observation from Top-k sparsification
and propose an efficient gTop-k S-SGD algorithm. Then we
demonstrate the detailed experimental study in Section IV
and have a discussion in Section V. Section VI gives an
introduction to the related work, and finally we conclude the
paper in Section VII.

II. PRELIMINARIES

A. DNNs

Deep neural networks (DNNs) are generally stacked with
many hierarchical layers, and each layer is a transformer
function of the input values. We can formulate an L-layer
DNN by

a(l) = f(W (l), x(l)), (1)

where x(l) and a(l) are the input and output of layer l (l =
1, 2, ..., L) respectively. Inputs of current layer are the outputs
of its previous layer(s) (e.g., xl = a(l−1)). The function f is
the transformer function which consists of an operation (e.g.,
inner product or convolution) and an activation function (e.g.,
ReLU). W (l) are the trainable model parameters, which could
be iteratively updated during the training process using mini-
batch stochastic gradient descent (SGD) optimizers and the
backpropagation algorithm.

3https://pytorch.org/
4https://www.open-mpi.org/
5https://developer.nvidia.com/nccl
6All experimental settings and source codes can be found at GitHub:

https://github.com/hclhkbu/gtopkssgd

https://pytorch.org/
https://www.open-mpi.org/
https://developer.nvidia.com/nccl
https://github.com/hclhkbu/gtopkssgd


B. Mini-batch SGD

The objective function L(W,D) defines the differences
between the prediction values by the DNN and the ground
truth. The mini-batch SGD optimizer updates the parameters
iteratively to minimize the objective function. To be specific,
there are three phases in each iteration during training: 1)
Feed-forward phase: a mini-batch of data Di (Di ⊂ D) is
read as inputs of a DNN, and Di is fed forward across the
neural network from the first layer to the last layer, which
finally generates the prediction values to be used by the
objective function L(W,D). 2) Backward-propagation phase:
the gradients w.r.t. the parameters and inputs are calculated
from the last layer to the first layer. 3) Update phase, the
parameters are updated by the afore-generated gradients using
the following formula (or its variants):

Wi+1 =Wi − η · ∇L(Wi, Di), (2)

where η is the learning rate. For a single-worker training,
phases 1) and 2) are the main time costs of an iteration,
which are computing-intensive tasks. So the average time of
one iteration can be approximated by titer = tf + tb.

C. Synchronous SGD

Synchronous SGD (S-SGD) with data parallelism is widely
applied to train models with multiple workers (say P workers,
and indexed by g). Each worker keeps a consistent model at
the beginning of each iteration. The workers take different
mini-batches of data Dg

i and forward them by phase 2), and
then follow phase 3) to calculate the gradients ∇L(Wi, D

g
i )

in parallel. The average gradients from different workers are
used to update the model. The update formula of parameters
is rewritten as

Wi+1 =Wi − η
1

P

P∑
g=1

Gg
i , (3)

where Gg
i = ∇L(Wi, D

g
i ) denotes the gradients of worker g at

the ith iteration. The gradients are located in different workers
without shared memory so that the averaging operation of
gradients involves communication costs, which could become
another system bottleneck. The average iteration time of S-
SGD can be approximated by titer = tf +tb+tc. Assume that
we use weak-scaling on P workers with S-SGD, the scaling
efficiency can be approximated by

e =
tf + tb

tf + tb + tc
. (4)

tc is generally related to P and the model/gradient size m.

D. DenseAllReduce

In Eq. 3, the summation of Gg
i (i.e.,

∑P
g=1G

g
i ) can be

directly implemented by an AllReduce collective, which is
denoted as DenseAllReduce. The ring-based AllReduce al-
gorithm (which is also included in NCCL) is an efficient
implementation on the dense-GPU cluster. To understand the
time cost of DenseAllReduce, we revisit the time model of

the ring-based AllReduce. According to [23], the time cost of
ring-based AllReduce can be represented by

tdarc = 2(P − 1)α+ 2
P − 1

P
mβ, (5)

where α is the latency (startup time) of a message transfer
between two nodes, and β is the transmission time per element
between two nodes using the alpha-beta model [24].

Algorithm 1 S-SGD with Top-k sparsification on worker g
[12][20]
Input: The dataset: D
The initialized weights: W
The mini-batch size per worker: b
The number of workers: P
The number of iterations to train: N
The number gradients to select: k

1: Gg
0 = 0

2: for i = 1→ N do
3: Sampling a mini-batch of data Dg

i from D;
4: Gg

i = Gg
i−1 +∇L(Wi, D

g
i );

5: Select threhold thr = the kth largest value of |Gg
i |;

6: Mask = |Gg
i | > thr;

7: G̃g
i = Gg

i �Mask; // Mask has k non-zero values
8: Gk

i = Gg
i � ¬Mask; // Store the residuals

9: Gi =TopKAllReduce(G̃g
i ); //Gi =

1
P

∑P
g=1 G̃

g
i

10: Wi =Wi−1 − ηGi;
11: end for
12: procedure TOPKALLREDUCE(G̃g

i )
13: [Vg

i , I
g
i ] = G̃g

i ;
14: [V, I] =AllGather([Vg

i , I
g
i ]);

15: Gi = G̃g
i ;

16: for g = 0→ P − 1 do
17: Gi[I[g ∗ P : g ∗ (P + 1)]]+ = V [g ∗ P : g ∗ (P + 1)];
18: end for
19: Gi = Gi/P ;
20: Return Gi;
21: end procedure

E. Top-k sparsification

From Eq. 5, it is noted that with P or m becoming large,
the communication cost will be linearly increased. To reduce
the size of transfer messages m, researchers propose Top-
k sparsification [12] which introduces highly sparse gradi-
ents. With Top-k sparsification, each worker only needs to
contribute the k largest absolute values of gradients Gg

i to
be summed up in each iteration, and the zeroed-out values
of gradients are stored locally and accumulated at the next
iteration. Both theoretical and empirical studies have verified
that the Top-k sparsification has little impact on the model
convergence and accuracy [17][12][16]. For completeness,
the pseudo-code of Top-k sparsification S-SGD is shown in
Algorithm 1. Note that at Line 9 of Algorithm 1, the im-
plementation of TopKAllReduce is completely different from
the DenseAllReduce for efficiency since the non-zero values
of G̃g

i may come from inconsistent indices Igi from different
workers. Efficient implementations of such sparse AllReduce
are non-trivial. Current methods [20] are using AllGather to
implement TopKAllReduce, in which the sparsified gradients



are gathered as a dense vector combined with its corresponding
indices, say G̃g

i = [Vg
i , I

g
i ]. Both sizes of Vg

i and Igi are k.
According to the communication model of AllGather [19], the
time cost for all-gathering 2k values is

ttarc = log(P )α+ 2(P − 1)kβ. (6)

From Eq. 6, we can see that with increasing P , ttarc is linearly
increased. Therefore, the effect of Top-k sparsification will
diminish with the increase of number of workers. In this paper,
we propose a global Top-k (gTop-k) sparsification algorithm
to address this scalability problem.

III. METHODOLOGY

In this section, we first demonstrate some observations from
Top-k sparsification S-SGD, and then we present our proposed
global Top-k sparsification algorithm. For ease of presentation,
we assume that the number of workers P is the power of 2.

A. Observations from Top-k sparsification

In the previous section, we have introduced Top-k sparsifi-
cation S-SGD, in which there are k values selected from the
local worker and then are accumulated across all the workers.
We get insight into the distribution of non-zero values (denoted
as Gi) of Gi which is generated by the summation of the sparse
gradients from all workers. We found that not all Gi (whose
number of elements is K, and k ≤ K ≤ k×P ) contribute to the
model convergence. Specifically, Gi can be further sparsified
as G̃i such that only a smaller number of non-zero gradients
are needed for model updates. In other words, one can further
select top-k largest absolute values, G̃i, from Gi to update
the model while maintaining the model convergence. In this
scenario, the selected G̃i from Gi results in the fact that K−k
afore-summed gradients are neither updated to the model nor
stored into the local residuals, which could damage the model
convergence. Therefore, if only k elements are selected from
Gi to update the model, the remaining K−k elements should be
put back as residuals with corresponding indices so that they
can be accumulated locally and eventually contribute to the
model update in some future iterations. We empirically verify
this idea by training a ResNet DNN, and show the convergence
result in Fig. 1.
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Fig. 1. The convergence of ResNet-20 on 4 workers with only k = 0.001×m
elements updated at each iteration. The experimental settings can be found in
Section IV.

Algorithm 2 Naive version S-SGD with gTop-k on worker g
Input: The dataset: D
The initialized weights: W
The mini-batch size per worker: b
The number of workers: P
The number of iterations to train: N
The number of gradients to select: k

1: Gg
0 = 0

2: for i = 1→ N do
3: Sampling a mini-batch of data Dg

i from D;
4: Gg

i = Gg
i−1 +∇L(Wi, D

g
i );

5: Select threshold thr = the kth largest value of |Gg
i |;

6: Mask = |Gg
i | > thr;

7: G̃g
i = Gg

i �Mask; // Mask has k non-zero values
8: Gg

i = Gg
i � ¬Mask; // Store the residuals

9: Gi =SparseAllReduce(G̃g
i ); //Gi =

1
P

∑P
g=1 G̃

g
i

10: // At this time all workers have consistent Gi

11: Select global threshold gThr = the kth largest value of |Gi|;
12: gMask = |Gi| > gThr;
13: G̃i = Gi � gMask;
14: Gg

i+ = G̃g
i � ¬gMask �Mask; // Store extra residuals

15: Wi =Wi−1 − ηG̃i;
16: end for

B. The key idea of gTop-k

According to the above observations, it only needs k largest
absolute values from all the sparsified gradients Gg

i , where
g = 1, 2, ..., P . Therefore, the problem is formulated as the
global Top-k (gTop-k) selection from Gi instead of using
TopKAllReduce, while G̃g

i are located in distributed workers.
We again let [V g

i , I
g
i ] denote the non-zero values and corre-

sponding indices of G̃g
i whose number of non-zero values is

k. We first use the AllGather version to illustrate the key idea
of gTop-k sparsification, and then we present our new efficient
algorithm for gTop-k sparsification. At Line 10 of Algorithm
1, Wi =Wi−1−ηGi, Gi with K non-zero values contributing
updates to Wi. We further sparsify Gi by selecting k largest
absolute values from Gi. The implementation is shown in
Algorithm 2. Please be noted that this version is only used to
illustrate the key idea of how to select those gradients to update
the model. The efficient algorithm is presented afterwards in
the next subsection. An example of gTop-k sparsification using
AllGather on 4 workers is shown in Fig. 2.

Fig. 2. An example of gTop-k using AllGather on 4 workers, and k = 2.



C. gTopKAllReduce: An efficient AllReduce algorithm for
gTop-k sparsification

From Eq. 6, we can see that the AllGather collective is
inefficient to conduct the AllReduce operation from irregular
indexed gradients. Based on the same density, the main
purpose of our proposed efficient algorithm is to alleviate
the high impact of the variable P on the time cost. For ease
of presentation, we first define a Top-k operation, >, of two
sparse vectors, say G̃a and G̃b, both of which have k non-zero
values.

Definition 1: A Top-k operation: >. G̃a,b = G̃a>G̃b =
mask � (G̃a + G̃b), where mask = (|G̃a + G̃b| > thr), and
thr =the kth largest value of |G̃a + G̃b|.

Note that the number of non-zero values of G̃a,b is also
k. During the training of S-SGD, G̃a and G̃b are located
in different workers without shared memory. One should ex-
change the two sparse vectors to achieve a global Top-k sparse
vector: G̃a,b. The operation for two distributed workers is
shown in Fig. 3, which demonstrates that > can be efficiently
implemented by a send operation (network communication),
followed by a local Top-k selection on a maximum number
of 2k non-zero values.

Fig. 3. An implementation of > for two distributed sparse vectors G̃a and
G̃b. The second worker ([V b, Ib] = G̃b) with k non-zero elements (V b)
combined with k indices (Ib) sends [V b, Ib] to the first worker, and then
the first worker has the information of indices to add the values received
from the second worker, i.e., G̃a + G̃b, and the first worker easily computes
G̃a,b = G̃a>G̃b according to Definition 1.

When scaling to P workers (assume that P is the power
of 2), since the final k is equal to the local k, we propose
a tree structure based technique to reduce the total transfer
size. To illustrate the tree structure for gTop-k, we show an
8-worker example in selecting the global Top-k values in Fig.
4. There are 3 rounds of communications for 8 workers (i.e.,
log2 8 = 3). At the jth round, there are P

2j pairs of workers
to do the > operations in parallel. After 3 rounds, the first
worker (rank 0) finally generates the global Top-k values (i.e.,
G̃ = G̃1,2,...,8 = G̃1>G̃2>...G̃8).

According to the illustration of tree structure based gTop-
k, we propose the gradients aggregation with gTop-k spar-
sification, which is called gTopKAllReduce in Algorithm 3.
Line 1 selects the non-zero values from sparse G̃g to assign
the variable “sends”, which should be sent to other workers.
Line 2 allocates the buffer “recvs” to receive the “sends”
from another worker at each communication round. Lines 4-
17 describe the procedure of G̃ = G̃1>G̃2>...G̃P , which is
finally stored in “sends” for the next round communication.
The functions “Recv” and “Send” in Line 10 and 14 are a
paired operation and can be implemented by MPI. Since the

Fig. 4. An example of gTop-k for 8 distributed sparse vectors G̃1, G̃2, ..., G̃8.
I.e., G̃ = G̃1,2,...,8 = G̃1>G̃2>...G̃8. It only requires log2P = log28 = 3
rounds of network communications to select the global Top-k.

Algorithm 3 gTopKAllReduce

Input: The sparsified gradients: G̃g

The number of non-zero elements: k
The number of workers: P
The rank of worker: g

1: sends = [V g, Ig] = G̃g;
2: Initialize recvs with the same as sends;
3: nRounds = logP ;
4: for i = 1→ nRounds do
5: participateRanks = [1→ P, step = i];
6: if g in participateRanks then
7: localRank = participateRanks.index(g);
8: if localRank%2 == 0 then
9: source = participateRanks[localRank + 1];

10: Recv(recvs, source=source);
11: sends = recvs>sends;
12: else
13: target = participateRanks[localRank − 1];
14: Send(sends, dest=target);
15: end if
16: end if
17: Barriar();
18: end for
19: Bcast(sends, root=0);
20: G̃ = [V, I] = sends;
21: Mask = [0] in the same number of elements with G̃;
22: Mask[I] = 1;
23: Return G̃,Mask;

result G̃ by far is only stored at the first worker (rank=0),
Line 19 broadcasts the G̃ to all other workers, which also
requires logP number of communications using the flat-tree
algorithm [25]. Finally, Lines 21 and 22 record the Mask
which indicates the indices that are used in G̃.

D. Communication complexity analysis of gTopKAllReduce

There are two main processes of gTopKAllReduce. The first
one is the calculation of G̃. From Fig. 4, the first worker should
take part in the communication at every round, so we only
need to analyze the communication complexity of the worker
with rank 0. Rank 0 takes logP rounds of communications to
calculate G̃, and it receives 2k elements from another worker
at each round which takes a time cost of α+ 2kβ. Thus, the
overall time cost of the first process is α logP + 2kβ logP .
In the second process, the global top-k values (i.e., G̃) in the
first worker should be broadcasted to all the other workers.



The broadcast operation takes α logP + 2kβ logP according
to the flat-tree algorithm. In summary, the time cost of
gTopKAllReduce is

tgarc = 2α logP + 4kβ logP. (7)

The communication complexity is much lower than Top-
KAllReduce especially when P is large.

E. gTop-k S-SGD with gTopKAllReduce

With the above proposed efficient implementation of gTop-
KAllReduce, we improve the gTop-k S-SGD in Algorithm 2
by replacing Lines 9-13 with a line that invokes gTopKAllRe-
duce shown in Algorithm 3. The improved version of the
gTop-k S-SGD training algorithm is presented in Algorithm 4.
Compared to Top-k S-SGD, gTop-k S-SGD only introduces an
extra computation (Line 10 in Algorithm 4) whose overhead is
much smaller than the communication overhead, while gTop-k
S-SGD reduces the communication complexity a lot.

Algorithm 4 gTopKAllReduce based S-SGD on worker g
Input: The dataset: D
The initialized weights: W
The mini-batch size per worker: b
The number of workers: P
The number of iterations to train: N
The number gradients to select: k

1: Gg
0 = 0

2: for i = 1→ N do
3: Sampling a mini-batch of data Dg

i from D;
4: Gg

i = Gg
i−1 +∇L(Wi, D

g
i );

5: Select threshold thr = the kth largest value of |Gg
i |;

6: Mask = |Gg
i | > thr;

7: G̃g
i = Gg

i �Mask; // Mask has k non-zero values
8: Gg

i = Gg
i � ¬Mask; // Store the residuals

9: G̃i, gMask =gTopKAllReduce(G̃g
i ,k,P ,g);

10: Gg
i+ = G̃g

i � ¬gMask �Mask; // Store extra residuals
11: Wi =Wi−1 − ηG̃i;
12: end for

IV. EXPERIMENTAL STUDY

We conduct extensive experiments to evaluate the effective-
ness of our proposed gTop-k S-SGD by real-world applications
on a 32-GPU cluster. We first validate the convergence of
gTop-k S-SGD. Then we evaluate the time cost and efficiency
of gTopKAllReduce and compare them with the dense AllRe-
duce (DenseAllReduce) and Top-k AllReduce (gTopKAllRe-
duce) counterparts. After that, we make a comparison on the
training efficiency among the three S-SGD algorithms (i.e.,
S-SGD with dense gradients, Top-k S-SGD, and gTop-k S-
SGD). We also break down the training process in an iteration
to several phases to analyze the extra overhead introduced by
gTop-k sparsification.

A. Experimental setup

Hardware: The distributed environments are configured as
a 32-node cluster, each with one Nvidia P102-100 GPU. All
nodes are connected by a 1-Gbps Ethernet. Details of the
hardware are shown in Table II.

TABLE II
THE EXPERIMENTAL SETUP OF HARDWARE.

Hardware Model
CPU Intel(R) Celeron(R) CPU N3350 @ 1.10GHz
GPU Nvidia P102-100 (3200 CUDA cores and 5GB Memory)
PCI-e PCI-e×1 lane with a maximum bandwidth of 250 MB/s
Memory 4GB DDR3 with a 16GB swap file
Disk 256GB SSD
Network 1 Gbps Ethernet (1GbE)

Software: All GPU machines are installed with Ubuntu-
16.04, Nvidia GPU driver at version 390.48, and CUDA-9.1.
The communication libraries are OpenMPI-3.1.17 and NCCL-
2.1.58. We use the highly optimized distributed training library
Horovod9 [22] at version 1.4.1. The deep learning framework
is PyTorch at version 0.4.0 with cuDNN-7.1.

TABLE III
DEEP MODELS FOR TRAINING.

Model Dataset # of Epochs b η

VGG-16 Cifar-10 140 128 0.1
ResNet-20 Cifar-10 140 128 0.1
AlexNet ImageNet 45 64 0.01
ResNet-50 ImageNet 45 256 0.01
LSTM-PTB PTB 40 100 1.0

Note: All models are trained with 32-bit floating points.

DNNs: We choose various DNNs from several areas of AI
applications with different data sets. The data sets include
Cifar-10 [26] that contains 50, 000 training samples, Ima-
geNet [27] that contains about 1.2 million samples for image
classification, and the Penn Treebank corpus (PTB) [28] that
contains 923, 000 training samples for language modeling. For
the Cifar-10 data set, we use the VGG-16 model [29] and the
ResNet-20 model [30]. For the ImageNet data set, the AlexNet
model [31] and the ResNet-50 model [30] are used. We exploit
a 2-layer LSTM language model (LSTM-PTB) for the PTB
dataset, which is similar as in [12]. The details of the deep
learning models are given in Table III. We use momentum
SGD with a momentum of 0.9 to train all models.

B. Convergence comparison

The convergence of Top-k sparsification S-SGD has been
verified to be nearly consistent with the dense version in
much previous work [17][12][16], so we would not include
the convergence curves of Top-k S-SGD. We compare our
gTop-k S-SGD with the original S-SGD with dense gradients
running on 4 workers. It has been shown that the warmup
strategy in the first several epochs helps the model converge
better [12], so we adopt a similar warmup configuration. To
be specific, the first 4 epochs use the dynamic densities of
[0.25, 0.0725, 0.015, 0.004] and small learning rates, and the
remaining epochs adopt a density of 0.001 (for CNNs) or
0.005 (for LSTM).

7https://www.open-mpi.org/
8https://developer.nvidia.com/nccl
9https://github.com/uber/horovod

https://www.open-mpi.org/
https://developer.nvidia.com/nccl
https://github.com/uber/horovod
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Fig. 5. The convergences of VGG-16 and ResNet-20 with P = 4.

Convergence on the Cifar-10 data set: The convergences
of VGG-16 and ResNet-20 models are shown in Fig. 5. The
results show that the convergence rate of ResNet-20 is almost
the same as the baseline, while the VGG-16 model even
converges slightly better than the baseline.
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Fig. 6. The convergences of AlexNet and ResNet-50 with P = 4.

Convergence on the ImageNet data set: The convergences
of AlexNet and ResNet-50 models are shown in Fig. 6. The
results show that the convergence rates of the two CNNs are
close to the baselines. On the AlexNet model, the convergence
of gTop-k S-SGD with ρ = 0.001 is slightly worse than the
baseline, which could be caused by unbalanced parameters
between convolutional layers and fully connected layers with
the same low density. On the other hand, gTop-k sparsification
works very well on the ResNet-50 model, which converges
even faster than the baseline.

Convergence on the LSTM network: The convergence of
LSTM-PTB on the PTB data set is shown in Fig. 7. It is noted
that the convergence of gTop-k S-SGD is almost the same as
that of S-SGD under a density of 0.005.
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Fig. 7. The convergence of LSTM with P = 4 and ρ = 0.005.

In summary, three different types of DNNs from different
data sets show that our proposed gTop-k S-SGD would not

damage the model during training and keeps very close model
convergence to dense S-SGD.

C. Communication speed
To set the baseline, we first test the point-to-point communi-

cation performance with various sizes of messages because the
performance of point-to-point communication plays an essen-
tial role in MPI collectives. Then we compare the communi-
cation performance of TopKAllReduce and gTopKAllReduce
in different sizes of sparse vectors according to Table I.

Point-to-point communication: We test the point-to-point
communication speed by using OSU Micro-Benchmark10 at
the version 5.5. The time costs of the point-to-point commu-
nication between two machines are shown in Fig. 8, in which
we run 5 times to calculate the mean and standard variance
from the reported values. It can be seen that the time used for
transferring a message is a linear function with the size of the
message, which verifies the α-β model. Based on the measured
data, we can get α = 0.436ms and β = 3.6× 10−5ms.
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Fig. 8. Data transfer time in milliseconds with respective to the size of
message on our experiment cluster.

Time performance of AllReduce operations: Since P
and m are two main factors affecting the performance of
TopKAllReduce and gTopkAllReduce, we compare their time
performances in two dimensions (i.e., P and m) based on
the measured α, β and the time cost models in Table. I.
First, we compare the time cost with different number of
workers (from 4 to 128) based on m = 25 × 106 (the
approximate model size of ResNet-50) and ρ = 0.001. Second,
in the configuration of a cluster with 32 workers, we make
a comparison on how the time cost changes with the size
of parameters increases. The time comparison is shown in
Fig. 9. From the left of Fig. 9, when the number of nodes
is small, TopKAllReduce is slightly faster than gTopKAllRe-
duce. However, when the number of nodes increases to 16,
TopKAllReduce becomes much worse than gTopKAllReduce.
Furthermore, our proposed gTopKAllReduce is much more
efficient than TopKAllReduce when scaling to large sizes
of messages. To summarize, a larger number of workers or
a larger message size would make gTopKAllReduce more
efficient than TopKAllReduce.

D. Scaling efficiency
The scaling efficiency of S-SGD with three different AllRe-

duce algorithms are shown in Fig. 10. It can be seen that the

10http://mvapich.cse.ohio-state.edu/benchmarks/

http://mvapich.cse.ohio-state.edu/benchmarks/
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Fig. 9. Left: Time used for AllReduce algorithms on different number of
workers with m = 25×106 parameters, and the density of ρ = 0.001. Right:
The time cost with respective to the number of parameters on 32 workers.

dense S-SGD has worst scaling efficiency because the full size
of gradients makes the communication very slow on 1GbE
clusters. The Top-k S-SGD achieves some improvement on a
small number of workers than S-SGD, but it has an obvious
performance decrease when scaling to 32 GPUs. However, our
proposed algorithm gTop-k S-SGD achieves much more stable
scaling efficiency even on clusters with a larger number of
GPUs. For example, when scaling to 32 GPUs, our proposed
gTop-k S-SGD achieves 6.7× faster than dense S-SGD on
average, and 1.4× improvement on average compared to Top-
k. Particularly, gTop-k S-SGD is up to 12× and 1.7× than
S-SGD and Top-k S-SGD respectively on the AlexNet model.
The performance improvement will increase with the increase
of number of workers. Summary of the training throughput on
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Fig. 10. Comparison of scaling efficiency of S-SGD with dense AllReduce
(DenseAllReduce), Top-k sparsification (TopKAllReduce) and gTop-k spar-
sification (gTopKAllReduce), where k = 0.001×m. The higher the better.

different models is shown in Table. IV.

E. Time performance analysis

We use the cases of 32 workers to analyze the time
performance of gTop-k S-SGD. We break down the time of
an iteration into three parts: GPU computation time (tcompu.),

TABLE IV
THE SYSTEM TRAINING THROUGHPUT ON A 32-GPU CLUSTER.

Model Dense S-SGD Top-k gTop-k g/d g/t

VGG-16 403 2016 3020 7.5× 1.5×
ResNet-20 9212 22272 25280 2.7× 1.1×
AlexNet 39 296 505 12.8× 1.7×
ResNet-50 343 978 1251 3.65× 1.3×

Note: The throughput is measured with processed images per second.
g/d indicates the speedup of gTop-k compared to the dense one, and
g/t indicates the speedup of gTop-k compared to Top-k.

local sparsification time (tcompr.), and communication time
(tcommu.). The results are shown in Fig. 11. On one hand,
in the time breakdown of VGG-16 and AlexNet models, the
communication overheads are much larger than computation
because VGG-16 and AlexNet have three fully connected lay-
ers with a large number of parameters, while the computation
is relatively fast. These also reflect that the scaling efficiency
is low in Fig. 10 of S-SGD even with gTop-k sparsification.
On the other hand, the communication and sparsification over-
heads are much smaller than the computation with ResNet-
20 and ResNet-50, which indicates low communication-to-
computation ratios, so that the scaling efficiency can be up
to 80% even on the low-bandwidth network. Furthermore,
it is noted that the time used by gradient sparsification is
comparable to the computation time on VGG-16 and AlexNet
models. The main reason is that Top-k selection on GPU is
inefficient and it could be non-trivial to be highly parallelized
on SIMD architectures [32][33]. We will leave this as our
future optimization direction.
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Fig. 11. Time breakdown of computation, compression and communication.
“Compu.” indicates forward and backward computation, “Compr.” indicates
the compression (sparsification) operation, and “Commu.’ indicates gTop-k
gradients communication.

V. DISCUSSION

A. Convergence sensibility to the density

To understand the sensibility of the convergence to the
density, we run the experiments with different values of the
density ρ using VGG-16 and ResNet-20 on the Cifar-10 data
set on 4 workers. The convergence curves are shown in Fig.
12. It can be seen that even a very low density of 0.0005
does not have a big impact on the model convergence to
both models. However, a trade-off should be made to balance
the high sparsification ratio and the convergence speed. One
one hand, the higher sparsification would bring higher scaling
efficiency to a larger number of workers. On the other hand,



one should also be careful to the upper bound of the sparsity
that would hurt the model convergence.
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Fig. 12. Convergences with different ρ on 4 workers.

B. Convergence sensibility to the mini-batch size

The previous section illustrates that gTop-k S-SGD achieves
nearly consistent convergences with proper choose densities.
However, compared with Top-k S-SGD, gTop-k S-SGD has
some disadvantages which may result in poorer generalization
performance when the total number of iterations (N ) is
relatively small. Assume that we set k = 0.001×m, P = 32
and B = b × P = 1024 on the Cifar-10 data set, we have
N = 5880 with 120 epochs. At each iteration, Top-k S-
SGD could make k × P weights be updated, while gTop-
k S-SGD updates k weights. Therefore, gTop-k S-SGD has
only 6 updates on some weights, while Top-k S-SGD has
about 192. The top-1 validation accuracy of VGG-16 and
ResNet-20 trained with gTop-k S-SGD and Top-k S-SGD are
shown in Fig. 13. It shows that ResNet-20 has ˜9% accuracy
degradation with gTop-k S-SGD, while VGG-16 has only ˜1%
accuracy degradation with gTop-k S-SGD. As a result, gTop-
k S-SGD requires more updates (by setting smaller mini-
batch size) on ResNet-20 to achieve a higher accuracy, and
it could also have higher accuracy degradation on VGG-16
by reducing the number of updates (by setting large mini-
batch size). The comparison is shown in Fig. 14 with changed
mini-batch sizes, which shows that gTop-k S-SGD achieves
closer accuracy (only ˜0.5% degradation) to Top-k S-SGD
with smaller mini-batch size on ResNet-20, and gTop-k has
˜6% accuracy degradation with a large mini-batch size on
VGG-16.
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Fig. 13. The accuracy comparison between gTop-k and Top-k on ResNet-20
and VGG-16 with a mini-batch size of 1024 and P = 32.
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Fig. 14. The accuracy comparison between gTop-k and Top-k on ResNet-20
and VGG-16 with P = 32 and changed mini-batch sizes.

VI. RELATED WORK

Gradient size reduction in communication is crucial for dis-
tributed synchronous SGD. Gradient quantization [34][35] and
sparsification are two main techniques. Gradient quantization
can only achieve a maximum of 32× reduction compared
to the 32-bit gradients, while gradient sparsification is more
aggressive than quantization. Gradient sparsification zero-outs
a large proportion of gradients to reduce the communication
size dramatically. Aji et al. [17] and Chen et al. [11] empiri-
cally demonstrate that up to 99% gradients are not needed to
update the model at each iteration, which indicates that the
gradients would be very sparse to convergent the model with
accumulations of gradient residuals. Aji et al. [17] use static
threshold selection to determine k, while Chen et al. [11] pro-
pose a dynamic version. Lin et al. [12] further propose some
optimization tricks (including the warmup strategy, momentum
correction, and gradient clipping) to address the accuracy loss
introduced by dropping a large number of gradients, and they
show that Top-k sparsification S-SGD can converge very close
to S-SGD with dense gradients. The above techniques of
quantization and sparsification can be combined to achieve
a higher compression ratio of gradients with little accuracy
loss. For example, Lin et al. [12] achieve up to 270× and
600× compression ratio without loss of accuracy. Researchers
in [20] have realized that efficient sparse AllReduce algorithms
are non-trivial to implement, and they propose the AllGather
solution. However, the AllGather method requires a linear
increase cost with respect to the number of workers. Therefore,
the AllGather could be inefficient when scaling to large-scale
clusters.

VII. CONCLUSION AND FUTURE WORK

In this paper, we first showed that the accumulating results
from top-k gradients can be further sparsified by choosing
largest absolute gradients before updating the model, which
has no much impact on the model convergence. Then we
identified that the Top-k sparsification is inefficient in aver-
aging the gradients from all workers because the indices of
the Top-k gradients are not the same such that one should
use the AllGather collective to collect all the Top-k gradients
and indices. The AllGather method for Top-k aggregation
(TopKAllReduce) is linear expensive to the number of work-
ers (i.e., the communication complexity is O(kP ), where



P is the number of workers), so it would have very low
scalability when scaling to large clusters. To this end, we
proposed a global Top-k (gTop-k) sparsification approach for
S-SGD. The gradient aggregation algorithm based on gTop-
k, named gTopKAllReduce, only requires a communication
complexity of O(k logP ). Experimental studies on various
of deep neural networks including CNNs and RNNs were
conducted to verify gTop-k S-SGD has only slightly impact
on the model convergence. The experiments conducted on the
32-GPU cluster inter-connected with 1 Gbps Ethernet showed
that our proposed gTop-k S-SGD has much higher scaling
efficiency than S-SGD and Top-k S-SGD.

Pipelining between computation and communication in-
creases the scalability by optimally hiding the communication
overheads [36]. In the future work, we would like to inves-
tigate layer-wise sparsification such that the communication
overheads can be further overlapped by the computation tasks.
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