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Abstract

Research on delay tolerant networks (DTNs) has brought
about a plethora of routing algorithms targeted at networks
with different mobility patterns. However, few research
works have been done towards developing methods to un-
derstand certain characteristics of DTNs, especially those
with predictable characteristics (e.g., predictable mobility).
As a step towards closing this gap, we devise an efficient
scheme to study the tolerance of a DTN-like dynamic net-
work in terms of delay. Our work is from the viewpoint of
routing, and is based on theories in evolving graphs [1]. In
this paper, we define the solvability of a DTN in terms of de-
lay and show that it is non-trivial to examine it in the scope
of a DTN through examples and analysis. We then propose
both centralized and distributed solutions to this problem.
Through extensive simulations based on real traces from
UMass DieselNet [2] we study the solvability of both kinds
of networks using approaches proposed in this paper. Fi-
nally, we briefly discuss the scenarios to which our work
could be applied.

Keywords: delay tolerant networks (DTNs), contact,
evolving graphs, predictable mobility

1 INTRODUCTION

Recently, a fundamental research work [4] has been done
towards understanding routing problems in DTNs. In [4],
Ramanathan et al. developed a formal framework to answer
the following question: given a dynamic network which can
be eventually connected, eventually routable, or eventually
transportable, and a specified routing mechanism based on
whether an end-to-end path is required, whether replication
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is allowed and whether schedule is known, is the network
solvable by the routing mechanism? However, the solvabil-
ity of a dynamic network corresponding to a routing mech-
anism in an eventual manner is not sufficient. More specif-
ically, to answer whether a dynamic network is solvable
during a time period by considering some specific metric
(e.g. within a given delay) is sometimes more meaningful
but more challenging. This paper focuses on this issue.

In this paper, we study the following problem: given
a dynamic network and an upper bound of routing metric
such as delay, determine whether the network is solvable
within that upper bound. To simplify, we assume that prob-
lems are considered in some given period of time [0, Te].
To solve this problem in the scope of MANET may be triv-
ial. However, to solve it in the scope of a DTN is definitely
nontrivial. As aforementioned, the routing paradigm has
changed from store-forward to store-carry-forward, and op-
timal routes satisfying a certain metric change from a func-
tion of source and destination to a function of source, des-
tination, and start time. Furthermore, enumerating all the
start times in [0, T'e] is costly and even impossible. We will
illustrate the problem in more detail in Section 2.3.

We propose our framework to study the aforementioned
problem by taking into account both space and time. Our
framework is based on evolving graph theories [1]. Due
to the fact that the problem is closely related to node mo-
bility patterns, and also to make our research results more
practical, we limit the networks we study to those with pre-
dictable contacts (contact definition will be given in Section
2.1) over either finite time horizons or infinite time horizons
due to periodicity. To address the case over finite time hori-
zons, we propose a centralized method which is based on
the result in [1]. Subsequently, we propose a decentralized
method which is a modification of the distributed Bellman-
Ford algorithm to address the case over infinite time hori-
zons where nodes are either static or have a strict repeti-
tive motion. [2]. The contributions of our research work



are summarized as follows: (1) To the best of our knowl-
edge, we are the first to examine the solvability of a dynamic
network with predictable mobility during a time period by
considering some specific metric. The problem we raise
here may lay a foundation for future research such as rout-
ing scheduling and routing optimization. (2) By modeling
a dynamic network with predictable contacts as an evolving
graph, we devise both centralized and decentralized solu-
tions to the nontrivial problem. We study the solvability of
a real network.

The remainder of this paper is organized as follows. In
Section 2, we review the concept of evolving graphs, model
the network, and illustrate the problem. Section 3 presents
the algorithms. Section 4 presents the simulation results.
Some related works will be reviewed in Section 5 and this
paper is concluded in Section 6.

2 PRELIMINARIES

In this section, we first review the evolving graph model
[1] which is a good tool to analyze the characteristics of
time-varying dynamic networks. Then we describe the net-
work model in our work. Finally we formalize our prob-
lems.

2.1 Evolving Graph

An evolving graph is a graph which captures the dynamic
characteristics of each node and link.

Definition 1 (Evolving Graph [1]). Let be given a graph
G(V, E) and an ordered sequence of its subgraphs, S¢ =
G1,Go,...,Gr such that UszlGi = G. Let St =
to,t1,t2,....,t7 be an ordered sequence of time instants.
Then the system G = (G, Sq, St), where each G is the
subgraph in place during [t;_1,t;), is called an evolving
graph. Let Vg =V, and Eg = E.

The following concepts will be used in the remainder of
this paper. We include them here for completeness.

Definition 2 (Journey [1]). A journey J = (R, R,) in
an evolving graph G is comprised of R = e1, ea, ..., €y, the
sequence of edges it traverses, and R, = 01,02, ..., 0y the
corresponding start time instants of edge traversal.

Definition 3 (Relevant Journey (in termsof delay) [1]).
Let G be a timed evolving graph, and u,v € V. Let J be
a journey from u to v with departure time tgeparture and
arrival time tqyrival. If there is another journey j/ from u

. . / . . /
to v with departure time t ., .1, and arrival time t ;..

’ ’ ’
such that [tdeparture7tarrival] D) [tdeparture7tarrival]’ ‘-7
is called relevant journey and [J is not.

Definition 4 (Journey Class [1]). Given a journey J =
(R,Ro) with R = ey, €9, ....,e and Ry = 01,09, ...,0k, if
each edge e; is valid during interval [o;, 0; + § + ((e;)] for
some 0, we introduce I(R,,0) = [o1,01 + 0],[02,02 +
8], ..y [0k, 0k + O] and we define this class of journeys
(R, I(Ry,0)) ajourney class.

A tuple (tfirst,departur& tfirst,arrivala 5u;idth7 Tcycle)
can also be used to represent a journey class. Here
tfirst,departure =01, tfirst,arrival = Uk+<(€k), 5width =
0 and Tty is the cycle of the journey class.

A journey class is called a relevant journey class if it
contains only relevant journeys. A relevant journey class
that is not contained in any other relevant journey class is
called maximal relevant journey class (MRJC).

2.2 Network Model

We model the dynamic network we study as an evolv-
ing graph where vertices are nodes and edges are sets of
contacts. A contact is a period of time during which two
neighboring nodes can communicate with each other. A
contact can be represented as a tuple (i, j,ts,tq, dij, Tij),
where ¢ and j are the two nodes associated with this con-
tact, ¢, and t4 are the time when the contact becomes avail-
able and the duration during which the contact is alive re-
spectively, d;; is the link capacity (and to a lesser extent,
the average propagation delay) during ¢4, and T;; is the
cycle of the contact. We extend the basic evolving graph
model by using contacts instead of a link presence schedule,
and incorporate more information in the graph. We denote
dr = maz{number of contacts on edge e,e € E}. See
the example network in Figure 1(a) whose corresponding
evolving graph model is in Figure 1(b).

To make our model practical, we assume that the set of
contacts corresponding to each edge is a countable set. We
also assume that the interval of a contact presence is long
enough for a message to traverse the corresponding edge.
Routing occurs in a store, carry, and forward fashion. We
assume that the cost (in time) for a message to traverse an
edge equals the length of time for which it waits at the
source node plus the propagation delay. Contacts are pre-
dictable in our model.

2.3 Problem Definition

Here we formalize the problems and explain in detail
why they are non-trivial in DTN-like dynamic networks.

Problem 1 ((t,d) — Problem). Given an evolving graph
G, (u,v) € VxV,andt € [0,Tel, evaluate whether a
message can be generated by u at t and routed to v att + d
through a journey J.
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(a) A dynamic network consisting(b) The evolving graph corre-
of either static nodes or nodes  sponding to the network in
with cyclic motion. Figure 1(a).

Figure 1. An example of a cyclic dynamic net-
work and its corresponding infinite evolving
graph.
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(a) The topology of a traditional (b) The evolving graph of a DTN
MANET. with the same topology as Fig-
ure 2(a) but different link pres-

ence schedule.

Figure 2. An example of a MANET and a DTN.

Here, d is given. The total costs (in time) for this mes-
sage includes the time this message spends waiting at u for
J plus the delay of 7.

Problem 2 ((x,d) — Problem). Given an evolving graph
g, (u,v) € V x V,Vt € |0, Te], evaluate the probability p
that Problem I is true.

Problem 2 is on the node level. By replacing “given
(u,v) € V x V” with V(u,v) € V x V, we scale it to the
network level and get the new definition of the solvability
of a dynamic network.

Definition 5 (d — Solvable). On the network level, if Prob-
lem 2 returns 1, the corresponding dynamic network is d-
solvable. Otherwise it is d-unsolvable.

Take Figure 2 as an example. Figure 2(a) is a traditional
MANET where the number represents the propagation de-
lay corresponding to that link. Due to the fact that tradi-
tional mobile ad hoc networks (MANETS) are assumed to
be static or lowly dynamic, using Dijkstra’s algorithm or
the Bellman-Ford algorithm can easily solve Problem 1 and

Problem 2. In Figure 2(a), considering node pair (A, D),
we assert that Vd > 3, Problem 1 and Problem 2 return true
and 1 respectively and that Vd < 3, Problem 1 and Problem
2 return false and 0O respectively. We can say the network is
4-solvable but 2-unsolvable.

However, in the scope of DTN-like dynamic networks,
solving Problem 2 is non-trivial. Consider Figure 2(b)
which is an evolving graph of a DTN. To solve Problem
1, we use a simple modification of Dijkstra’s algorithm as
in [5] by calculating the shortest journey (in terms of de-
lay) starting at or after a given time ¢. Consider node pair
(A, B). During time interval [1, 4] and [10, 15], the short-
est journey takes the form of A — B and holds a delay
of 1. During (4, 8], the shortest journey takes the form of
A — D — B and holds a delay of 2. During [0, 1), the
shortest journey takes the form of waiting at A until time
instant 1 and A — B and holds a delay including the wait-
ing time plus the propagation delay 1. During (8, 10), the
shortest journey takes the form of waiting at A until time
instant 10 and A — B and holds a delay including the wait-
ing time plus the propagation delay 1. After time instant 15,
no journey exists from A to B. Given time instant 0.5 and
d = 1, Problem 1 returns false. Given time instant 9 and
d = 2.5, Problem 1 returns true.

The methods used in the case of MANETS cannot be ap-
plied directly here to solve Problem 2 due to the highly
time-varying nature of the network and the store-carry-
forward routing paradigm. Still, consider node pair (4, B).
Given d, one way to answer Problem 2 is to enumerate all
the time instants in [0, T'e] with Problem 1 and sum up the
results. However, this can be impossible to implement, let
alone to determine the d-solvability of the network.

3 Methodology

In this section, we illustrate our solutions to Problem 2
in DTN-like networks. First, we describe our method based
on Maximal Relevant Journey Classes (MRJCs). Then we
introduce the centralized and the decentralized implemen-
tations to compute MRJCs respectively.

3.1 MRJCs-based Solution

Recall the definition of maximal relevant journey class
in Section 2.1. Given an evolving graph G of a dynamic
network, (u,v) € V x V, if we can find all the maximal
relevant journey classes from u to v, intuitively, Problem 2
can be calculated based on them with reduced problem size.

Still consider the node pair (A, B) in Figure 2(b). Figure
3 shows all three of the maximal relevant journey classes
from A to B. The delay of journey classes I is |I|q = 1.
The delay of journey classes I1 is |II|; = 2 and the delay



Figure 3. The maximal relevant journey
classes from A to B in Figure 2(b).

of journey classes IT1 is |[IT11|; = 1. If A generates a mes-
sage at t = 0 and wants it to be routed to B, it can choose
to (1) wait until I is available and use [; (2) wait until 17
is available and use [7; or (3) wait until /117 is available
and use 171. A chooses the first option because it takes the
smallest amount of time which is dy = 2. Furthermore, if
the case is ¢ = 1, A may choose to (1) directly uses I; (2)
wait until /7 is available and use I1; or (3) wait until /11 is
available and use I71. A chooses the first option because it
takes the smallest amount time which is d; = 1. Similarly,
d4 = ]., dg = 2, dl(] = 1, d15 =1and d16 = Q.

Now we consider interval [0, 4] which consists of two
sub intervals [0, 1) and [1,4]. If Problem 1 returns true at
t = 0, it returns true for the entire interval [0, 4]. If Problem
1 returns false at ¢ = 0 but returns true at ¢ = 1, it returns
true for the interval [1, 4] and interval [1 — (d — dy),1]. If
Problem 1 returns false at both ¢ = 0 and ¢ = 1 but returns
true at ¢ = 4, it returns true for the interval [4 — (d — d4), 4].
Iteratively, (4, 8], (8, 15] and (15, 16] are considered in the
same way. Note that interval (4, 8] consists of sub intervals
(4,4) and (4, 8] according to the above way we partition
an interval. (15, 16] consists of sub intervals (15,16) and
[16,16]. Summing up all the results solves Problem 2. In
our example, given d = 0.9, Problem 2 returns 0 (assuming
T. = 16); given d = 1, it returns w = 0.5; and
given d > 3, it returns %.

Generally, given an evolving graph G, a node pair
(u,v) € V x V, maximal relevant journey classes L[u, v]
from u to v, [0, Te] is divided into several consecutive in-
tervals [t;,t;+1] where ¢ > 0 by L[u,v]. We prove that
the problem size of Problem 2 in terms of the number of
[t, ti+1] is bounded by 2|E|dg + 1.

Theorem 1. Given an evolving graph, G, a node pair
(u,v) € V x V, maximal relevant journey classes L[u,v],
the problem size of Problem 2 is reduced to O(2|E|dg + 1)

by applying Llu,v].

Proof. According to [1], |L[u,v]| is bounded by 2|E|dg,
hence the problem size of Problem 2 is bounded by
2|Elép + 1. O

3.2 Centralized Implementation

In this section, we present the centralized algorithm to
calculate maximal relevant journey classes (MRJCs). This
algorithm is based on the augmenting journey classes algo-
rithm proposed in [1]. Given an edge (u,v) and a list of
journey classes L[s, u] from source s to u, the augmenting
journey classes algorithm computes a list of journey classes
Lls,v] from s to v based on L[s, u]. More details about the
augmenting journey classes algorithm can be found in [1].
This algorithm will also be used with a slight modification
in our distributed implementation to calculate MRJCs (an
edge is a list of one-hop journey classes). The centralized
implementation is described in Algorithm 1. In Algorithm
1, the “merge” operation may eliminate irrelevant journey
classes.

Algorithm 1 Centralized Algorithm to Calculate MRJCs

Input: an evolving graph G; a vertex s € V.
Output: L[s,v] which gives for each vertex v € V' the maximal
relevant journey classes from s to v. L[s, v] is initially set to .
fori=1to |V|do
for allv € V do
L'[s,v] < L[s,v]
end for
for all (u,v) € E do
L._., «— AugmentJourneyClasses((u,v), L[s, u])
L'[s,v] < merge L'[s,v] and Ls_.,,
end for
forallv € V do
Lis,v] < L'[s,v]
end for
end for

3.3 Decentralized Implementation

In this section, we extend our centralized algorithm to
calculate maximal relevant journey classes to a distributed
version the basic idea behind which is similar to the one of
the distributed Bellman-Ford algorithm. The decentralized
method is easy to implement and applies well to the network
where contacts between nodes are either cyclic or persistent.

The algorithm is a proactive table-driven protocol such
that every node maintains an MRJCs table. Each entry of
this table at node w is a 2-tuple (d, L[u, d]) where d rep-
resents another node in the network and L[u, d] represents
the up-to-date MRJCs from « to d computed based on u’s
knowledge about the network. Whenever a node u detects
that a contact with a node v comes up, u checks whether its
local table has changed since the last contact with v. If so, u
sends the entire table to v. To reduce communication cost,
u can choose to send to v only the entries that have changed.
It requires additional storage on u to map changes to nodes.



Algorithm 2 Distributed Algorithm to Calculate MRJCs(at
each node u)
if a certain contact between u and v is just available then
foralld € V do
send Lu, d] to v, where L[u, d] is the current MRJCs from
u to d computed at u
end for
end if
if receives L[v, d] from v then
L'[u,d] «— AugmentJourneyClasses(L[v,d], Lu,v])
L[u, d] + merge L'[u, d] and L[u, d]
end if

In this paper, we assume u sends the entire table to v just for
simplicity. Upon receiving the table from wu, v updates the
up-to-date MRJCs table using the information in u’s table.
This update uses the modified augmenting journey classes
algorithm. Algorithm 2 illustrates the details.

4 SIMULATION

In this section, we study the d-solvable problem on the
UMass DieselNet Spring 2006 [2].

Traces preprocessing. We assume that when two buses
are within transmission range, data flow in both directions,
i.e., all contacts are symmetric. Note that there are many
contacts between the same pair of nodes that overlap with
one another. Technically, for each pair of buses, we com-
bine any two subsequent contacts that overlap with each
other. We use the earlier contact’s start time as the merged
contact’s start time and the later contact’s end time as the
merged contact’s end time. The average propagation de-
lay associated with each contact is designated as the time to
transmit a 500 bytes message across that contact. By doing
this, each contact is assigned a time-varying average prop-
agation delay. In our simulation, there are totally 37 buses
and 78164 contacts and time is indexed by second. Also Te
is designated to 10231965.

Results evaluation. The results are included in Figure
4. Figure 4(a) depicts buses and the corresponding number
of MRIJCs to the other buses. For each candlestick, the cir-
cle denotes the mean value, the bar across each box denotes
the median value, the lower and the upper bounds of each
box show the 25th and the 75th percentiles respectively, and
the lower and the upper “whiskers” show the rest of the val-
ues. Figure 4(a) indicates a high variance in the number
of MRJCs from one bus to the rest of the buses in UMass
DieselNet. We also note that some of the buses have small
chances to route to the other buses in UMass DieselNet.
Figure 4(c) depicts Problem 2 on the node level. We pick
four source-destination pairs which capture the characteris-
tics of the problem to some extent. We note that the prob-
ability that the problem is true increases as the parameter

delay of the problem increases and converges to a certain
value while the parameter delay is sufficiently large which
indicates the “eventual manner” in [4]. The converged value
of each source-destination pair may differ from each other
due to several factors such as node mobility, node degree
and the like. Figure 4(d) depicts Problem 2 on the network
value. The notation of each candlestick is the same as that
in Figure 4(a). In Figure 4(d), the percentage with which the
network is d-solvable with the increase of d and converges
to a certain value while d is sufficiently large. If we denote
the mean value as the d-solvability of the network, we note
that UMass DieselNet is d-solvable with probability around
70% even in an eventual manner.

5 RELATED WORK

The fact that no end-to-end connections may exist at any
time instant in DTNs gives rise to the difficulty of the rout-
ing problems. Previous works have focused on the routing
algorithm design. They include replication based methods
such as Epidemic Routing [6], probability-based forward-
ing and purging [7], and future contact prediction based ap-
proaches [8]. [9] studied the relationship between the rout-
ing problem and the use of knowledge about the underlying
network, which laid a groundwork for future study.

Instead of proposing a new algorithm to the problem
space, we aim to study the characteristics of DTNs from the
viewpoint of routing. In [5], Borrel et al. classified the dy-
namic networks using a routing-aware approach. The clas-
sification is based on the evolving graph theory [1]. In [4],
in addition to classifying the dynamic networks (problem
space) using connectivity as the main discriminator, Ra-
manathan et al. classified the algorithms (solution space) by
constraints of path requiring, schedule unavailability, and
single copy. Also, the author studied the solvability (bundle
delivery) by various classes of algorithms. However, neither
examined the solvability of a dynamic network in terms of
delay.

Theoretical models for networks in general have been
developed. In [10], the Merugu et al. modeled a dynamic
network as a space-time graph which aims to capture both
the space and temporal information of a network. In [1],
Ferreira modeled a dynamic network as an evolving graph
and studied the routing problem over network evolution.

6 CONCLUSION

In this paper, we study the solvability of a DTN in terms
of delay. Through analytical study, we show that it is non-
trivial to solve the d-solvable problem in the environment of
DTN-like networks. We propose an MRJCs based approach
which aims to solve the problem by reducing the problem
size to a reasonable one.
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Figure 4. UMass DieselNet traces.
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