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Abstract

Wireless sensor networks (WSNs) require more complex
sensor selection strategies than other distributed networks
to perform optimal state estimation. In addition to con-
straints associated with distributed state estimation, wire-
less sensor networks have limitations on bandwidth, energy
consumption, and transmission range. This paper intro-
duces and empirically evaluates a dynamic sensor selec-
tion strategy. A discrete-time Kalman filter is used for state
estimation. At each time step, a subset of sensors is se-
lected to gather data on the following time step because of
power and bandwidth constraints that prohibit using all of
the sensors. A standard criterion for selecting this subset
of sensors is to maximize the information to be gained by
minimizing a function of the next-step error covariance ma-
trix. We propose a relaxation of this non-convex combina-
torial optimization problem and demonstrate its applicabil-
ity to large-scale sensor networks. The proposed dynamic
sensor selection strategy is compared empirically to other
dynamic and static sensor selection strategies with respect
to state estimation performance of a convection-dispersion
field arising from the problem of surface-based monitoring
of CO2 sequestration sites.

1. Introduction

The convergence of sensing, computing and communi-
cation in low cost, low power devices is enabling a revolu-
tion in the way we interact with the physical world. When
networked together in Wireless Sensor Networks (WSNs),
such technology allows interaction with the physical world
at a level of spatial and temporal granularities unthinkable
just a few years back. There has been a surge of applications
for long-term monitoring of dynamic fields such as environ-
mental conditions or critical chemical concentrations over

large physical spaces. In these applications, algorithms like
Kalman filters can be used to perform model-based state es-
timation based on lumped-parameter models of the physical
phenomena. WSN operating constraints often make it diffi-
cult, however, to collect data from every sensor at the sam-
pling rate required for effective monitoring. Data rates from
individual sensors may be limited by low power require-
ments for long-term operation, which can be on the order of
years, and transmission bandwidth may limit the number of
sensors from which data can be collected for each sampling
period.

These considerations have led to the development of dy-
namic sensor selection strategies that choose a subset of
sensors to report at each sampling period with the objective
of rotating the requests for sensor readings while reducing
the state estimation error from the Kalman filter. Estimation
error reduction is usually achieved by minimizing a func-
tion of the one-step estimation error covariance matrix for
each sample. This is in general a non-convex, combinatorial
optimization problem. However, heuristic or approximate
methods can be used to obtain a suboptimal solutions with
reasonable computation.

Previous researchers have addressed this problem in var-
ious ways. [13] applies V-lambda filtering to choose be-
tween a priori selection matrices, determined to adequately
represent the sensor space. [11] and [6] perform a greedy
entropy minimization problem using Bayesian filtering to
select an optimal sensor set for object tracking. [7] applies
a branch and bound method for determining the best single
sensor selection at each time step. [9] presents a stochastic
algorithm for selecting sensors, which takes into account
the accuracy of a sensor measurement. Other sensor se-
lections schemes are surveyed in [15]. The principle short-
coming of the previous work is scalability to large-scale net-
works and large-scale state estimation problems. None of
the demonstrations thus far have considered networks larger
than 70 sensors or state spaces with more than 10 variables.
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This paper introduces a relaxation approach to dynamic
sensor selection for large-scale WSNs and large-scale dy-
namic fields. The combinatorial nature resides in the fact
that the choice of sensors is binary. In our approach, the
elements of the sensor selection matrix are continuous vari-
ables ranging from zero to one. This is sufficient to yield a
convex optimization problem. The sensor subset of size M
is then selected to correspond to the largest M values in the
optimal continuous-parameter sensor selection matrix. We
implemented this technique to the problem of surface mon-
itoring of CO2 sequestration sites and compared our simu-
lation results to existing state-of-the-art methods.

The following section introduces notation and formu-
lates the problem of dynamic sensor selection for state es-
timation using Kalman filters. Section 3 presents the pro-
posed relaxation method for dynamic sensor selection. Sec-
tion 4 develops a lumped-parameter state-space model for
the convection-dispersion of atmospheric gas concentra-
tions as the basis for WSN monitoring of CO2 sequestration
sites. Section 5 presents simulation results for a field of 81
sensors. The final section summarizes the work presented
in this paper and identifies directions for future research.

2. Problem Formulation

State estimation for discrete-time dynamic systems can
be accomplished with reduced-order sensing [1]. We begin
by modeling discrete-time dynamic systems in state space
form as:

x(k + 1) = Akx(k) + Bku(k) + w(k)
y(k) = Ckx(k) + v(k),

(1)

where w(k) N(0,Wk) is the input noise, v(k) N(0, Vk) is
the measurement noise, and Ak, Bk, and Ck are matrices
of dimension n × n, n × m, and l × n respectively at time
step k. To introduce reduced-order sensing, the discrete-
time dynamic system in (1) becomes:

x(k + 1) = Akx(k) + Bku(k) + w(k)
y(k) = Zk|k−1Ckx(k) + Zk|k−1v(k),

(2)

where Zk|k−1 is the sensor selection matrix at time step k
based on the information available at time step k−1. Zk|k−1

has the following properties :

• dimension p × l where p ≤ l

• rank(Zk|k−1) = p

• contains exactly one entry of 1 per row (and the rest 0)

• ZkZT
k = I

We propose a discrete-time Kalman filter to perform
state estimation for the state variables in (2). Assuming the
system in (2), the governing equations for a discrete-time
Kalman filter can be written as:

x̂k+1|k = Akx̂k|k + Bkuk

Pk+1|k = AkPk|kAT
k + Wk

Kk = Pk|k−1C
T
k ZT

k|k−1(Zk|k−1CkPk|k−1C
T
k ZT

k|k−1

+ Zk|k−1VkZT
k|k−1)

−1

x̂k|k = x̂k|k−1 + Kk(y(k) − Zk|k−1Ckx̂k|k−1)
Pk|k = Pk|k−1 − KkZk|k−1CkPk|k−1,

(3)

where x̂k+1|k and x̂k|k are the a priori and a posteriori
state variable estimate for x(k), Pk|k is the error covariance,
and Kk is the Kalman gain. Wk is the input noise covari-
ance and Vk is the measurement noise covariance (assumed
to be diagonal) [10]. A discrete algebraic riccati equation
(DARE) results from substituting Kk and Pk+1|k into the
covariance measurement update Pk|k. Applying the matrix
inversion lemma [17] and simplifying, the DARE becomes:

Pk+1|k+1 = ((AkPk|kAT
k + Wk)−1

+ CT
k+1V

−1
k+1Qk+1|kCk+1)−1,

(4)

where Qk+1|k = ZT
k+1|kZk+1|k is a diagonal matrix.

Qk+1|k[i, i] = 1 if the sensor corresponding to yi(k + 1) is
selected and Qk+1|k[i, i] = 0 otherwise, where Qk+1|k[i, i]
is the ith diagonal element of Qk+1|k. Consequently,
Zk+1|k is the matrix formed by the p rows of Qk+1|k con-
taining a 1.

3. Dynamic Sensor Selection Strategy

The 1-step optimal sensor selection strategy at time step
k is the collection of sensors maximizing the information
related to the state variable values at time step k + 1. One
information-maximizing method is to minimize the trace of
the next step error covariance matrix, Pk+1|k+1 [3]. But
Pk+1|k+1 is not a convex function with respect to the sen-
sor selection matrix Zk+1|k. This makes the problem in-
tractable for large-scale applications. As a computationally
feasible solution, we propose a suboptimal dynamic sensor
selection strategy via a relaxation of the original optimiza-
tion problem. To begin, let us introduce the matrix Q̂k+1|k
with the following properties:

• Q̂k+1|k is diagonal.

• trace(Q̂k+1|k) = p.
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• 0 ≤ Q̂k+1|k[i, i] ≤ 1,∀i ∈ [1, l].

Substituting Q̂k+1|k in (4) yields:

P̄k+1|k+1 = ((AkPk|kAT
k + Wk)−1

+ CT
k+1V

−1
k+1Q̂k+1|kCk+1)−1

(5)

In (5) P̄k+1|k+1 is an estimate of Pk+1|k+1. To improve

computation complexity, we introduce P̂k+1|k+1 as:

P̂k+1|k+1 = 3I − 3P̄−1
k+1|k+1 + (P̄−1

k+1|k+1)
2, (6)

where P̂k+1|k+1 approximates P̄k+1|k+1 using a 2nd-order
matrix inversion approximation [16].

Using this relaxation, the trace(P̂k+1|k+1) becomes a

convex function of Q̂k+1|k, and its minimum can be easily
found using convex optimization. According to our relax-
ation, the selected sensors in Qk+1|k will be the largest p

elements of Q̂k+1|k. This selection strategy is summarized
below in 2 steps:

• Optimization Step: The diagonal elements of Q̂k+1|k
are chosen, through convex optimization, to minimize
trace(P̂k+1|k+1).

• Selection Step: Choose Qk+1|k such that

Qk+1|k[i, i] = 1 if Q̂k+1|k[i, i] is one of the largest p

elements of Q̂k+1|k, otherwise, Qk+1|k[i, i] = 0.

The proposed dynamic sensor selection strategy is com-
pared to the optimal solution in the following sections for
a discrete-time system of dimension n by varying the num-
ber of sensors p.

4. Surface Monitoring of CO2 Concentrations

Most experts claim greenhouse gases produced from
burning fossil fuels are adversely affecting the environment.
The United States Department of Energy is especially inter-
ested in carbon dioxide CO2 sequestration to reduce emis-
sions of this gas produced from burning fossil fuels in power
generation plants [2]. This is usually accomplished by stor-
ing CO2 in underground sites. WSNs can be employed to
monitor sequestration sites for leaks [18]. Due to the nature
of the problem the monitoring needs to be performed over
large areas. Due to power and communication constraints,
acquiring data from every sensor each sampling period is
impractical. Thus, near-optimal sensor selection strategies
become crucial in order to accurately estimate the CO2 con-
centration level with limited sensing.

To develop a discrete-time finite-dimensional model
for surface CO2 leakage, we begin with the following

continuous-time partial differential equation (PDE) describ-
ing a convection-dispersion process [4]:

δc(p, t)
δt

+ φ(p, t)
∂c(p, t)

∂p
= α(p, t)

∂2c(p, t)
∂p2 , (7)

with the surface (z = 0) boundary condition

−αz(p, t)
δc(p, t)

δz
|p=(x,y,0)= λ(x, y, t)

where φ(p, t) = [φx(p, t), φy(p, t), φz(p, t)]T and
α(p, t) = [αx(p, t), αy(p, t), αz(p, t)]T are the advection
and dispersion coefficients, respectively, and λ(x, y, t) is
the boundary condition at z = 0 (the surface).

We assume the sensors are on the surface. Since there
are no observations at z > 0, an approximation is needed

for δ2c(p,t)
δz2 at z = 0. This is achieved by assuming:

- δ2c(p,t)
δx2 = δ2c(p,t)

δy2 = δ2c(p,t)
δz2 , (symmetric diffusion).

Applying these assumptions to (7), we use the following

estimate for δ2c(p,t)
δz2 at z = 0 :

δ2c

δz2 =
δc
δt + φx

δc
δx + φy

δc
δy − φz

αz
λ(x, y, t)

αx + αy + αz
, (8)

where, for convenience, we write c to mean c(p, t) and sim-
ilarly for α and φ. Substituting (8), into (7) yields:

δc

δt
=

αx + αy + αz

αx + αy

(
αx

δ2c

δx2 + αy
δ2c

δy2

)

−φx
δ c

δx
− φy

δ c

δy
+

φz

αz
λ(x, y, t),

(9)

with boundary and initial conditions :

c(∞,∞, 0, t) = c0

c(x, y, 0, 0) = c0.

Equation (9) is similar to the PDE described in [5], differing
by scaling only. The scaling in (9) accounts for the nonmea-
surable effects of vertical advection and diffusion inherent
in atmospheric monitoring problems where planar sensing
is assumed.

For simplicity, we assume the sensors are placed on the
surface in an N ×M grid. These points define the locations
of the concentrations used as state variables in a lumped-
parameterize model of the concentration dynamics. This
discrete-time state space model for (9) is created by apply-
ing an Euler approximation to (9) and discretizing in time
[8] [14], given linear, time-varying dynamics:

x(k + 1) = Akx(k) + Bku(k) + w(k)
y(k) = x(k) + v(k),

(10)
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where x(k) = [c1(k), c2(k), . . . , c(n−1)M+m(k), . . . , cNM (k)]T

is the set of concentration state variables cor-
responding to c(n∆x,m∆y, 0, k∆t), u(k) =
{λ̄1(k), λ̄2(k), . . . , λ̄(n−1)M+m(k), . . . , λ̄NM (k)} is
the set of source inputs corresponding to the values of
λ(p, k∆t) on the surface regions p ∈ {[(n − 1)∆x/2, (n +
1)∆x/2], [(m − 1)∆y/2, (m + 1)∆y/2], 0}, w(k) and
v(k) are the process and measurement noise, respectively,
y(k) are the noisy measurements, and n ∈ {1, . . . , N} and
m ∈ {1, . . . , M}. Ak and Bk are both square matrices of
dimension NM ×NM representing the lumped parameter
state dynamics governing x(k) according to (9).

In this application, we do not have apriori knowledge of
the sources. We consider the onset of constant leaks, which
are the inputs to the system, u(k). To apply Kalman filtering
to detect the values of these system inputs, we augment the
state vector with the input vectors. Thus, the discrete-time
state space system in (10) is written as :

z(k + 1) = Âkz(k)

y(k) = Ĉ (z(k) + v(k)) ,
(11)

where

z(k) =
[

x(k)
u(k)

]

Âk =
[

Ak Bk

0 I

]

Ĉ =
[

I 0
]

The state space system in (11) has no inputs, only states.
The Kalman filter described in (3) estimates z(k) based on
the noisy sensor measurements y(k). For this convection-
dispersion example, the DARE in (4) becomes :

Pk+1|k+1 =
[(

ÂkPk|kÂT
k

)−1

+ ĈT V −1
k+1Qk+1|kĈ

]−1

.

(12)

Using (11) and (12), the following section shows simu-
lation results for the near-optimal dynamic sensor selection
strategies outlined in the previous section.

5. Simulation Results

The dynamic sensor selection strategy was implemented
in MATLAB [12]. To perform the optimization step in the
proposed sensor selection strategy, the MPT toolbox was
employed. The following simulation results demonstrate
the performance of the proposed dynamic sensor selection
strategy.

For the simulations, we define the normalized PDE pa-
rameters as:

• N = M = 9, (81 sensors)

• λ( 1
2 , 1

2 , 0, t) = 1 mol
(10m)35min , else λ(x, y, z, t) = 0

• αx(p, t) = αy(p, t) = αz(p, t) = 1
100

(10m)2

5min

• φx(p, t) = 1
10cos(πt

10 ) 10m
5min

• φy(p, t) = 1
10

10m
5min

• ∆x = ∆y = 1
8 (10m)

• ∆t = 1(5min)

A simulation of 200 minutes (40 time steps) was per-
formed using the parameters above. Figure 1 shows the
CO2 concentration levels vs. time step and normalized
space.
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Figure 1. CO2 concentration vs. space and
time step.

The dynamic sensor selection strategy presented in Sect.
3 was simulated for various integer values of p where 1 ≤
p ≤ 81. Due to the complexity of finding the optimal sensor
selection matrix at each time step, we limit the number of
possible sensor selection matrices to a set of 10, 000 distinct
matrices and choose them a priori. Figure 2 shows the sim-
ulated results of the approximated optimal solution and the
solution using our proposed strategy for the system in Fig.
1. At each time step, the trace of the error covariance is
normalized against the trace of the error covariance using
full order sensing (p = n). In Figs. 2 and 3, the solid line
represents the approximated optimal value, while the circles
and dashed line correspond to the dynamic sensor selection
strategy.

The average computation time for the proposed sensor
selection strategy was 0.6 seconds per time step for the field
of 81 sensors. The computation time for testing 10, 000
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Figure 2. Normalized trace of the error covari-
ance for p = 4,8,16,30 vs. time step, k.

unique matrices at each time step was 7.2 seconds. The
normalized steady state error for both the approximated op-
timal strategy and our strategy versus the number of sensors
selected is shown in Fig. 3.
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Figure 3. Normalized steady-state error vs.
number of selected sensors.

The sensor selection strategy presented in [13] defines,
apriori, a spanning set of sensor selection matrices which
adequately represents the full sensor field and chooses (at
each time step) the selection matrix minimizing the pre-
dicted next-state entropy. We introduce the criteria for
defining a spanning sensor selection matrix set as each sen-
sor must be represented in at least one sensor selection ma-
trix and each sensor selection matrix is unique. Fig. 4
presents the normalized trace of the error covariance for

spanning sets containing 25, 100 and 500 unique sensor se-
lection matrices. The solid lines correspond to the different
spanning sets, while the circles and dashed line represent
the proposed dynamic sensor selection strategy.
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Figure 4. Normalized trace of the error covari-
ance vs. number of selected sensors and
size of spanning sensor set.

In terms of computation time, the average values for 25,
100, and 500 unique sensor selection matrices were 0.07,
0.28, and 1.28 seconds respectively. Although the compu-
tation times are comparable to those for the proposed sensor
selection strategy, the performance (particularly for small p)
does not perform as well in the transient.

To compare the sensor selections generated by both the
optimal strategy and the proposed strategy, the sensor field
was scaled down to 25 sensors. Fig. 5 shows 40 sensor se-
lection steps for n = 25 and p = 5. The o’s represent a
selection made by the proposed strategy, while the x’s cor-
respond to the optimal selection. In 200 sensor selections
(5 selections at each time step), the proposed strategy chose
the same sensor as the optimal strategy 185 times (92.5%
accuracy).

6. Discussion

This paper introduces a dynamic sensor selection strat-
egy for state estimation in large-scale wireless networks,
based on a relaxation-optimization approach. The strat-
egy is compared to other sensor selection strategies for a
convection-dispersion example.

The main contribution consists in providing a suboptimal
solution for the sensor selection. Despite the two approxi-
mations adopted, namely matrix inversions and convex rela-
tion, the proposed solution yields comparable performance
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Figure 5. Sensor selection (5 sensors) vs.
time step and strategy

and better computational efficiency with respect to both the
optimal algorithm and state-of-the-art approximations. The
performance of the proposed strategy very closely follows
the performance of the approximated optimal strategy both
in the transient (Fig. 2) and in the steady state (Fig. 3). In
terms of sensor selection, the proposed strategy almost al-
ways selects the 1-step optimal solution as shown by Fig.
5. When compared to a strategy using only a spanning set
of sensor selection matrices, the proposed strategy performs
better in the transient for smaller number of selected sensors
as shown by Fig. 4.

There are a number of interesting directions stemming
from this work. Currently this strategy is only concerned
with state estimation problem. In the future, we plan to
implement a detection problem for determining source lo-
cations and source rates for the CO2 monitoring problem.
Other extensions comprise dynamic selection of the num-
ber of sensors to be used at each step. In fact the relaxation
provides a natural tool to select the number of sensors in
addition to the specific ones. We also plan on including
network constraints such as power and delay, which will
further constrain the selection process.
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