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Abstract

In the rendezvous problem, two computing entities (called agents) located at different ver-
tices in a graph have to meet at the same vertex. In this paper, we consider the synchronous
neighborhood rendezvous problem, where the agents are initially located at two adjacent vertices.
While this problem can be trivially solved in O(∆) rounds (∆ is the maximum degree of the
graph), it is highly challenging to reveal whether that problem can be solved in o(∆) rounds,
even assuming the rich computational capability of agents. The only known result is that the
time complexity of O(

√
n) rounds is achievable if the graph is complete and agents are proba-

bilistic, asymmetric, and can use whiteboards placed at vertices. Our main contribution is to
clarify the situation (with respect to computational models and graph classes) admitting such a
sublinear-time rendezvous algorithm. More precisely, we present two algorithms achieving fast
rendezvous additionally assuming bounded minimum degree, unique vertex identifier, accessibil-
ity to neighborhood IDs, and randomization. The first algorithm runs within Õ(

√

n∆/δ +n/δ)
rounds for graphs of the minimum degree larger than

√
n, where n is the number of vertices

in the graph, and δ is the minimum degree of the graph. The second algorithm assumes that

the largest vertex ID is O(n), and achieves Õ
(

n
√

δ

)

-round time complexity without using white-

boards. These algorithms attain o(∆)-round complexity in the case of δ = ω(
√
n logn) and

δ = ω(n2/3 log4/3 n) respectively. We also prove that four unconventional assumptions of our
algorithm, bounded minimum degree, accessibility to neighborhood IDs, initial distance one,
and randomization are all inherently necessary for attaining fast rendezvous. That is, one can
obtain the Ω(n)-round lower bound if either one of them is removed.

1 Introduction

1.1 Background

The rendezvous problem is well-studied in distributed computing theory. A typical setting of the
problem requires two agents located at any vertices in a graph G = (V,E) to meet and halt. This
is recognized as a fundamental problem for designing distributed algorithms of mobile agents. The
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hardness of symmetry breaking is often seen as an essential difficulty of the rendezvous problem.
For example, we consider a ring network of four vertices, and the situation that the two agents
located at two vertices that are not adjacent to each other∗. Then, the agents running the same
algorithm symmetrically move and thus their relative distance two is kept forever. That is, any
deterministic algorithm does not achieve rendezvous in this situation. To make the rendezvous
problem solvable, the system model must be equipped with some mechanism enabling two agents
to move asymmetrically. Much of the previous work focuses on what models or assumptions provide
such a capability [16,20,23].

Unlike the viewpoint mentioned above, we assume a model that easily breaks symmetry, i.e.,
allowing randomized and/or asymmetric algorithms, and focuses on the time complexity of the
rendezvous problem. When we allow two agents to run different algorithms, the rendezvous problem
can be solved using graph exploration. Specifically, one of the agents halts at the initial location and
the other one traverses all the vertices. Hence the time complexity of graph exploration is a trivial
upper bound for the rendezvous problem. In contrast, the half of the initial distance between two
agents is a trivial lower bound for the problem. Since both of the bounds can be Θ(n) in a specific
class of n-vertex instances (e.g., a ring network of n vertices) the exploration-based approach is
existentially optimal, but not universally optimal. When the initial distance is small in terms of n,
the approach based on graph exploration does not necessarily exhibit optimal algorithms. However,
due to the unavailability of the location information of other agents, achieving rendezvous without
exploring all vertices is a highly non-trivial challenge, even if we assume stronger capability of
agents such as randomization, asymmetry, and non-obliviousness.

1.2 Contribution

In this paper, we consider what instances and what computational power of models (oracles) admit
efficient algorithms that do not use exhaustive search strategy, such as graph exploration. As we
stated, the key characterization of the instances is distance of initial location of both agents. We
consider the initial distance is small in terms of n, to avoid Ω(n) lower bound. In this setting, the
meaning of ”without exhaustive search” will be clear, namely presenting algorithms that achieves
o(n) rounds for rendezvous.

In this paper, we consider an extreme variant of the rendezvous problem, called the neighborhood
rendezvous problem, where two agents are initially located at two adjacent vertices (i.e., initial
distance one). This problem can be also seen as a generalized version of the rendezvous problem
in complete graphs [6] because in that case any two agents always have distance one. Since the
neighborhood rendezvous problem can be trivially solved in O(∆) rounds (∆ is the maximum
degree of the graph), the technical challenge lies in the design of algorithms achieving rendezvous
within o(∆) rounds. As well as the algorithm shown in [6], we assume the rich capability of agents
(i.e., randomized, asymmetric, and non-oblivious), unique vertex identifiers, and the availability of
whiteboards placed at each vertex. In addition, we assume that agents at a vertex v can know the
IDs of all v’s neighbors (which is analogous to the KT1 model in message passing systems [28]).
Specifically, we present two randomized algorithms. The first algorithm achieves rendezvous within

O

(

n
δ log2 n +

√

n∆
δ log n

)

rounds with high probability for graphs whose minimum degree is larger

than
√
n. Thus, this algorithm achieves fast rendezvous (i.e., sublinear of ∆) in graphs with

minimum degree δ = ω(
√
n log n). The second algorithm trades the use of whiteboards into the

assumption of tight naming of vertices, that is, the assumption that the largest vertex ID is O(n). It

∗More precisely, each port number assigned to each edge is also symmetric (for example, edges of clockwise
direction have port number one, and edges of counter-clockwise direction have port number zero.).
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achieves rendezvous within O
(

n√
δ

log2 n
)

rounds with high probability†, and thus fast rendezvous

is attained in the case of δ = ω(n2/3 log4/3 n).
On the negative side, we also present the impossibility of sublinear-time rendezvous when we

relax the assumptions. There lie four unconventional assumptions for our algorithm, which are
bounded minimum degrees, the accessibility to neighborhood IDs, initial distance one, and ran-
domization. Interestingly, the time lower bound of Ω(n) rounds for graphs of ∆ = Θ(n) is deduced
even if we remove only one of them; this implies that our algorithm runs under a minimal assump-
tion.

1.3 Related Work

The solvability and complexity of the rendezvous problem is affected by many factors, such as
synchrony, randomness of algorithms, graph classes, symmetry of agents, and so on. For that reason
it is difficult to compare our results with past literature directly. Nevertheless, several results aim to
achieve sublinear-time rendezvous explicitly or implicitly. Collins et al. [10] demonstrate that two
agents with a common map (i.e., whole information of G), which are initially placed with distance
d, can achieve rendezvous deterministically within O(d log2 n) rounds, they also show a nearly
tight Ω(d log n/ log log n)-round lower bound. Das et al. [15] assume that two agents can detect
their distance, and present a deterministic rendezvous algorithm within O(∆(d + log l)) rounds,
where l is the minimum value of the IDs of agents. It is also proven that any algorithm requires
Ω(∆(d + log l/ log ∆)) rounds in this model. The result by Anderson et al. [6] is the closest to our
result in the sense that it assumes no oracle such as maps and distance detection stated above. It
considers the model of anonymous vertices with whiteboards, and presents a randomized algorithm
that achieves rendezvous for complete graphs in O(

√
n) expected rounds. As we mentioned, the

neighborhood rendezvous problem can be seen as a relaxation of rendezvous in complete graphs,
and thus we can regard our result as the one extending the graph classes allowing fast rendezvous
(using a stronger assumption of vertex identifiers). There are also several studies [18, 24, 25] for
achieving fast rendezvous using side information coming from oracles (so-called advice). In this
model, agents cannot see the whole map of G, but instead can know the (partial) information on
their initial locations.

Due to the interest on hardness of symmetry breaking, the solvability of the rendezvous problem
for ring networks has received much consideration in several different models [16, 20, 23]. In this
context, the analysis of complexity has not received much attention. The study of rendezvous
in trees has focused on time and space complexities. The paper by Baba et al. [7] presents a
linear-time (equivalently, O(n) time) algorithm under the assumption that agents have O(n) bits of
memory, and the authors also show its optimality with respect to space in the class of linear-time
algorithms. Czyzowicz et al. [12] generalized this result, and presented an algorithm achieving
rendezvous in Θ(n + n2/k) rounds for agents having k bits of memory. Fraigniaud et al. [21]
presents the rendezvous algorithm in trees with the optimal memory complexity (Θ(log n) bits).
The feasibility of rendezvous in general graphs are also considered in several papers [8, 11, 13, 17].
In paper [11], the memory requirement for the rendezvous of uniform agents is considered, which
presents that Θ(log n) bits are necessary and sufficient for two agents in any anonymous graph.
Recently, Miller et al. [26] consider the trade-offs between time and cost (the number of edges
traversed by agents).

The rendezvous problem allowing randomization is often considered as a part of the theory of
random walks. The time taken for two tokens to meet at a common vertex is called the meeting

†Throughout this paper, we say that an event E holds with high probability if Pr[E ] ≥ 1− 1/nO(1) holds
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time [9, 29]. The rendezvous problem in the analyses of Markov chain theory is also considered in
the context of operations research [1, 3, 6, 14,30,31].

A comprehensive overview of the rendezvous problem can be found in the books by Alpern and
Gal [5] and Alpern et al. [4], and several surveys [2, 22,27].

2 Preliminaries

2.1 Model and Notations

In this paper, we consider the rendezvous problem of two agents in any undirected graph G = (V,E)
of n vertices. Each vertex in G has a distinct integer identifier in [0, n′−1], where n′ satisfies n′ ≥ n
and n′ = nO(1). The value of n′ is available to each agent. We denote the identifiers of n vertices by
v0, v1, . . . , vn−1. The minimum and maximum degrees of G are respectively denoted by δG and ∆G.
For any vertex v, NG(v) represents the set of vertices adjacent to v, i.e., NG(v) = {v′ | (v, v′) ∈ E}.
We define N+

G (v) = NG(v)∪{v}, and also define NG(X) =
⋃

v∈X NG(v) and N+
G (X) = NG(X)∪X

for any vertex set X ⊆ V . We often omit subscript G if it is clear from the context.
In the system, two computing entities, called agents, are placed at two vertices in G, which are

modeled as probabilistic random access machines. The two agents have distinct names denoted by
a and b respectively, and can exhibit asymmetric behavior in executions, that is, they can run two
different algorithms. Agents are equipped with memory space as their internal states. While we
do not assess any assumption on time/space complexity for internal computation of agents, our
proposed algorithms terminate within polynomial time, and use O(n log n)-bit memory. We denote
by M ⊆ {0, 1}∗ the set of possible internal states of two agents. When two agents visit the same
vertex, they are aware of the presence of each other. On neighborhood knowledge, we define the
local port numbering of each vertex vi, which is a bijective function P̂vi : [0, |N(vi)| − 1] → N(vi).
We also define the accessible local port number Pvi : [0, |N(vi)| − 1] → N. Agents can see only Pvi

and have no access to P̂vi . The model supporting the access to neighborhood IDs is defined as the
assumption that P̂vi and Pvi are the same function for any vi ∈ V . On the lower-bound side, we
also consider the case where each agent has no access to its neighborhood IDs. It is defined as the
model such that Pvi for any vi is the identity mapping from [0, |N(vi)| − 1] to [0, |N(vi)| − 1] (i.e.,
it does not provide any information of P̂vi).

Each vertex is equipped with a memory space called whiteboards, and an agent at vertex v can
access/write to the whiteboard of v in its internal computation. Formally, we define W ⊆ {0, 1}∗
to be the set of possible contents written in each whiteboard. A state of all the whiteboards in
G is represented by an n-dimensional vector W n indexed by elements in V . While we have no
assumption on the size of each whiteboard, O(log n) bits per vertex suffice for our algorithms.

Executions of two agents follow synchronous and discrete time steps t = 0, 1, 2, . . . called rounds.
In every round, an agent at vertex v either stays at the present location or moves to one of its neigh-
bors. An algorithm A determines which action to take based on the information stored in its internal
memory, IDs in N+(v) through the access to Pv, and the contents of the whiteboard at v. We assume
that a movement to a neighbor necessarily completes within the current round. In other words, we
do not consider the situation where agents are located on edges at the beginning of each round. At
each round, agents can modify the whiteboards of their current vertices‡. Formally, an algorithm is
a function A : {a, b}×M×V ×2N×W×{0, 1}∗ →M×N×W . The inputs respectively correspond to

‡Strictly, we need to define formally the behavior of agents when they are located at the same vertex and attempt
to modify the (common) whiteboard. In the rendezvous problem of two agents, however, such a case can be seen as
the completion of the algorithm without loss of generality. Thus, we do not care about simultaneous and parallel
write operation for the same whiteboard.
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the ID of the agent, its internal memory, the IDs of its current location and neighbors (with respect
to accessible port numbering functions), the content of the whiteboard at the current location, and
random bits. The outputs correspond to the internal state of the agent after the computation,
the destination in the following movement (with respect to accessible local port numbers), and the
content of the whiteboard left at the current vertex. Note that deterministic algorithms (only used
in Section 5.4) are defined as the ones such that its behavior is independent of random bits. A
configuration C at round t is a tuple in C ∈ (V ×M)2×W n. An execution is an infinite sequence of
configurations C0, C1, C2, . . . . Precisely, letting vzi be the location of agent z ∈ {a, b} at round i, mz

i

be the internal memory of agent z at round i, and wj
i be the the content of the whiteboard of vertex

vj at round i, a configuration Ci is described as Ci = (vai ,m
a
i , v

b
i ,m

b
i , w

0
i , . . . , w

n−1
i ). For any i ∈ N,

every execution must satisfy the following conditions: For any j ∈ V \ {vai , vbi } wj = w′
j holds. For

each i, there exists Ba
i , B

b
i ∈ {0, 1}∗ such that A(a,ma

i , v
a
i , Pva

i
, wva

i
, Ba

i ) = (ma
i+1, P̂

−1
va
i

(vai+1), wi
va
i

)

and A(b,mb
i , v

b
i , Pva

i
, w

vb
i

i , Bb
i ) = (mb

i+1, P̂
−1
vb
i

(vbi+1), w
vb
i

i ) hold, where P−1
va
i

and P−1
vb
i

are the inverse

mappings of Pva
i

and Pvb
i

respectively.

2.2 Rendezvous Problem

In the rendezvous problem, two agents initially located at two different vertices are required to
visit the same vertex simultaneously and halt. Formally, an algorithm completes rendezvous at
round t if the two agents are located at the same vertex at the beginning of that round§. This
paper considers the rendezvous problem with the constraint on initial locations of agents and graph
parameters.

Definition 1 (Specific Rendezvous). For graph G = (V,E), let I ⊆ V ×V be a possible set of initial
locations (va0 , v

b
0) of two agents. We say that an algorithm A solves the rendezvous problem for an

instance (G, I) with probability p within t rounds, if for any (va0 , v
b
0) ∈ I, the execution of A in G

completes rendezvous at round t with probability p. Moreover, letting I = {(G0, I0), (G1, I1), . . . }
be a (possibly infinite) class of instances, we say that an algorithm A solves the rendezvous problem
for class I with probability p within f(n) rounds for some non-decreasing function f : N→ N if for
every instance ((V,E), I) ∈ I, algorithm A solves the rendezvous problem with probability p within
f(|V |) rounds.

In this paper we are interested in the case where the distance between two initial locations of
agents is upper bounded by d. For any graph G we define IGd = {(v, v′) | distG(v, v′) ≤ d}. In

addition, we also define the class G(∆̂(n), δ̂(n)) for functions δ̂ : N → N, ∆̂ : N → N as the set of
graphs G = (V,E) such that δG ≥ δ̂(|V |) and ∆G ≤ ∆̂(|V |) hold. The (∆̂(n), δ̂(n), d)-rendezvous
problem is defined as that for the instance class Id = {(G, IGd ) | G ∈ G(∆̂(n), δ̂(n))}. In particular,
we focus on the instance class I1 in Section 3 and 4. In Section 5 we show the lower bounds on the
problem for I2.

3 Rendezvous Algorithm

3.1 Algorithm Overview

In this section, we present an overview of our rendezvous algorithm. For ease of presentation, we
assume that each agent has the precise values of δ and log n, but it is not essential. Those values

§In the synchronous system, we can assume that once two agents meet at a vertex then they halt without loss of
generality. That is, agents that complete rendezvous at round t also complete rendezvous at any round t′ > t.
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can be replaced with their constant-factor approximate values without increasing the asymptotic
running time. A constant factor approximation of log n can be estimated from the upper bound n′

of vertex IDs. The approximation of δ can be obtained by standard doubling estimation, explained
in Section 4.

First, we introduce several definitions and terminologies used in the following argument.

Definition 2 (α-heaviness, α-lightness). For any T ⊆ V , v ∈ V , and α ∈ R
+, v is called α-heavy

for T if |T ∩N+(v)| ≥ α holds ¶. Similarly we say that v is α-light for T if |T ∩N+(v)| < α holds.

The following proposition is a trivial fact deduced from the definition above.

Proposition 1. Let v ∈ V be an α-heavy vertex for T ⊆ V . For any T ′ such that T ′ ⊇ T holds, v
is also α-heavy for T ′.

Given a vertex set T ⊆ V and α ∈ R
+, we define Hα(T ), Lα(T ) ⊆ V as the sets of vertices that

are respectively α-heavy and α-light for T .

Definition 3 ((z, α, β)-dense condition). Given z ∈ {a, b}, T ⊆ V , and α, β ∈ R
+, T is called

(z, α, β)-dense if the following three conditions hold:

• vz0 ∈ T ,

• for any w ∈ T , distG(vz0 , w) ≤ β, and

• N+(vz0) ⊆ Hα(T ).

The main idea of our rendezvous algorithm is that agent a constructs an (a, δ/8, 2)-dense vertex
set T a. Since vb0 ∈ N+(va0 ) ⊆ Hδ/8(T a), vb0 is an (δ/8)-heavy vertex for T a. Then a sublinear

number of random vertex samplings from T a by agent a and those from N(vb0) by b ensure that a
vertex is commonly sampled with high probability. In this sampling process, agent b leaves the ID
of vb0 at the whiteboards of all the sampled vertices. When agent a visits the common sample, it
knows the initial location of vb0. Then agent a moves to vb0 and meets b.

In the following argument, we divide our algorithm into two sub-algorithms. The first one,
called Main-Rendezvous, achieves rendezvous provided that agent a knows an (a, δ/8, 2)-dense set
T a ⊆ N+(N+(va0)). The second sub-algorithm is for agent a to construct such an (a, δ/8, 2)-dense
set T a, which is called Construct. The combination of these two sub-algorithms yields the algorithm
we claim.

3.2 Rendezvous with T a

We present the algorithm Main-Rendezvous, which solves the rendezvous problem using the initial
knowledge of an (a, δ/8, 2)-dense set T a ⊆ N+(N+(va0)) by agent a. Here the “knowledge” implies
that (1) a has the list of all vertices in T a in its memory, and (2) also has the shortest paths to
all vertices in T a from a’s initial location‖. The pseudocode of Main-Rendezvous is presented in
Algorithm 1. First, agent a samples a vertex v in T a uniformly at random, and visits there. At
vertex v, a checks if b has written the ID vb0 in the whiteboard of v. If so, then a moves to vb0
and halts. The agent b iteratively visits a vertex u in N+(vb0) chosen uniformly at random, and
writes down the ID of vb0 into the whiteboard of u. If it meets a at vertex vb0, then the algorithm
terminates. We present the following lemma for the correctness of Main-Rendezvous.

¶
R

+ is the set of all positive real values.
‖Since the length of these shortest paths are at most two by the definition of (a, δ/8, 2)-dense sets, the space for

storing this information is asymptotically same as the space for the list of vertices.
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Algorithm 1 Main-Rendezvous : Rendezvous with T a

w(v) : whiteboard at vertex v. Initially w(v) =⊥ for all v ∈ V
qa, qb : local variables of agents a and b
Operations of Agent a

1: construct T a satisfying (a, δ/8, 2)-dense condition
2: repeat

3: choose v in T a uniformly at random, and move to v
4: qa ← w(v)
5: return to va0
6: until qa 6=⊥
7: visit qa and halt

Operations of agent b

1: repeat

2: move to v ∈ N+(vb0) chosen uniformly at random
3: w(v)← vb0
4: return to vb0
5: until achieve rendezvous

Lemma 1. Let G = (V,E) be any graph such that δG ≥
√
n holds. Suppose that agent a constructs

an (a, δ/8, 2)-dense set T a in ta rounds. Then, Algorithm Main-Rendezvous completes rendezvous

within ta + O

(

√

n∆
δ log n

)

rounds with high probability.

Proof. We say that a vertex v ∈ N+(vb0) ∩ T a is informed at round t if w(v) = vb0 at t, and define
Zt ⊆ N+(vb0) ∩ T a as the set of all informed vertices at t. Let h = ⌊(1/16)

√

nδ/∆⌋ for short. We
first show that |Zt| ≥ h holds for t ≥ ta + 8

√

n∆/δ log n. Let ti be the first time that Zti ≥ i
holds, and Xi be Xi = ti − ti−1 (1 ≤ i ≤ h). By the assumption of δ >

√
n, we have the following

inequality.

h =

⌊

1

16

√

nδ

∆

⌋

≤ 1

16

√
n ≤ 1

16
δ < |N+(vb0) ∩ T a|.

For any 1 ≤ i ≤ h, the variable Xi follows the geometric distribution with success probability
pi = (|N+(vb0) ∩ T a| − i + 1)/|N+(vb0)|. Then we have

E[Xi] =
|N+(vb0)|

|N+(vb0) ∩ Ta| − i + 1

≤ |N+(vb0)|
|N+(vb0) ∩ T a| − h + 1

.
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This deduces the following bound.

E [th] = ta + E





⌊h⌋
∑

i=2

Xi



 ≤ ta +
h
∑

i=2

|N+(vb0)|
|N+(vb0) ∩ T a| − h

≤ ta + h
(∆ + 1)

δ/16

≤ ta +

⌊

1

16

√

nδ

∆

⌋

16(∆ + 1)

δ

≤ ta + 2

√

n∆

δ
.

By Markov’s inequality, the probability of |Zt| < h for t = ta + 4
√

n∆/δ is at most 1/2. Thus the
probability of |Zt| < h for t = ta + 8

√

n∆/δ log n is at most 1/n2.
Assume that |Zt| ≥ h holds for t = ta + 8

√

n∆/δ log n. At t or later, the probability that agent
a visits an informed vertex is at least h/|T a|. Bounding the tail bound using Markov’s inequality,

we can conclude that agent a visits at least one informed vertex by the time ta + O

(

√

n∆
δ log n

)

with probability 1 − 1/n2 or more. That is, two agents meet within ta + O

(

√

n∆
δ log n

)

rounds

with probability at least 1−O(1/n2). Hence, the lemma is proven.

3.3 Construction of T a

In what follows, we simply say that a vertex is heavy or light if it is δ/8-heavy or δ/2-light re-
spectively. By Lemma 1, it suffices that agent a constructs a (a, δ/8, 2)-dense set T a to achieve
rendezvous. The algorithm Construct takes the role of constructing T a, which utilizes a subroutine
called Sample. The pseudocode of Sample and Construct are presented in Algorithm 2 and 3 respec-
tively. In algorithm Construct, agent a manages a set Sa ⊆ N+(va0), and iteratively adds a vertex
to Sa. In the following argument, we refer to the process of adding the i-th vertex to Sa as the i-th
iteration. Eventually, the algorithm outputs N+(Sa) as the constructed set T a when it satisfies the
termination condition (which is explained later). Let Sa

i be the set stored in Sa at the beginning of
the i-th iteration, and xi be the vertex added in the i-th iteration. The principle of choosing xi is
very simple: Agent a selects a vertex xi such that the volume of N+(xi) \N+(Sa

i ) is large. Specif-
ically, it searches a vertex w ∈ N+(va0) that is light for N+(Sa

i ). If such a vertex exists, it is added
to Sa

i as xi. Otherwise, any vertex in N+(va0 ) is heavy for N+(Sa
i ), i.e., N+(va0) ⊆ Hδ/8(N+(Sa

i )).
This implies that N+(Sa

i ) satisfies (a, δ/8, 2)-dense condition, and the algorithm can return it as
T a. Adding a light vertex to Sa

i increases the cardinality of N+(Sa) by at least Θ(δ), and thus the
algorithm Construct obviously terminates within O(n/δ) iterations (because if N+(Sa) = V holds,
any vertex becomes heavy for N+(Sa)).

For expanding Sa
i by adding a light vertex, the algorithm has to check the heaviness of each

vertex in N+(va0) (for N+(Sa
i )). The algorithm Sample takes this role. More precisely, the run

of Sample(Γ, α) probabilistically checks whether or not each vertex in N+(va0) is α-heavy for Γ
within O(|Γ|/α) rounds. The algorithm outputs the vertex set consisting of the vertices concluded
as α-heavy for Γ. A straightforward approach of identifying xi in the construction of T a is to run
Sample(N+(Sa

i ), δ/8) in every iteration. However, then the total running time of Construct becomes
O((n/δ)2) rounds. To save time, our algorithm finds a light vertex xi using the following two-step
strategy:

8



• (Step 1) Optimistic decision: In the i-th iteration, agent a runs Sample(Γ, δ/8) for Γ =
N+(Sa

i ) \ N+(Sa
i−1). If it detects that a vertex u ∈ N+(va0) is heavy for Γ, Proposition 1

guarantees that u is heavy for N+(Sa
i ) ⊇ Γ. On the other hand, vertex u can be heavy for Γ

even if the algorithm says that u is light. Then adding a vertex u as xi prevents the algorithm
from working correctly as intended.

• (Step 2) Strict decision: To resolve the matter of step 1, agent a checks if the candidates of
xi are actually light for N+(Sa

i ). More precisely, the agent samples Θ(log n) vertices uniformly
at random from the set output by the run of Sample(Γ, δ/8), and then it checks the heaviness
of each sample v by actually visiting there and computing |N+(Sa

i ) ∩ N+(v)|. If the agent
finds a light vertex from the Θ(log n) samples, that vertex is selected as xi. Otherwise, it
finds that a constant fraction of whole candidates for xi in the optimistic decision is heavy for
N+(Sa

i ) with high probability. Then the agent runs Sample(N+(Sa
i ), δ/8) for strict checking.

If a vertex u is found light for N+(Sa
i ), the agent selects u as xi. Otherwise, the algorithm

terminates.

In the following argument, we refer to the runs of Sample in step 1 and 2 as optimistic/strict
runs of Sample(Γ, α) respectively. Since the running time of each optimistic run depends on the
size of difference set N+(Sa

i ) \N+(Sa
i−1), the total sum of the running time incurred by optimistic

runs is O((n log n)/δ). While each strict run of Sample needs at most O((n log n)/δ) rounds, we
can show that strict runs are executed at most O(log n) times. It comes from the two facts that 1)
one strict run corrects the identification of a constant fraction of heavy vertices in N+(Sa

i ) which
are wrongly identified as light ones, and 2) a vertex identified as a heavy one is never identified
as light. Consequently the total running time of Construct is bounded by O(n log2 n/δ) steps. We
explain the details of Sample(Γ, α) and Construct in the following paragraphs.

3.3.1 Sample(Γ, α)

For the decision of lightness/heaviness of each vertex in N+(va0 ) for Γ, this algorithm conducts
random samplings and visits. The agent uses an array C ⊆ Z

|N+(va0 )|, which counts for each u ∈
N+(va0) the number of visited vertices having u as a neighbor. The initial value of C[u] for each u ∈
N+(va0) is C[u] = 0. Let l be a threshold value l = ⌈150 ln n⌉. In the run of Sample(Γ, α), the agent
repeatedly visits a vertex v in Γ chosen uniformly at random (with duplication) 96⌈|Γ|(ln n)/α⌉
times. At the visited vertex v, it increments C[u] for each vertex u in N+(va0 ) ∩ N+(v) (for this
process, the agent carries the information of N+(va0)). After processing all samples, the agent
concludes that u is heavy for Γ if C[u] ≥ l holds, or light otherwise. The algorithm outputs the
vertex set H ′ consisting of the vertices concluded as a heavy one.

3.3.2 Construct

In this algorithm agent a has the following sets as its internal variables: Sa
i , Ri, Hi, and NSa

i .
The subscript i corresponds to the number of iterations in the algorithm. The set Ri is a set of
candidates for xi. The set Hi stores the vertices that turned out to be (δ/8)-heavy for N+(Sa

i )
at the i-th iteration. The variable NSa

i keeps track of the set N+(Sa
i ). The initial value of these

sets are Sa
1 = {va0}, R1 = N+(va0), H1 = ∅, and NSa

i = N+(va0) respectively. The agent a
iterates the following operations until Ri = ∅. First, the agent executes the optimistic run of
Sample(N+(Sa

i ) \N+(Sa
i−1), δ/8), and for the returned set H ′ it updates Hi and Ri with Hi+1 ←

Hi ∪ H ′ and Ri ← N+(va0) \ Hi+1. Based on the updated set Ri+1, the agent randomly chooses
⌈4 log n⌉ vertices from Ri+1 and visits each sampled vertex. If a visited vertex is actually light

9



Algorithm 2 Sample(Γ, α)

l: threshold value l = ⌈150 ln n⌉
1: for i = 1 to 96

⌈

|Γ| lnn
α

⌉

do

2: choose a vertex v in Γ uniformly at random
3: visit v
4: for all u ∈ N+(v) ∩N+(va0) do

5: C[u] + +
6: for all u ∈ N+(vz0) do

7: if C[u] ≥ l then
8: H ′ ← H ′ ∪ {u}
9: return H ′

for N+(Sa
i ) (this is checked by using the information of NSa

i ), then the agent adds it to Sa
i as xi.

Otherwise, (i.e., all of the vertices are heavy for N+(va0)), then the agent executes the strict run of
Sample(N+(Sa

i ), δ/8) and updates the set Hi+1 and Ri+1 in the same way as the optimistic run.
After that, the agent selects any vertex in Ri+1 and adds it to Sa

i .

3.4 Correctness Proof of Algorithm Sample(Γ, α)

Lemma 2 below shows that the algorithm Sample(Γ, α) probabilistically checks if a vertex u ∈
N+(va0) is approximately heavy or light for Γ.

Lemma 2. Let α > 0 and Γ ⊆ N+(va0 ) satisfy |Γ| ≥ α. The following statements hold for any
u ∈ N+(va0) and the output set H ′ of Sample(Γ, α) with probability at least 1− 1/n8:

1. If u ∈ H ′ then u is α-heavy for Γ.

2. if u ∈ N+(va0) \H ′ then u is 4α-light for Γ.

Proof. We prove that 1) if u ∈ N+(va0 ) is α-light for Γ, then after the execution of the algorithm,
C[u] < l holds with high probability., and 2) if the vertex u is 4α-heavy then C[u] ≥ l with high
probability. This trivially implies the lemma. Consider the proof of the first statement. Suppose
that u is α-light for Γ. Then we have |N+(u)∩Γ| < α. Let X1 be the random variable corresponding
to the value stored in C[u] after the execution of Sample(Γ, α). Since X1 follows the binomial
distribution B(m, p) with parameter p = |N+(u) ∩ Γ|/|Γ| < α/|Γ| and m = 96⌈(|Γ| ln n)/α⌉,
E[X1] ≤ 96⌈(|Γ| ln n)/α⌉ · α/|Γ| ≤ (96 ln n) + 1 holds. Let µ1 = (96 ln n) + 1 for short. Using
Chernoff bound, we have

Pr[X1 ≥ l] ≤ Pr[X1 ≥ (1 + 1/2)µ1] ≤ e−µ1/(3·22) ≤ 1/n8.

We next consider the second statement. Suppose that u is 4α-heavy for Γ. Then we have
|N+(u) ∩ Γ| ≥ 4α. Similarly, with the first proof, we define the random variable X2 corresponding
the value of C[u] after the execution of the algorithm. Since it follows the binomial distribution
B(m, p) with the same parameter as the first proof, we have E[X] ≥ 96⌈(|Γ| ln n)/α⌉ · (4α/|Γ|) ≥
96((|Γ| ln n)/α) · (4α/|Γ|) ≥ 384 ln n. Letting µ2 = 384 ln n, Chernoff bound provides the following
inequality.

Pr[X2 ≤ l] ≤ Pr[(1 + 1/2)µ2] ≤ e−µ2/(3·22) ≤ 1/n8.

Thus, the lemma is proven.
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Algorithm 3 Construct

1: while Ri 6= ∅ do
2: H ′ ← Sample(N+(Sa

i ) \N+(Sa
i−1), δ/8);

3: Hi+1 ← Hi ∪H ′;
4: Ri+1 ← N+(va0) \Hi+1;
5: if Ri+1 6= ∅ then
6: for j = 1 to ⌈4 log n⌉ do
7: choose uj ∈ Ri+1 uniformly at random;
8: visit uj ;
9: compute |N+(Sa

i ) ∩N+(uj)| using NSa
i ;

10: if uj is δ/2-light for N+(Sa
i ) then

11: xi ← uj
12: Sa

i+1 ← Sa
i ∪ {xi};

13: Ri+1 ← Ri+1 \ {xi};
14: break;
15: if Each uj is δ/2-heavy for N+(Sa

i ) then

16: H ′ ← Sample(N+(Sa
i ), δ/8);

17: Hi+1 ← Hi+1 ∪H ′;
18: Ri+1 ← N(va0) \Hi+1;
19: if Ri+1 6= ∅ then
20: choose any vertex xi ∈ Ri+1;
21: Sa

i+1 ← Sa
i ∪ {xi};

22: NSa
i ← NSa

i ∪N+(xi);
23: Ri+1 ← Ri+1 \ {xi};
24: i← i + 1
25: return N+(Sa

i )

The next corollary immediately implies the correctness of algorithm Sample(Γ, α), which is
obtained by Lemma 1 and the standard union-bound argument.

Corollary 1. Consider any call of Sample(Γ, α). If |Γ| ≥ α, then H ′ ⊆ Hα(Γ) and N+(va0) \H ′ ⊆
L4α(Γ) hold with probability at least 1− 1/n7.

Note that the running time of the algorithm Sample(Γ, α) is O(Γ lnn
α ).

3.5 Correctness Proof of Algorithm Construct

Now we turn to the analysis of the algorithm Construct. Our first goal of this analysis is to show
that the algorithm Construct constructs a desired (a, δ/8, 2)-dense set T a in O(n/δ) iterations. As
we stated at the description of the algorithm (in section 3.3), the key observation for this goal
is that in each iteration the algorithm adds a light vertex xi to Si. We show this observation in
Lemma 4. Before proving Lemma 4, we state auxiliary lemma, which proves any strict run of the
algorithm divides N+(va0) into a set Ri of light vertices and a set Hi of heavy vertices with high
probability. This lemma shows that the algorithm selects light vertex xi in each strict run of the
algorithm.

Lemma 3. If the strict run occurs at the i-th iteration, Ri ⊆ Lδ/2(N+(Sa
i−1)) and Hi ⊆ Hδ/8(N+(Sa

i−1))
hold with probability at least 1−O(1/n7).

11



Proof. Since Sa
i is nonempty and its cardinality is monotonically increasing, we have |Sa

i | ≥ 1,
and thus Γ = N+(Sa

i ) ≥ δ holds at the beginning of the strict run at the i-th iteration. This
implies |Γ| ≥ α = δ/8. By Corollary 1, Ri ⊆ Lδ/2(N+(Sa

i−1)) and Hi ⊆ Hδ/8(N+(Sa
i−1)) holds with

probability at least 1− 1/n7.

Lemma 4. For any i, xi is δ/2-light for N+(Sa
i ) with probability at least 1−O(1/n7).

Proof. We first consider the case that xi is added without strict runs. In this case, agent a directly
visits xi and checks its heaviness. Hence, the lemma obviously holds. We next consider the case
that xi is added after the strict run. By Lemma 3, Ri+1 ⊆ Lδ/2(N+(Sa

i )) holds with probability at
least 1− 1/n7. Thus any vertex v ∈ Ri+1 is δ/2-light for N+(Sa

i ). Hence, the lemma holds.

Now we show that in each iteration Hi+1 ⊆ Hδ/8(N+(Sa
i )) holds.

Lemma 5. For any i ∈ [1, n− 1], let Yi be the indicator random variable taking Yi = 1 if and only
if Hi+1 ⊆ Hδ/8(N+(Sa

i )) holds. Then we have Pr [
⋂n

i=1 Yi = 1] ≥ 1−O(1/n6).

Proof. Since Sa
i is nonempty and its cardinality is monotonically increasing, we have |Sa

i | ≥ 1,
and thus Γ = N+(Sa

i ) ≥ δ holds at the beginning of the strict run in the i-th iteration. It
implies |Γ| ≥ α = δ/8. By Lemma 4, |N+(Sa

i−1) ∩ N+(xi)| < δ/2 holds, and then we have
|N+(Sa

i−1) \N+(xi)| ≥ δ/2 > α. Hence any call of Sample satisfies the assumption of Corollary 1
with probability at least 1 − 3/n7. Since Sample is called at most O(n) times, a standard union-
bound argument provides the lemma.

By using Lemma 5, we prove that the algorithm eventually finds a (a, δ/8, 2)-dense set T a in
Lemma 6. We also prove the upper bound for the number of iterations of the algorithm.

Lemma 6. Algorithm Construct outputs a (a, δ/8, 2)-dense set T a within O(n/δ) iterations with
probability at least 1−O(1/n5).

Proof. Let T a = N+(Sa
j ). That is, the algorithm terminates at the j-th iteration. First we show

that T a is (a, δ/8, 2)-dense. Since Sa
i ⊆ N+(va0) holds, the first and second conditions of (a, δ/8, 2)-

dense condition are obviously satisfied. Consider the third condition. By definition, two sets Ri

and Hi are always a partition of N+(va0). Thus we obtain Hj = N+(va0) because Rj = ∅ holds.
Lemma 5 implies that N+(va0) = Hj ⊆ Hδ/8(N+(Sa

j )) holds. That is, T a = N+(Sa
j ) satisfies the

third condition.
We next show that the event Ri = ∅ occurs within O(n/δ) iterations. By Lemma 4, |N+(xi) \

N+(Sa
i−1)| ≥ δ/2 holds for any xi. Then we have |N+(Sa

j )| ≥ jδ/2. Due to the trivial upper bound
of |N+(Sa

j )| ≤ n, we obtain j ≤ 2n/δ = O(n/δ). The success probability of the lemma is derived
from taking the union bound for at most O(n) applications of Lemmas 4 and 5.

We analyse the time complexity of the algorithm Construct.

Lemma 7. The total running time of Construct is O(n log2 n/δ) time with probability at least
1−O(1/n3).

Proof. We first bound the total running time incurred by the part of optimistic decision. Assume
that T a is constructed at the j-th iteration. For each 1 ≥ i ≥ j − 1, the optimistic run of
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Sample(N+(xi)\N+(Sa
i ), δ/8) takes 96⌈|(N+(xi)\N+(Sa

i )| lnn/δ⌉ rounds. Hence, the total running
time is bounded by

r
∑

i=1

96

⌈ |N+(xi) \N+(Sa
i )| lnn

δ

⌉

≤ O

(

N+(Sa
j ) log n

δ

)

= O

(

n log n

δ

)

.

We next consider the time complexity caused by the part of strict decision. We show that
Sample is executed as a strict run at most O(log n) times. It is sufficient to prove that at least a
constant fraction of Ri is moved to Hi+1 with high probability if the strict run occurs at the i-th
iteration. In each i-th iteration, let gi be the number of (δ/8)-heavy vertices for N+(Sa

i ). We show
that gi/|Ri| ≥ 1/2 holds if the agent samples no light vertex from Ri in the strict run of Sample.
Consider the case of gi/|Ri| ≤ 1/2. Then the probability that the agent samples a δ/8-heavy vertex
is at most 1/2. Thus, the probability that all of the sampled vertices are δ/8-heavy is at most
(1/2)⌈4 logn⌉ ≤ 1/n4. Conversely, if all of the sampled vertices are δ/8-heavy, gi/|Ri| ≥ 1/2 holds
with probability at least 1−1/n4. By Lemma 3, the strict run of Sample in the i-th iteration moves
all the δ/8-heavy vertices in Ri to Hi+1 with high probability. Then at least a half of the elements in
Ri are deleted. Since the cardinality of Ri never increases, the number of calls to Sample as a strict
run is at most O(log n) times with high probability. Each strict run takes O((|N+(Sa

i )| log n)/δ)
rounds, and thus the total running time of Construct is bounded by O((n log2 n)/δ). The success
probability of the lemma is obtained by taking union bounds on O(log n) applications of Lemma
3.

Finally, we obtain the main lemma of Construct.

Lemma 8. Algorithm Construct outputs T a satisfying (a, δ/8, 2)-dense condition in O(n log2 n/δ)
rounds with probability at least 1−O(1/n3).

The combination of this lemma and Lemma 1 deduces the correctness of our rendezvous algo-
rithm.

Theorem 1. Let G = (V,E) be any graph such that δG ≥
√
n holds. There is an algorithm that

completes rendezvous within O

(

n
δ log2 n +

√

n∆
δ log n

)

rounds with high probability.

4 Discussion

4.1 Removing the Assumption of Min-Degree Knowledge

In the algorithm presented in Subsection 3.3, we suppose that agents know a constant factor approx-
imation of δ. This assumption can be easily removed by a simple doubling-estimation mechanism.
Precisely, in the construction of T a (which is the only part of the algorithm using δ), agent a
initially sets δ′ to the half of the degree of va0 . If the agent visits a vertex whose degree is less
than δ′, then it restarts the procedure of Construct after halving δ′. Note that we do not have to
restart agent b for synchronization because its behavior (in Main-rendezvous) is inherently oblivious
(i.e., iteratively marking neighbors). Eventually the procedure terminates without restarting when
δ′ < δG is satisfied. Since the running time of Construct is O((n log2 n)/δ′), the doubling update
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of δ′ does not incur any extra asymptotic cost. That is, if the estimation of δ′ starts from a range
[2j , 2j+1], the total running time is bound as follows:

∑

⌊log δ⌋≤j′≤j

O(n log2 n/2j
′

)

= O(n log2 n/δ) ·
(

1 +
1

2
+ · · ·+ 1

2j−⌊log δ⌋

)

= O

(

n log2 n

δ

)

.

Corollary 2. The modified algorithm stated above outputs T a (equivalently, N+(Sa
i )) satisfying

(a, δ′/8, 2)-dense set in O(n log2 n/δ′) rounds with probability at least 1−O(1/n3).

4.2 Algorithm without Using Whiteboards

In this subsection, we present a rendezvous algorithm Rendezvous-without-Whiteboard that does
not use whiteboards, under the assumption that nodes are tightly named (that is, n′ = O(n)). We
present the pseudo-code of the algorithm in Algorithm 4. This algorithm assumes that agents know
the value of n′ and the minimum degree δ, but the minimum-degree assumption can be removed
by the technique in Section 4.1. In this algorithm, agent a first constructs a set T a ⊆ N+(N+(va0))
in the same way as the original one (recall that Construct does not use whiteboards). In order
to synchronize the iterative probings of vertices by both agents, they start Rendezvous-without-

Whiteboard at round t′ = c1n
′ log2 n/δ for sufficiently large constant c1 such that the construction

of T a finishes by round t′.
We define several notations. We denote the ID space {1, . . . , n′} by SID . For any integer β,

we define the β-partition {I1 . . . , I⌈n/β⌉} of SID as Ii = [(i − 1)β + 1, iβ]} for all i. The goal of
the algorithm is that for an appropriate β, the agents a and b respectively construct Φa ⊆ T a and
Φb ⊆ N+(vb0) satisfying the following properties with high probability:

• (intersection) |Φa ∩ Φb| ≥ 1.

• (sparseness) There exists some constant c2 such that |Φa∩Ii| ≤ c2 log n and |Φb∩Ii| ≤ c2 log n
hold for any i ∈ [1, ⌈n/β⌉].

We first present the construction of Φa and Φb satisfying the properties above. For each v ∈ T a,
agent a adds v into Φa with probability 4 ln n/

√
δ. Similarly, for each v ∈ N+(vb0), agent b adds v

into Φb with probability 4 ln n/
√
δ. Then we can guarantee with high probability that Φa and Φb

satisfy the intersection property, and also satisfy the sparseness property for β = ⌈
√
δ⌉ and c2 = 18.

We explain how rendezvous is achieved by using two sets Φa and Φb. The agents a and b iterate
the following operations for all i = 1, 2, . . . , ⌈n/

√
δ⌉ (referred as i-th phase of agents a and b). The

i-th phase consists of ⌈4c2 lnn⌉2 rounds, and starts at round t′ + (i− 1)⌈4c2 lnn⌉2 + 1. In the i-th
phase, agent a visits each vertex vj ∈ Φa∩Ii in ascending order of its ID, and waits ⌈4c2 lnn⌉ rounds
at each visited vertex. After visiting all the vertices in Φa∩Ii, the agent waits at the initial position
until round t′ + i⌈4c2 lnn⌉2 to synchronize the next phase. The behavior of agent b is similar to
that of a. It visits each vk ∈ Φb ∩ Ii in ascending order of its ID. The agent b waits at each visited
vertex for two rounds. Agent b repeats this process ⌈4c2 lnn⌉ times. Then it waits on the initial
position until t′ + i · ⌈4c2 lnn⌉2 rounds. We can show that agents a and b attain rendezvous in Il

such that Φa∩Φb∩ Il 6= ∅ holds. The total time complexity is O((n/β) · log2 n) = O((n log2 n)/
√
δ)

rounds.
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Algorithm 4 Rendezvous-without-Whiteboards

Operations of Agent A

1: Construct

2: wait until t = c1

(

n′ log2 n
δ

)

3: for all u ∈ T a do

4: Φa ← Φa ∪ {u} with probability 4 logn√
δ

5: for i = 1 to ⌈n/
√
δ⌉ do

6: for all u ∈ Φa ∩ Ii do

7: visit u
8: wait on u until ⌈4c2 log n⌉ time (including the round moving to u)
9: return to va0

10: wait on va0 until time c1

(

n′ log2 n
δ

)

+ i⌈4c2 log n⌉2

Operations of Agent B

1: for all u ∈ N+(vb0) do

2: Φb ← Φb ∪ {u} with probability 4 logn√
δ

3: wait until t = c1

(

n′ log2 n
δ

)

4: for i = 1 to ⌈n/
√
δ⌉ do

5: for j = 1 to ⌈4c2 log n⌉ do
6: for all u ∈ Φb ∩ Ii do

7: visit u
8: wait two time units on vb0
9: return to vb0

10: wait on vb0 until t = c1

(

n′ log2 n
δ

)

+ i⌈4c2 log n⌉2
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Theorem 2. Algorithm Rendezvous-without-Whiteboard achieves rendezvous in O
(

t′ + n√
δ

log2 n
)

rounds with probability at least 1−O(1/n2).

Proof. First, we show that Φa and Φb satisfy the intersection property. By the independence of the
probabilistic choices of agents a and b, any node in T a∩N+(vb0) is contained in both Φa and Φb with
probability (4 ln n/

√
δ)2 = (4 lnn)2/δ. Hence the probability p that |Φa∩Φb| = 0 is upper bounded

by p ≤
(

1− (4 lnn)2

δ

)δ/8
≤ e2 ln

2 n ≤ 1
n2 . That is, the intersection property is satisfied with high

probability. Next, we show that Φa and Φb satisfy the sparseness property. For any i ∈ [1, ⌈n/
√
δ⌉],

let Y a
i be the number of vertices in N+(va0) ∩ Ii. Then we have E[Y a

i ] ≤ ⌈
√
δ⌉ · 4 lnn/

√
δ ≤ 9 lnn.

Applying the Chernoff bound, the probability Pr[Y a
i ≥ 18 log n] is upper bounded by Pr[Y a

i ≥
18 ln n] ≤ Pr[Y a

i ≥ (1 + 1)9 ln n] ≤ e3 lnn ≤ 1
n3 . By taking union bound over all i ∈ [1, ⌈n/

√
δ⌉], a,

and b, the probability that Φa and Φb do not satisfy the sparseness property is at most 3/n2.
Finally, we show that if Φa and Φb satisfy the two properties, then rendezvous is achieved within

O((n log2 n)/
√
δ) rounds. We consider the l-th part such that |Il ∩ Φa ∩ Φb| ≥ 1 holds. Let r be

any vertex in |Il ∩ Φa ∩ Φb|, and s be the order of r in Φa ∩ Il following IDs. By the definition
of the algorithm, both a and b starts phase l at round t′ + (l − 1)⌈4c2 lnn⌉2 + 1. In addition,
the time when agent a stays at r is from round t′ + (i − 1)⌈4c2 lnn⌉2 + (s − 1)⌈4c2 lnn⌉ − 2 to
t′ + (i − 1)⌈4c2 lnn⌉2 + s⌈4c2 lnn⌉ − 2. During that period, agent b visits all the nodes in Φb ∩ Il.
That is, rendezvous is achieved.

5 Impossibility for Sub-linear Time Rendezvous

In this section, we show four impossibility results for sublinear-time rendezvous, which respectively
concern the four unconventional assumptions of our algorithm, namely, bounded minimum degrees,
accessibility to neighborhood IDs, initial distance one, and randomization. In each proof, we show
the impossibility results in the models relaxing the corresponding assumption. We define some
terminologies used in the proofs. Given a graph G and an algorithm A, let X̂(G, a, v, f(n)) be the
random variable representing the set of vertices visited by agent a initially at vertex v in G in the
first consecutive f(n) rounds. While this is an illegal run because b is not in the graph, but can
identify the (probabilistic) set of vertices a visits. Also, we define X(G, a, v, f(n)) to be the vertex
set defined as X(G, a, v, f(n)) = {x ∈ V (G) | Pr[x ∈ X̂(G, a, v, f(n))] ≤ 1/4}.

5.1 Lower bound in the Case of bounded minimum degrees

First, we show that there is a graph instance with minimum degree δ = o(
√
n) and ∆ = ω(

√
n) such

that any algorithm needs Ω(∆) rounds for neighborhood rendezvous. Precisely, the Ω(n/δ)-round
lower bound is obtained in the graphs with δ = o(

√
n) and ∆ = Ω(

√
n).

Theorem 3. Letting δ = o(
√
n) and ∆ = ω(

√
n), the (∆, δ, 1)-rendezvous problem has a class of

instances where any rendezvous algorithm takes Ω(∆) rounds with a constant probability. In par-
ticular, the (n/2, 1, 1)-rendezvous problem has a class of instances where any rendezvous algorithm
takes Ω(n) rounds with a constant probability.

Proof. We first consider the case of ∆ = n/2 and δ = 1 for simplicity of argument. Suppose
for contradiction that an algorithm A achieves rendezvous within f(n) = o(n) rounds with high
probability for the (n/2, 1, 1)-rendezvous problem. Assume that n is a multiple of 4 for simplicity,
and let [1, n] be the domain of vertex IDs. First, we consider a star graph S1(j) of n/2 + 1 vertices,
where the ID of the center is j ∈ [n/2 + 1, n], and IDs of all leaves are from [1, n/2]. In this
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graph we put agent a at the center vertex j, and run A during f(n) rounds. It is easy to verify
|X(S1(j), a, j, f(n))| > n/4 because f(n) is sublinear of n. Next, we consider a star graph S2(k)
of n/2 + 1 vertices that consists of the center vertex with ID k ∈ [1, n/2] and leaf sets with IDs
[n/2+1, n]. It also satisfies |X(S2(k), b, k, f(n))| > n/4. Now we consider a directed bipartite graph
G′ = ([1, n/2], [n/2+1, n], E). The edge set E is defined as E = {(h, i) | h ∈ X(S1(i), a, i, f(n))∨h ∈
X(S2(i), b, i, f(n))}. Since we have |X(S1(i), a, i, f(n))| > n/4 and |X(S2(i), b, i, f(n))| > n/4 for
all i, the total number of directed edges is more than (n/2 · n/4) · 2 = n2/4. This means that there
exists at least one pair (j, k) such that both (j, k) and (k, j) are contained in E. We consider the
graph that consists of two star graphs of n/2 + 1 vertices sharing an edge (Fig. 1 (a)). The IDs of
the two center vertices are j and k, and the IDs of j’s leaves are from [n/2 + 1, n] \ {k}, and those
of k’s leaves are from [1, n/2] \ {j}. The edge (j, k) connects the two centers. In this graph, when
we execute the algorithm A locating the two agents at j and k respectively, it is guaranteed that
each agent does not pass through edge (j, k) in the first consecutive f(n) rounds with probability at
least 1/4. That is, the algorithm does not achieve rendezvous within f(n) rounds with probability
at least 1/2. This is a contradiction.

The general case can be proven in the same way as the argument above. The only difference
is to change the degree of the center vertex to ∆ and replace all the leaves of star graphs with a
clique of size s = n−2

2∆ = Ω(n/∆) = Ω(δ) where exactly one vertex is adjacent to the center (Fig. 1
(b)). That graph obviously satisfies the constraint of min/max degrees, and the proof above also
applies to it.
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Figure 1: Proof of Theorem 3

5.2 Lower bound in the Case of the No Accessibility to IDs of Neighborhood

Vertices

Next, we show that any algorithm solving the (Θ(n),Θ(n), 1)-rendezvous problem requires Ω(n)
rounds in the worst case if agents have no access to IDs of neighborhood vertices.
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Theorem 4. Let n be even, n ≥ 6, δ = n/2− 1 and ∆ = n/2− 1, and assume that any agent has
no access to neighborhood IDs. Then there exists an instance of (∆, δ, 1)-rendezvous problem where
any rendezvous algorithm takes Ω(∆) rounds with a constant probability.

Proof. Suppose for contradiction that an algorithm A achieves rendezvous within f(n) = o(n)
rounds with high probability for the (n/2 − 1, n/2 − 1, 1)-rendezvous problem. We first consider
two cliques C1 and C2 of n/2 vertices where each vertex has an arbitrary ID. Let agent a be located
at va0 in the clique C1, and let agent b be located at vb0 in the clique C2. As the proof of Theorem
3, we make agents a and b execute algorithm A in each clique. By the assumption of f(n) = o(n),
it is easy to verify that |X(C1, a, v

a
0 , f(n))| > n/4 and |X(C1, b, v

a
0 , f(n))| > n/4 holds. Now we

select vertices x1 ∈ X(C1, a, v
a
0 , f(n)) and x2 ∈ X(C2, b, v

b
0, f(n)). Let j = P̂−1

va0
(x1), k = P̂−1

vb0
(x2),

j̄ = P̂−1
x1

(va0), and k̄ = P̂−1
x2

(vb0). We construct a graph G by removing edges (va0 , x1) and (vb0, x2)
from C1 and C2 respectively, and adding the edges (va0 , v

b
0) and (x1, x2). The local port number

of those edges are defined as P̂−1
va0

(vb0) = j, P̂−1
vb0

(va0) = k, P̂−1
x1

(x2) = j̄, and P̂−1
x2

(x1) = k̄. The

construction is illustrated in Fig. 2. Consider the f(n)-round run of A in G where two agents a and
b start from va0 and vb0 respectively. Since va0 and vb0 are connected by an edge, this is an instance
of the (n/2− 1, n/2 − 1, 1)-rendezvous problem. Since x1 ∈ X(C1, a, v

a
0 , f(n)), agent a visits x1 or

vb0 with probability at most 1/4. Similarly, b also visits x2 or va0 with probability at most 1/4. This
implies that with probability at least 1/2 no agent moves along edge (va0 , v

b
0) or (x1, x2), that is,

rendezvous is not achieved at round n/2 with a constant probability. This is a contradiction.
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Figure 2: Proof of Theorem 4

5.3 Lower bound in the Case of the distance two of initial locations

Next, we show that the lower bound for the (Θ(n),Θ(n), 2)-rendezvous problem.

Theorem 5. Let n be odd, ∆ = n− 1 and δ = (n− 1)/2. (∆, δ, 2)-rendezvous problem has a graph
instance where any algorithm takes Ω(∆) rounds with a constant probability.

Proof. Suppose for contradiction that an algorithm A achieves rendezvous within f(n) = o(n)
rounds with high probability for the (n−1, (n−1)/2, 2)-rendezvous problem. We first consider two
cliques C1, C2, . . . , C(n+1)/2 of (n+ 1)/2 vertices, where the i-th vertex set is V (Ci). The IDs of the

vertices of each clique Ci are assigned from
[

n+1
2 (i− 1) + 1, n+1

2 i
]

respectively for all i ∈ [1, n+1
2 ].

Suppose that agent a executes algorithm A in each clique Ci with an arbitrary initial location
ci ∈ V (Ci). By the assumption of f(n) = o(n), it is easy to verify that |X(Ci, a, ci, f(n))| >
(n+1)/4. Let V ′ a vertex set that obtained by picking up one vertex wi ∈ |X(Ci, a, ci, f(n))| for all
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i ∈ [1, n+1
2 ], and we construct a clique C ′ consisting of (n + 1)/2 vertices whose IDs come from V ′.

Suppose that agent b executes algorithm A in C ′ with an arbitrary initial location c′ ∈ V (C ′). It
also satisfies |X(C ′, b, c′, f(n))| > (n + 1)/4 because f(n) is sublinear of n. We pick up any vertex
x ∈ X(C ′, b, c′, f(n)). Letting Ck be the clique containing the vertex x, we construct the graph
G consisting of two cliques C ′ and Ck sharing x (Fig. 3). Consider the f(n)-round run of A in
G where a and b respectively start from ck and c′. This is an instance of (n − 1, (n − 1)/2, 2)-
rendezvous problem. Since x ∈ X(Ck, a, ck, f(n)) ∩X(C ′, b, c′, f(n)) holds, a and b do not visit x
with probability at least 1/4. That is, they cannot attain the rendezvous within f(n) rounds at
least with probability 1/2. This is a contradiction.
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Figure 3: Proof of Theorem 5

5.4 Lower bound for deterministic algorithms

We show that any deterministic algorithm solving the (Θ(n),Θ(n), 1)-rendezvous problem requires
Ω(n) rounds in the worst case. First, we outline the proof strategy. Suppose for contradiction
that an algorithm A solves (Θ(n),Θ(n), 1)-rendezvous problem within o(n) rounds. In the proof,
we adaptively construct the hard-core instance according to the behavior of A: We start the
construction with the two star graphs whose centers are the initial locations of two agents, and
consider the run of A in that graph. When the agent moves to an unvisited vertex, we adaptively
fix its neighborhood vertices. More precisely, the graph construction roughly follows the process
below: We select in advance Ω(n) vertices as a pool, and if an agent moves to an unvisited vertex
with degree o(n), we select Ω(n) vertices from the pool as neighbors. This construction provides
two independent graphs respectively associated with two agents. Finally, we carefully glue them
in the way of guaranteeing the initial distance one and minimum degree Ω(n), which becomes the
instance yielding Ω(n)-round lower bound.

We define some notations for explaining the details. Let n be a multiple of 32 for simplicity.
As we stated, our proof first constructs two instances (for two agents) separately. By symmetry we
only focus on the instance for agent a. We select an arbitrary ID space IDa whose size is n/2 + 1
for the instance of agent a, and fix an initial vertex va0 ∈ IDa. Let Qa

t (A, G, va0 ) = {va0 , va1 , . . . , vat }.
That is, Qa

t (A, G, va0 ) is the set of vertices visited by agent a in the execution of A starting from
va0 in G up to round t. We also define the sequence Sa

t (A, G, va0 ) = (va0 , v
a
1 , . . . , v

a
t ) of the vertices

in Qa
t (A, G, va0 ) with order. Given A, G = (V,E), va0 and a round r ≥ 0, we can construct

the execution spanning subgraph Ĝa
r(A, G, va0 ) = (V̂ , Ê) such that V̂ = N+

G (Qa
r(A, G, va0 )) and

Ê = {(u, v) | u ∈ Qa
r(A, G, va0 ) ∧ (u, v) ∈ E}. Intuitively, Ĝa

r(A, G, va0 ) represents the substructure
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of G seen by agent a in the execution of A starting from va0 up to round r. Now we assume any
graph G′ such that Ĝa

r(A, G, va0 ) = Ĝa
r(A, G′, va0 ) holds. It is obvious that the behavior of a in G′

starting from va0 is completely same as that in G up to round r+1, and thus we obtain the following
proposition.

Proposition 2. Assume for any G,G′, we have Ĝa
r(A, G, va0 ) = Ĝa

r(A, G′, va0). Then, Sa
r+1(A, G, va0 ) =

Sa
r+1(A, G′, va0) holds.

We show the lemma below, which is a key observation of our lower bound proof.

Lemma 9. Let A be any algorithm terminating within t ≤ n/32 rounds. Suppose that IDa and va0
is given. There exists a graph G containing a vertex subset W ⊆ NG(va0) of size at least 13n/32 such
that (i) (Qa

t (A, G, va0 )\{va0})∩N+
G (W ) = ∅ holds, and (ii) for each vertex w ∈ V (G)\(N+

G (W )\{va0}),
|NG(w)| = Θ(n) holds.

Proof. We adaptively construct the graph G according to the agent a’s movement. Precisely,
we incrementally fix the sequence of graphs G0, G1, . . . , Gt such that for each r ∈ [0, t − 1],
Sa
r+1(A, Gr, v

a
0) = Sa

r+1(A, Gr+1, v
a
0) is guaranteed. The vertex set of each Gi is common, which is

denoted by V , and equal to IDa (i.e., V = IDa). Let P ⊆ V \ {va0} be an arbitrary subset of size
7n/16, and P = V \P . We also define E0 = {(va0 , u) | u ∈ IDa \ {va0}} ∪ {(u, v) | u, v ∈ P ∧ u 6= v}.
For all r ≥ 0, the algorithm A outputs the vertex var+1 ∈ NGr

(var ), as the destination of the
movement at round r. Let Qr = Qa

r(A, Gr, v
a
0) for short. There are following two cases:

• var+1 ∈ Qr ∪ P .

• var+1 6∈ Qr ∪ P (that is, var+1 ∈ P \Qr).

If var+1 ∈ Qr ∪ P holds, we simply fix Gr+1 = Gr (i.e., Er+1 = Er). Otherwise, we construct Er+1

by adding to Er the edges from var+1 to all the vertices in P \Qr. In the following argument, we
show Sa

r+1(A, Gr, v
a
0) = Sa

r+1(A, Gr+1, v
a
0) holds for any r ∈ [0, t− 1] by the induction on r. In the

base case of r = 0, we have Q0 = {va0} and Sa
0 (A, G0, v

a
0 ) = (va0). The algorithm outputs the vertex

va1 as the destination of the movement in G0 at round r = 0. In any case of updating rules, we can
confirm that Ĝa

0(A, G0, v
a
0) = Ĝa

0(A, G1, v
a
0). Therefore the vertex va1 in G0 coincides with the one

in G1 and we have Sa
1 (A, G0, v

a
0 ) = Sa

1 (A, G1, v
a
0). In the case of r > 1, assume that we are given

Gr. The algorithm outputs the vertex var+1 as the destination of the movement in Gr at round r.
If var+1 ∈ Qr ∪ P , then Gr = Gr+1 holds, we have Sr+1(A, Gr, v

a
0) = Sr+1(A, Gr+1, v

a
0). Otherwise,

since we add edges between unvisited vertices (from var+1 ∈ P \Qr to each u ∈ P \Qr), it follows

Ĝa
r(A, Gr, v

a
0) = Ĝa

r(A, Gr+1, v
a
0). Then by proposition 2, Sa

r+1(A, Gr, v
a
0 ) = Sa

r+1(A, Gr+1, v
a
0 ) hold.

We set P \Qt = W (that is, the vertices in P not visited by round t). Finally, we show that Gt

has the desired property of the lemma. Since the agent visits to the vertices in P at most t = n/32
times, the size of W is at least 7n/16 − n/32 = 13n/32. Since W is the set of vertices which are
unvisited by agent a in the execution of A in Gt, by the updating rules of the graphs, each vertex
in W is only connected to va0 . Therefore we have (Qa

t (A, G, va0 ) \ {va0}) ∩ N+
G (W ) = ∅. Since P is

a clique in G0 (and thus in Gt), for each vertex u ∈ P , we have |NGt
(u)| ≥ n/16 − 1 = Θ(n). For

each vertex u ∈ P ∩Qr, the size of P \Qr is at least n/16 − n/32 = n/32 at any round r ∈ [0, t],
and thus we have |NGt

(u)| ≥ n/32 = Θ(n).

By the proposition and the lemma, we can construct the hard-core instance for the deterministic
algorithm. In the proof, we apply Lemma 9 several times according to the agent IDs and initial
positions va0 , v

b
0. Therefore in the proof we add subscripts of agent IDs and initial vertices to G and

W constructed by the lemma, as G(a,va0 )
and W(a,va0 )

.
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Theorem 6. For ∆ = Θ(n) and δ = Θ(n), the (∆, δ, 1)-rendezvous problem has a graph instance
where any deterministic algorithm takes Ω(∆) rounds with probability one.

Proof. Suppose for contradiction that a deterministic algorithm A achieves rendezvous within
f(n) = n/32 rounds for the (∆, δ, 1)-rendezvous problem of ∆ = Θ(n) and δ = Θ(n). Let [1, n] be
the domain of vertex IDs.

We select [1, n/2] and j ∈ [n/2 + 1, n] as the ID space of the execution of the agent a, denoted
by IDa. We choose va0 = j as the initial vertex of a, and construct G(a,j) by using Lemma 9.
Similarly, we adaptively construct the graph instance according to the agent b’s moves alone. We
select [n/2+ 1, n] and k ∈ [1, n/2] as the ID space, denoted by IDb. We choose vb0 = k as the initial
vertex of b, and construct G(b,k) by also using Lemma 9.

Now we consider a directed bipartite graph G′ = ([1, n/2], [n/2 + 1, n], E). The edge set E is
defined as E = {(x, y) | (x = j ∧ y ∈ W(a,j)) ∨ (x = k ∧ y ∈ W(b,k)))} for all j and k. Since we
have |W(a,j)| ≥ (13/32)n > n/4 and |W(b,k)| ≥ (13/32)n > n/4 for all j and k, the total number of
directed edges is more than (n/2 · n/4) · 2 = n2/4. This means that there exists at least one pair
(j, k) such that both (j, k) and (k, j) are contained in E. Finally we construct the whole graph
instance. Prepare Ga,j and Gbk as the subgraphs of the constructed instance. Then we add an
edge between j and k. We augment edges between any vertices in W(a,j) \ {k} and in W(b, k) \ {j}
respectively. By the condition (ii) of Lemma 9, it is easy to verify that the minimum degree of the
constructed instance is Θ(n). In this graph, consider the execution of A where two agents a and
b are respectively located at j and k. By the condition (i) of Lemma 9, it is guaranteed that each
agent does not pass through edge (j, k) in the first consecutive n/32 rounds. That is, the algorithm
does not achieve rendezvous within f(n) rounds. This is a contradiction.

6 Conclusion

In this paper, we consider the neighborhood rendezvous problem, and propose two randomized

algorithms for solving it. The first algorithm achieves rendezvous in O

(

n
δ log3 n +

√

n∆
δ log n

)

rounds with high probability for graphs of minimum degree δ = ω(
√
n log n). The second algorithm

achieves rendezvous in O
(

n
δ log2 n + n√

δ
log2 n

)

rounds with high probability. It does not use

whiteboards. We also presented four impossibility results for sub-linear time rendezvous, where each
result respectively considers four unconventional assumptions of our algorithm, that is, bounded
minimum degrees, accessibility to neighborhood IDs, initial distance one, and randomization. One
can obtain the Ω(n)-round lower bound if either of them is removed. Therefore we conclude that
our algorithms run under a minimal assumption.
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