
Adaptive Precision Training for Resource
Constrained Devices

Tian HUANG∗, Tao LUO†, and Joey Tianyi ZHOU‡

Agency for Science, Technology and Research, Singapore
∗huang tian@ihpc.a-star.edu.sg, †luo tao@ihpc.a-star.edu.sg, ‡Joey Zhou@ihpc.a-star.edu.sg

Abstract—Learn in-situ is a growing trend for Edge AI. Train-
ing deep neural network (DNN) on edge devices is challenging
because both energy and memory are constrained. Low precision
training helps to reduce the energy cost of a single training
iteration, but that does not necessarily translate to energy savings
for the whole training process, because low precision could slows
down the convergence rate. One evidence is that most works for
low precision training keep an fp32 copy of the model during
training, which in turn imposes memory requirements on edge
devices. In this work we propose Adaptive Precision Training.
It is able to save both total training energy cost and memory
usage at the same time. We use model of the same precision for
both forward and backward pass in order to reduce memory
usage for training. Through evaluating the progress of training,
APT allocates layer-wise precision dynamically so that the model
learns quicker for longer time. APT provides an application
specific hyper-parameter for users to play trade-off between
training energy cost, memory usage and accuracy. Experiment
shows that APT achieves more than 50% saving on training
energy and memory usage with limited accuracy loss. 20% more
savings of training energy and memory usage can be achieved in
return for a 1% sacrifice in accuracy loss.

I. INTRODUCTION

Deep learning-based Edge AI, as a growing trend, have
started to change many aspects of people’s lives. Well trained
deep learning models are able to achieve record-breaking
predictive performance [15], [7], but we have witnessed in-
creasing demand for the model to learn in-situ, for the purpose
of personalisation or adaptation to evolving environment.
Comparing to cloud-based deep learning framework, training
a deep learning model on edge device reflects the very idea
of edge computing, and benefits from energy savings in data
transmission, low response latency and enhanced privacy.

Train deep learning model on edge device is challenging be-
cause training DNNs usually involves energy-intensive devices
such as GPU and CPU with high precision (float32) processing
units and abundant memory. For example, neural architecture
search on ImageNet [2] would consume 10,000 GPU hours and
tons of memory. An edge device such as a smart phone could
easily draining out its battery before finishing a few training
epochs. Training is memory demanding than inference, as
the precision demand for back propagation is usually higher
than inference [9] [28]. Many works [9], [16] only focus on
compressing network for inference, while still keeping high
precision during training. The gap between limited resource on
edge devices and the growing demand on training is widening,

as researchers strive for better accuracy and propose larger
models for solving more complicated tasks [12].

Low precision training reduces the energy cost of a single
training iteration, but that does not necessarily translate to
energy savings for the whole training process, because low
precision could slows down the convergence rate. [9] A
prolonged training process could leads to a worse battery
situation. Many works keep an fp32 copy of their model during
training [9], [16], [30], [28], [20], [19], which in turn imposes
further memory requirements on edge devices.

In this paper we consider the training of a DNN on energy
and memory constrained devices. Our goal is to reduce the
total energy and memory cost for the training, We are
inspired by [3] and find that one can train a model with
low precision at the beginning of training process, enjoying
the energy and memory savings from low precision. As the
training curve comes to its plateau, adding more precision
help the model approach higher accuracy with fewer training
epochs and less energy.

Based on this inspiration, we propose a heuristic method
called Adaptive Precision Training (APT). In APT, We use
per-layer metrics that indicate how effective a layer learns with
given precision. By evaluating the metrics, APT adjusts layer-
wise precision dynamically throughout the training process.
Below shows a few features that sets APT unique among other
training methods:

• APT adjusts layer-wise precision dynamically (i.e. using
different bitwidth for different layer in different period of
training).

• In training, we use a model of the same precision for
both forward and backward propagation in order to save
memory usage for training.

• APT provides an application specific hyper-parameter
that achieves trade-off between training energy, memory
usage and accuracy.

APT finds the layer-wise precision configuration that help
the model learn effectively on the fly, It benefits edge devices
that have to learn in-situ frequently after deployment. Exper-
iments show that with APT, a model starts in low precision
is able to learn as fast as, sometimes even faster than, its
fp32 counterpart. APT achieves more than 50% saving on
training energy and memory usage with limited accuracy loss.
By tuning the application specific hyper-parameter, one can
achieve 20% more savings of training energy and memory
usage in return for a 1% sacrifice in accuracy loss.

ar
X

iv
:2

01
2.

12
77

5v
1

 [
cs

.L
G

]
 2

3
D

ec
 2

02
0

II. RELATED WORK

We mainly focus on adaptive layer-wise precision for train-
ing. Orthogonal and complementary techniques for reducing
complexity like network compression, pruning [4], [27] and
compact architectures [8] are impressively efficient but outside
the scope this paper.

Low Precision for Forward Propagation Many works ex-
plores the capability of fixed-point representation for forward
prorogation (FPROP) [11], [18], [21], [23]. These methods
keep a floating-point copy of model parameters in the back-
ward propagation (BPROP), which places additional demand
on memory usage and data movement during training. These
floating-point model parameters are quantised into fixed-point
numbers during FPROP.

Quantisation Aware Training Training with quantised
gradients has been well studied in the distributed learning,
whose main motivation is to reduce the communication cost
during gradient aggregations between workers [1], [20]. Our
goal setting are different because an edge device may not
have access to remote support and has to learn in-situ by
itself. DoReFa-Net [28] quantise gradients to low-bitwidth
fixed-point numbers in the BPROP. TernGrad [20] quantises
gradients to ternary values in the BPROP. But the weights are
stored and updated in floating-point representations for these
works. WAGE [22] provided a lossy information compression
technique and manage to operates BPROP in 8-bit. The goal
setting of this work is different from us, as it focuses on
reducing the energy cost for single training iteration.

Adaptive Training There are a few works that quantise
weight and activation with layer-wise precision. [18], [21],
[23] explore the space of layer-wise bitwidth for energy
efficient inference. [26] learns quantisation parameters through
finding gradient of these parameters. Adding more learnable
parameters could introduce more uncertainty of the conver-
gence of training curve. It also introduce more energy cost for
learning more parameters. Zhang et al. [25] also emphasise
on energy saving for single training iterations and store and
update weights in fp32 format in BPROP.

III. ADAPTIVE PRECISION TRAINING

In this work, we apply a widely used quantisation scheme
[11] to convert floating point numbers to into integers. The
scheme is equivalent to an affine mapping of integers q to
real numbers r. The formalised equation is shown as follows
r = S(q − Z). S and Z represent the scale and zero point of
a group of values, or a tensor. All values in a tensor share one
S and Z. Different tensors have their own S and Z. For k-bit
quantisation, q has 2k possible discrete states.

A. Quantisation Underflow

Low precision integer arithmetic is cheaper than a floating
point arithmetic in terms of energy and memory, but quanti-
sation magnifies the underflow issue. [13] Equation 1 shows
the update process of a weight in fp32 format:

wij := wij − lr ∗ gij (1)

wij is the j-th weight of i-th layer, lr is the learning rate,
gij is the corresponding gradient of the wij . Ideally, at each
training step, a weight changes by lr ∗ gij . As we apply k-
bit quantisation to a tensor of weights, too small changes
cannot be represented by the weight. We refer to this minimum
resolution as ε, which is formalised as follow:

εi =
max(Wi)−min(Wi)

2k − 1
(2)

Wi is a tensor of weights of i-th layer. k is the precision,
or the bitwidth for the tensor. The updates of a weight wij

is regulated by εi, which can be formalised as the following
equation:

wij := wij −
⌊
lr ∗ gij
εi

⌋
∗ εi (3)

As a result, lr ∗ gij is quantised to discrete states, which
is equivalent to that of wij . lr ∗ gij has to be at least bigger
than εi, otherwise quantisation underflow happens. For high
precision training (e.g. 32-bit) ε is small, lr∗gij is bigger than
εi for most of cases. As the precision decreases, εi increases,
quantisation underflow happens more often, putting higher
resistance on weights updating.

Gradient is the horse power that drives the training process
forward. Low-precision training put restrictions on the horse
power and slow down the training process. We have the
observation that in low precision network, gradients vanishes
quicker than that of a network with higher precision. This
is because quantisation underflow happens more often in low
precision model and guides the model into local minima. Some
of layers have larger ε and are harder to be updated than
others. As the training loss decreases, These layers with larger
ε suffer more quantisation underflow than before, stepping
onto a slippery slope. As the training process moves forward,
quantisation underflow freezes more parameters, driving the
training into a dead state.

B. Metrics for Underflow

Many works [9], [16], [30], [28], [20], [19], [25] keep an
fp32 copy of all parameters in order to prevent the above-
mention situation from happening, in the cost of memory
usage, energy on data movement and additional training iter-
ations. We believe there are low precision configurations that
is able to save training energy and memory usage at the same.
The key is to understand how easy quantisation underflow
happens to a layer, I propose a metric called Gavg, which
is formalised as Equation 4.

Gavgi =
1

Ni

Ni∑
j=0

∣∣∣∣gijεi
∣∣∣∣ (4)

Ni represents the number of parameters in a tensor, Gavgi
indicates how large a gradient is related to the minimum
resolution of parameters in i-th layer. The larger the Gavg
is, the less likely the parameters remains unchanged during
back propagation. If Gavg approaches zero, that means the

layer suffers serious quantisation underflow problem and does
not update for most of times. The precision is the key to
prevent Gavg from approaching zero. A higher precision leads
to lower ε and higher Gavg, which means the parameters are
easier to update.

Although we use weight to describe the concept of quantisa-
tion underflow and metrics, Gavg applies to other parameters
that need to be learned during training, e.g. bias, the clipping
point of activation and gradient. In the metric Gavg, we do
not include other factors like learning rate or momentum in the
metrics so that user can still use training tricks or sophisticated
optimisers over our training method.

C. Precision Adjustment Policy

The metric Gavg is a good measure for balancing require-
ments between training energy, memory usage, and accuracy.
It is well known that precision is directly related to the energy,
memory and accuracy. Using fixed precision across the whole
network may not meets the requirement of each layer. On
comparison, a single threshold for Gavg is able to produce
different precision configuration according to the distribution
of parameters and their gradients.

We propose a precision adjustment policy based on the
metric Gavg. We start with a naive policy, which is to make
sure that Gavg of all layers are within a pre-defined range. A
C-styled description of the policy is presented below.

Algorithm 1: Precision Adjustment Policy
input : k0...M−1, Gavg0...M−1, Tmin, Tmax,
output: k0...M−1

1 for (i = 0; i < M ; i = i+ 1) {
2 if (Gavgi < Tmin && ki < 32) {
3 ki := ki + 1;
4 }
5 if (Gavgi > Tmax && ki > 2) {
6 ki := ki − 1;
7 }
8 }
9 return k0...M−1;

In Algorithm 1, k0...M−1 and Gavg0...M−1 represents the
precision and metrics of all M layers. Tmin, Tmax are the
upper and lower limit. Algorithm 1 increase the precision of
a layer when its Gavg < Tmin and decrease the precision
when Gavg > Tmax. The lower limit ensures all layers learn
effective, whereas the upper limit is for saving energy cost
and memory usage on those parameters that are very easy to
update (e.g. due to its small range or large gradients).

A typical workflow of APT is described in Algorithm 2.
A training starts with a low-precision model. The metrics
evaluation happens inside each training epoch. The precision
adjustment happens between training epochs. Gavg does not
have to be calculated for each training iteration. A few times
in each epoch suffice to give a profile of Gavg for precision
adjustment.

Algorithm 2: Training with APT

1 Initialise all layers of a model with low precision, e.g.
k = 6;

2 for (epoch = 0; epoch < 200; epoch++) {
3 for (

iter = 0; iter < len(train loader); iter ++)
{

4 Forward propagation;
5 Backward propagation;
6 if iter%INTERV AL == 0 then
7 Evaluate Gavg using Equation 4;
8 Moving average on Gavg;
9 end

10 }
11 Adjust model precision using Algorithm 1;
12 }

Fig. 1. Gavg v.s. Epoch for two layer

Figure 1 demonstrate the trend of Gavg of two layers in
a training with adaptive precision. Tmin is set to 1.0 in this
demo. Layer A starts with a Gavg below Tmin, indicating it
suffers quantisation underflow. APT allocates more bitwidth
to lift the Gavg of layer A above the threshold. Layer B is
very easy to update at the beginning. Whenever Gavg hits
Tmin, APT allocates more bitwidth to ensure layer B learns
effectively. Tmax is set to inf in this demo. It is also possible
to use Tmax to reduce bitwidth for layers that do not suffer
much from quantisation underflow.

IV. EXPERIMENTS

In this section we evaluate the APT with three datasets: CI-
FAR10 and CIFAR100 [14]. We follow the data augmentation
in [22] for training: 4 pixels are padded on each side, and a
32x32 patch is randomly cropped from the padded image or
its horizontal flip. For testing, only single view of the original
32x32 image is evaluated. Three popular backbones, ResNet-
20, ResNet-110 [6], and MobileNetV2 [17], are included in
the experiments.

Fig. 2. Test Accuracy v.s. Epoch for ResNet20 on CIFAR10

Many works used sophisticated optimiser, such as Adam, in
their experiments. We use SGD to show the potential of saving
energy and memory usage. We use a weight decay of 0.0001
and momentum of 0.9, and adopt the weight initialization in
[5] and BN [10] with no dropout. The model is trained with
a minibatch size of 128 on one GPU. For experiments on
CIFAR10, we start with a learning rate of 0.1, divide it by 10
at 100 epoch and 150 epoch iterations, and terminate training
at 200 iterations. For experiments on CIFAR100, we apply
learning rate warm up, which reduces the learning rate down
to 0.01 for the first two epochs and go back to learning rate
scheduling for CIFAR10 for the rest of the training.

For all experiments we set initial bitwidth to 6, which will
be explained later. Unless specified, we set the application
specific parameter (Tmin, Tmax) to (6.0, inf) for all experi-
ments. This setting is better for demonstrating the capability
of APT in saving energy and memory usage. One can set
(Tmin, Tmax) to other values that meets the requirements of
the applications.

A. Training Curves and Adaptive Precision Adjustment

We compare the our APT method with a vanilla SGD with
different precision. The weights of all models are quantised
for both forward pass and backward pass. Figure 2 shows the
training curve.

fp32 and 16-bit model has the steepest learning curves
among all, as they do not suffer much from quantisation
underflow problem. The curve of 8-bit model does not climb as
fast as fp32 and 16-bit does. An investigation into the training
statistics shows that Gavg of the all layers drop from the scale
of 1 down to 1e−1 within the first 50 epoch, which indicates
quantisation underflow happens model wide and significantly
slows down the training process of the 8-bit model.

On comparison, our adaptive training method starts with a
model initialised with 6-bit weights. Its training curve starts
with lower accuracy at the beginning, even lower than that of
8-bit. It overtakes the 8-bit and catch up with 16-bit and fp32.
This is achieved by adaptively adjust layer-wise bitwidth of
the model.

Fig. 3. Layer-wise Bitwitdh v.s. Epoch for ResNet20 on CIFAR10

Figure 3 demonstrate the changes our method made to the
layer-wise bitwidth of the model. Only four layers with weight
parameters out of 20 are shown in this figure for the sake of
clarity. Overlapping curved are shifted slight away from each
other for the same purpose.

APT treats layers differently according to their learning
effectiveness. Some layers are trained with lower bitwidth in
early epochs and achieve solid energy savings. At 100 epoch,
The precision of the first and last layer reach bitwidth of 13 as
the training loss drops quickly after the decay of the learning
rate.

Though Figure 3 we understand that APT also serves as
a neural architecture search method. It start training with
an initial bitwidth of 6, which is for sure to be under-
qualified with the target application. The adaptive training
method will dynamically adjust the bitwidth of the network,
and approaches the target accuracy with fewer energy. This
means an initial bitwidth other than 6 leads to similar similar
results. We choose 6 for all experiments just for demonstration
purpose.

B. Savings in Energy and Memory

In this subsection we demonstrates that our adaptive training
method saves training energy and memory. APT provides users
trade-off between training energy and test accuracy. For this
comparison. we train ResNet20 with CIRFAR10 dataset. The
weights of all models are quantised for both forward pass and
backward pass. The 12-bit, 14-bit, 16-bit and 32-bit models
use fixed bitwidth throughout training process. We do not
include 10-bit, 8-bit or lower bitwidth because their suffer
large accuracy loss and fall off charts in most cases. Our
adaptive training method starts on a model with initial weight
bitwidth of 6.

The grouped bars in Figure 4 show the energy our method
saved given a target accuracy. X axis is the Top 1 accuracy
ranging from 91% to 92%. All training energy cost are
normalised to the cost of 32-bit model.

12-bit model has the least training energy cost among the all
fixed-bitwidth models. It still spends 9% more training energy

Fig. 4. Training Energy v.s. Bitwidth for ResNet20 on CIFAR10

than our adaptive method does. The 12-bit model is absent in
the 91.75% and 92% group because within 200 epoch it is not
able to reach an accuracy of 91.75%.

In order to achieve the last few percentage of improvement
in accuracy, models with fixed bitwidth spend a lot of training
energy. For example, 16-bit model spends 13% more energy
to achieve an improvement of 0.25% from 91.5% to 91.75%.
On comparison, our adaptive method managed to achieve this
by just 1% additional energy.

One may notice that the training energy of our adaptive
method drops from 40% to 26% when achieving the accuracy
improvement from 91.75% to 92%. This is because the 32-bit
model spends more training energy than our method does for
the same improvement. As the training energy in this figure
is normalised to that of the 32-bit model, the training energy
of our method drops from a percentage point of view.

In Figure 4, APT trains with Tmin = 6.0. This hyper-
parameter is application specific, which can be used as a
trade-off between accuracy and training energy. Next we
demonstrate that by tuning this threshold, one is able to
achieve more savings in training energy and memory cost in
the cost of accuracy loss.

In Figure 5, we use Gavg threshold ranging from 0.1 −
100.0 and generate a scatter plot of the training energy cost
(in orange) for 200 epochs and corresponding accuracy the it
achieves. All training energy cost are normalised to that of
32-bit model training.

Through Figure 5 we know that higher Gavg threshold
results in more training energy, memory usage and higher
accuracy. For threshold below 1.0, accuracy increases quickly
along with the increase of training energy. The plateau appears
on the right of threshold 1.0 means extra training energy brings
less improvements, which is very common during the training
process. One can choose a Gavg threshold that fits the need
of the his or her applications.

Figure 5 also presents the model size for training of the same
experiment. We use low-precision representation of parameter
during the back propagation in order to save memory usage

Fig. 5. Resource Consumption for Training v.s. Test Accuracy for ResNet20
on CIFAR10

for training. The memory usage is normalised to that of a 32-
bit presentation. The memory usage follows the same trend as
the training energy.

C. Comparison to Others

Table I shows the comparison to other quantisation methods.
Model Precision in BPROP refers to the representation used
in the update of weights. Many works [9], [16], [30], [28],
[20], [19] keeps a fp32 copy of weights for back propagation
in order to prevent a prolonged training process. There is no
savings in memory usage for training. For example, TernGrad
[20] is only for worker-to-server communication in distributed
training, weights are still accumulated with fp32. In fact,
[22], [24] need more training epochs and/or sophisticated
optimiser to reach comparable accuracy. With SGD optimiser
and quantised model in BPROP, APT is able to achieve more
than 50% of savings in energy and memory usage with limited
accuracy loss.

V. CONCLUSION AND FUTURE WORK

Training DNNs on resource constrained edge devices is
challenging. We propose Adaptive Precision Training method
that saves both energy cost and memory usage for training.
APT evaluates how effective each layer learns with its current
precision. Based on the evaluation, APT performs layer-wise
precision adjustments dynamically to make sure the model
learns effective throughout the training process. APT has
a hyper-parameter Tmin which provides trade-off between
training energy and accuracy. Tuning parameter Tmin requires
application specific knowledge. In future, we are going to find
automatic ways for choosing a proper Tmin in order to ease
the use of APT.

REFERENCES

[1] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and An-
ima Anandkumar. signsgd: Compressed optimisation for non-convex
problems. arXiv preprint arXiv:1802.04434, 2018.

TABLE I
COMPARISON OF NETWORK QUANTISATION METHODS

Method Model Precision in BPROP Optimizer CIFAR10 CIFAR100
BNN [9] FP32 Adam 89.85 NA

TWN [16] FP32 BinaryRelax [24] 88.65 (ResNet-20) [24] b 68.95 (ResNet-110) [24] b

TTQ [30] FP32 Adam 91.13 (ResNet-20) NA
DoReFa Net [28] FP32 Adam 89.52 [29] 61.43 [29]

TernGrad [20] FP32 a Adam 85.64 (CifarNet) NA
WAGE [22] 8-bit SGD 93.22 (VGG-like) b NA

E2 Train [19] FP32 SGD 93.07 (ResNet110) NA
APT Adaptive SGD 92.23 (ResNet20) 68.38 (ResNet110)

93.96 (MobileNet v2)
a Only for worker-to-server communication in distributed training, weights are accumulated with float32
b 300 training epochs

[2] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos. Deep
learning with low precision by half-wave gaussian quantization. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5918–5926, 2017.

[3] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. Deep learning with limited numerical precision. In
International Conference on Machine Learning, pages 1737–1746, 2015.

[4] Song Han, Huizi Mao, and William J Dally. Deep compression:
Compressing deep neural networks with pruning, trained quantization
and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving
deep into rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE international conference on
computer vision, pages 1026–1034, 2015.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[7] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman
Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick
Nguyen, Tara N Sainath, et al. Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research
groups. IEEE Signal processing magazine, 29(6):82–97, 2012.

[8] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and H Adam Mo-
bilenets. Efficient convolutional neural networks for mobile vision
applications. arXiv preprint ArXiv:1704.0486, 2017.

[9] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Quantized neural networks: Training neural networks
with low precision weights and activations. The Journal of Machine
Learning Research, 18(1):6869–6898, 2017.

[10] S Ioffe and C Szegedy. Batch normalization: accelerating deep network
training by reducing internal covariate shift. cornell university library,
2017.

[11] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew
Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko.
Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2704–2713, 2018.

[12] Lukasz Kaiser, Aidan N Gomez, Noam Shazeer, Ashish Vaswani, Niki
Parmar, Llion Jones, and Jakob Uszkoreit. One model to learn them all.
arXiv preprint arXiv:1706.05137, 2017.

[13] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks
for efficient inference: A whitepaper. arXiv preprint arXiv:1806.08342,
2018.

[14] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. 2009.

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems, pages 1097–1105, 2012.

[16] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv
preprint arXiv:1605.04711, 2016.

[17] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear

bottlenecks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4510–4520, 2018.

[18] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq:
Hardware-aware automated quantization with mixed precision. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 8612–8620, 2019.

[19] Yue Wang, Ziyu Jiang, Xiaohan Chen, Pengfei Xu, Yang Zhao, Yingyan
Lin, and Zhangyang Wang. E2-train: Training state-of-the-art cnns with
over 80% energy savings. In Advances in Neural Information Processing
Systems, pages 5139–5151, 2019.

[20] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran
Chen, and Hai Li. Terngrad: Ternary gradients to reduce communica-
tion in distributed deep learning. In Advances in neural information
processing systems, pages 1509–1519, 2017.

[21] Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian, Peter Va-
jda, and Kurt Keutzer. Mixed precision quantization of convnets via dif-
ferentiable neural architecture search. arXiv preprint arXiv:1812.00090,
2018.

[22] Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi. Training and
inference with integers in deep neural networks. arXiv preprint
arXiv:1802.04680, 2018.

[23] Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li, Bing Deng,
Jianqiang Huang, and Xian-sheng Hua. Quantization networks. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

[24] Penghang Yin, Shuai Zhang, Jiancheng Lyu, Stanley Osher, Yingyong
Qi, and Jack Xin. Binaryrelax: A relaxation approach for training deep
neural networks with quantized weights. SIAM Journal on Imaging
Sciences, 11(4):2205–2223, 2018.

[25] Xishan Zhang, Shaoli Liu, Rui Zhang, Chang Liu, Di Huang, Shiyi
Zhou, Jiaming Guo, Yu Kang, Qi Guo, Zidong Du, et al. Adaptive
precision training: Quantify back propagation in neural networks with
fixed-point numbers. arXiv preprint arXiv:1911.00361, 2019.

[26] Yichi Zhang, Ritchie Zhao, Weizhe Hua, Nayun Xu, G Edward Suh, and
Zhiru Zhang. Precision gating: Improving neural network efficiency with
dynamic dual-precision activations. arXiv preprint arXiv:2002.07136,
2020.

[27] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen.
Incremental network quantization: Towards lossless cnns with low-
precision weights. arXiv preprint arXiv:1702.03044, 2017.

[28] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and
Yuheng Zou. Dorefa-net: Training low bitwidth convolutional neural
networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160,
2016.

[29] Zhengguang Zhou, Wengang Zhou, Xutao Lv, Xuan Huang, Xiaoyu
Wang, and Houqiang Li. Progressive learning of low-precision networks.
arXiv preprint arXiv:1905.11781, 2019.

[30] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained
ternary quantization. arXiv preprint arXiv:1612.01064, 2016.

	I Introduction
	II Related Work
	III Adaptive Precision Training
	III-A Quantisation Underflow
	III-B Metrics for Underflow
	III-C Precision Adjustment Policy

	IV Experiments
	IV-A Training Curves and Adaptive Precision Adjustment
	IV-B Savings in Energy and Memory
	IV-C Comparison to Others

	V Conclusion and Future Work
	References

