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Abstract—The last decade saw an emergence of Synchronous
Transmissions (ST) as an effective communication paradigm in
low-power wireless networks. Numerous ST protocols provide
high reliability and energy efficiency in normal wireless condi-
tions, for a large variety of traffic requirements. Recently, with
the EWSN dependability competitions, the community pushed ST
to harsher and highly-interfered environments, improving upon
classical ST protocols through the use of custom rules, hand-
tailored parameters, and additional retransmissions. The results
are sophisticated protocols, that require prior expert knowledge
and extensive testing, often tuned for a specific deployment and
envisioned scenario. In this paper, we explore how ST protocols
can benefit from self-adaptivity; a self-adaptive ST protocol selects
itself its best parameters to (1) tackle external environment
dynamics and (2) adapt to its topology over time.

We introduce Dimmer as a self-adaptive ST protocol. Dimmer
builds on LWB and uses Reinforcement Learning to tune its
parameters and match the current properties of the wireless
medium. By learning how to behave from an unlabeled dataset,
Dimmer adapts to different interference types and patterns, and
is able to tackle previously unseen interference. With Dimmer, we
explore how to efficiently design AI-based systems for constrained
devices, and outline the benefits and downfalls of AI-based low-
power networking. We evaluate our protocol on two deployments
of resource-constrained nodes achieving 95.8% reliability against
strong, unknown WiFi interference. Our results outperform
baselines such as non-adaptive ST protocols (∼27%) and PID
controllers, and show a performance close to hand-crafted and
more sophisticated solutions, such as Crystal (∼99%).

Index Terms—low-power wireless networks, synchronous
transmissions, reinforcement learning, deep Q-network, WSN,
IoT

I. INTRODUCTION

Energy-efficiency and high-reliability are two vital aspects
of low-power wireless communication. Synchronous Trans-
missions (ST), with Glossy as their flagship [1], provide
high performance under normal conditions, i.e., under no
or minimal interference [1]–[3]; yet, the wireless medium is
prone to large dynamics, e.g., due to fading and interference.
With the EWSN competitions, the community has designed
dependable ST protocols, able to maintain communication
under strong interference [4]–[6]. Through cleverly-crafted
rules and heavy testing, dependable solutions provide high-
reliability during highly-interfered episodes, often at the cost
of lower energy-efficiency. Beyond dependability, we argue
that the next step towards generalized ST protocols is to
provide adaptivity; an adaptive protocol detects changes to

its environment, e.g., interference, and reacts to counteract its
effects, e.g., by updating its transmission strategy or excluding
jammed frequencies. In this paper, we explore self-adaptivity;
rather than relying on predefined and hand-crafted decision-
rules, a self-adaptive ST protocol learns by itself how to detect
interference and react to it.

Adaptivity plays an important role in communication engi-
neering, and has been shown to improve performance, e.g.,
in TCP congestion control [7], or WiFi rate control [8].
A self-adaptive wireless stack faces many challenges, as
interference comes in many patterns (e.g., bursts or slow
channel-fading) [9], and is often unique to each deployment.
Further, device positions, density, and mobility, have a drastic
impact on performance. In ST protocols, increasing the num-
ber of retransmissions is shown to increase reliability under
interference, along with using channel-hopping [4,5]. Yet, in
dense ST deployments and in the absence of interference,
not all concurrent transmissions are required to ensure correct
reception [10,11]. Likewise, leaf nodes at the edge of a non-
mobile network are not helpful to the dissemination [12]. In
such cases, devices do not need to participate in the flood
propagation and can be deactivated earlier to save energy.
Thus, we define an ST protocol as adaptive if (1) it reacts to
external environment dynamics and (2) adapts to its topology
over time, and define it as self-adaptive if it is able to learn
by itself how to be adaptive.

Challenges. Designing a self-adaptive ST protocol brings
the following challenges: available information is limited, as
Glossy does not provide feedback, or feedback is delayed
in shared-bus abstractions [2]. Further, ST abstract away the
concept of neighbors: one-hop and multi-hop neighbors are in-
distinguishable. Thus, interference must be dealt with globally,
as distributed approaches might cause instability [12]. Rule-
based systems used in adaptive rate control [7] react to distur-
bances, but require complex rules for efficient or near-optimal
adaptation. PID controllers, the go-to approach in closed-
loop control, must be tuned, either through experimentation or
complex numerical methods, prior to their deployments [13];
yet it is not guaranteed that different interference-patterns or
deployments require similar decision-rules, thresholds, or pa-
rameters. Instead of static-rules or PID controllers, we decide
to employ deep Reinforcement Learning (RL) in a bid to learn
how to optimally tune our communication parameters and react
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to deployment-specific interference, in the absence of both
human supervision and expert knowledge. Using deep RL,
we achieve self-adaptivity: our self-adaptive protocol learns
by itself how to detect and react to its environment dynamics.

System Challenges. Building on neural networks and deep
RL brings its own, specific set of challenges: (1) We have
to capture the dynamics of the wireless medium in a neural
network so that it can learn how to efficiently adapt to the
network dynamics. We use the packet reception rate and
the radio duty-cycle as measures of interference. (2) It is
practically impossible to obtain a dataset labeled with optimal
parameters, as used with supervised methods. We build an
unlabelled simulation environment in which a reinforcement-
learning agent is trained. (3) Low-power wireless systems
are resource-constrained, in the order of several MHz and
tens of kB of RAM, and demand for space-efficient neural
networks so that we can deploy them on the hardware. We
employ quantization and a small architecture to limit space.
(4) Distributed RL approaches are prone to instability, while
building a fully central RL solution is infeasible due to the
curse of dimensionality. We employ a central deep network
to globally adapt to interference, and distributed multi-armed
bandits to locally deactivate devices.

Approach. We introduce Dimmer, a self-adaptive ST proto-
col for all-to-all communication. Dimmer is part of the Low-
power Wireless Bus (LWB) class of protocols [2]: applications
see the medium as a shared bus, and a coordinator centrally
schedules communication into periodic rounds. Dimmer in-
troduces two novel elements: (1) a centrally-executed Deep
Q-Network (DQN) that globally adapts the retransmission
parameter to tackle interference, and (2) a distributed for-
warder selection scheme using multi-armed bandits at run-
time, to deactivate superfluous devices and save energy in
the interference-free case. Unlike other forwarder-selection
approaches [11], Dimmer does not require extra transmissions:
application packets are enhanced with local performance mea-
surements and shared with the network; and communication
schedules are used to globally adapt devices to the current
measured interference. At the end of a round, the Dimmer
coordinator aggregates the feedback received from all nodes
and executes its DQN, thus establishing a new transmission
strategy for the entire network. In the interference-free case,
the coordinator allows devices to sequentially learn at runtime
if they are essential to the information dissemination or can
be deactivated to save energy.

Contributions. This paper contributes the following:
• We present Dimmer, an RL-enabled self-adaptive com-

munication primitive featuring a deep Q-network and
adversarial multi-armed bandits;

• We highlight how we represent Dimmer as a solvable
RL problem featuring centralized control and distributed
decision-making, and how we design an embedded deep
Q-network fitting to low-power platforms;

• We provide an open-source1 implementation and evaluate

1https://github.com/ds-kiel/dimmer

our solution on two testbeds comprising 18 and 48 nodes,
showing it is able to operate on new topologies and adapt
against unseen interference without retraining its DQN.

We give background on RL and LWB in §II, provide an
overview of Dimmer in §III, dive deep into our problem
formulation and system design in §IV, evaluate Dimmer on
testbed deployments in §V, discuss related work in §VI and
conclude our work in §VII.

II. BACKGROUND

A. Reinforcement Learning

Reinforcement Learning (RL) targets sequential decision
making [14]; in an RL problem, an agent learns how to
achieve a complex task by taking consecutive actions in an
environment with unknown rules and dynamics. Learning
happens through active interaction: the agent measures its
environment, then executes actions affecting it back; a reward
signal indicates if the desired goal is reached. By exploring the
environment and trying random actions, the agent accumulates
experiences and builds an internal model. By exploiting its
reward and with enough knowledge, the agent constructs a
sequence of actions that solves the complex task at hand.

Markov Decision Processes. An RL problem is said to be
solvable if the environment can be represented as a Markov
Decision Process (MDP). MDPs extend Markov chains: the
transition to a new state is modeled as a transition probability-
distribution, from a state-decision pair. Formally, an MDP is
represented by the tuple (S,A,P,R), where S is the set
of states, A the set of actions, P the transition probability-
function and R a reward function.

Q-Learning. An established way to solve an RL problem
is to maximize the cumulative reward Rt ,

∑∞
τ=t γ

τ−trτ ,
where rτ is the reward obtained when transitioning at time
τ , and γ ∈ [0, 1) a constant called the discount factor.
Small discount factors force the agent to maximize short-
term, immediate rewards, while high discount factors allow
the agent to maximize long-term expected rewards. Q-learning
is one of the most popular ways to solve RL problems [14]. In
Q-learning, an agent learns an action-value function Q(s, a).
This function represents the expected cumulative reward the
agent expects when starting in state s, using action a such
as Q(s, a) , E

[
Rt | st = s, at = a

]
. In simple terms, the

Q-function evaluates how valuable it is to choose action a in
state s, in terms of expected reward.

If the environment can be modeled as an MDP, then we
can find an optimal function Q∗(s, a) that follows Bellman’s
principle of optimality:

Q∗(s, a) = E
[
rt+ γmaxa′Q∗(st+1, a

′) | st = s, at = a
]

(1)

where rt is the immediate reward received, γ the discount
factor, and st+1 the state achieved after the state s. By
iteratively trying actions and receiving rewards, we can update
a Q-function that ultimately converges to the optimal Q∗(s, a).

Deep Q-learning. While Q-learning algorithms have his-
torically used a tabular approach to represent the Q-function



[14], deep neural networks have been recently established
as Q-function approximators [15]. Deep Q-networks (DQN)
have been successfully used to solve problems outside of
their original application: datacenter cooling [16], wireless
modulation [17], CSMA/CA optimization [18], etc. One ad-
vantage of DQN over tabular approaches is the ability to
solve problems with continuous states and the generalization
property of neural networks.

Multi-armed bandits. In the Multi-Armed Bandits (MAB)
problem, a gambler faces K machine slots in a casino, each
machine giving an a priori unknown, stochastic reward upon
pulling its arm. The goal is to maximize the cumulative returns
in a minimal number of steps, by carefully controlling the
exploration-exploitation trade-off. In the extended adversarial
MAB setting, an adversary is able to impact the reward system
associated with each arm [19]. In wireless systems, changing
conditions of the medium can be represented as an adversarial
setting. The gambler thus cannot rely on past experiences only,
and must continuously explore.

Exp3. Exp3 is an online learning approach for adversarial
MAB [20]. Exp3 associates an exponential weight with each
arm, thus leading to quick adaptation to adversarial changes in
the environment. At each timestep, an action is selected based
on its probability, such as:

pi(t) = (1− γ)× wi(t)∑K
j=1 wj(t)

+
γ

K
(2)

Where wi(t) is a weight updated after each trial such as wi(t+
1) = wi(t) × exp( γ∗r(t)

K∗pi(t) ), with r(t) the reward obtained
at time t. K stands for the number of arms, and γ is the
exploration factor.

B. Synchronous Transmissions

In low-power wireless networks, quickly flooding a message
to the entire network has established itself as a simple and
efficient method to provide communication.

Glossy. Glossy is among the pioneer works in synchronous
transmissions [1]. Through tight synchronization (< 0.5 µs)
and by sending identical data, Glossy provides network-wide
broadcast with high reliability (> 99.9%) and low power
consumption. Within a Glossy flood, a packet is retransmit-
ted multiple times, typically 3, and nodes alternate between
transmission and reception to keep synchronization and re-
duce the number of concurrent transmissions. Variants extend
Glossy with flexible transmission schedules and frequency
hopping [4].

LWB. Low-power Wireless Bus (LWB) is a flexible com-
munication protocol, supporting many traffic patterns and
specially tailored to wireless sensor networks [2]. LWB uses
Glossy floods as communication primitive, effectively turning
a multi-hop network with mobile nodes into a logical bus, in
which any node can potentially receive any packet, without
the need for expensive routing. LWB is a centralized solution:
a host node computes a schedule that satisfies flows requested
by (message)-source nodes and controls the periodicity of

communication to save energy. As such, LWB is a versatile so-
lution for low-power communication, and has inspired higher-
level abstractions in low-power wireless systems [21,22].

III. AN OVERVIEW OF DIMMER

A. Dimmer

We introduce Dimmer, a self-adaptive synchronous-
transmissions (ST) protocol. Dimmer provides self-adaptivity:
through deep reinforcement learning and without expert su-
pervision, Dimmer learns by itself how to detect changes to
the wireless medium, and reacts by updating its retransmission
strategy to counteract losses or save energy.

Dimmer in a nutshell. Dimmer uses LWB’s commu-
nication structure: a central coordinator schedules periodic
communication rounds (see Fig. 1). A round starts with a
control slot, used to transmit the schedule. Then, data slots
are attributed to each device to allow message dissemination,
where each slot is executed as a Glossy flood. In Dimmer,
each device continuously monitors its performance, i.e., its
local packet reception rate and average radio-on time. During
its data slot, a source includes its performance in a two-byte
packet header, and shares it with the network. Devices collect
such feedback from all participating nodes.

At the end of the round, the central coordinator executes its
embedded, deep Q-network over the collected feedback, and
decides a new retransmission strategy. This updated strategy
is shared along with the schedule, at the beginning of the next
round, and is applied by the entire network. If no interference
is detected, the central coordinator instead allows devices to
apply their distributed forwarder selection, where one node
learns whether its participation is required for successful
message propagation, see Fig. 2 and §IV-C.

B. AI versus traditional methods

Limitations of traditional methods. Building an adaptive
ST protocol using rate-control rules or PID controllers is
possible but suffers drawbacks. Rule-based rate controllers
often provide adaptivity by overshooting the optimal value:
in TCP, the data rate is greatly decreased whenever it suf-
fers losses. Similarly, PID controllers must be tuned, either
through numerical analysis or experimentation. Thus, efficient,
traditional adaptivity requires sufficient expert knowledge and
extensive testing; yet it is not guaranteed whether the tuned pa-
rameters, complex rule-sets and chosen thresholds are optimal
in unknown deployments.

AI-enabled wireless. With machine learning, deploying to
a different topology or changing the hardware simply equates
to collecting new traces and retraining the neural network,
which can be done as an automatic step during deployment.
Moreover, RL does not require a dataset labeled with the
optimal retransmission parameters, as the RL agent uses trial-
and-error to learn how to act optimally. Thus, using Dimmer
does not require any prior expert knowledge. In addition, we
show in §V that deploying Dimmer in a new environment does
not necessarily require retraining the DQN, as we demonstrate
by operating Dimmer on a larger deployment against WiFi,
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Fig. 1. Adaptivity in Dimmer. A round starts with a Glossy flood from the coordinator containing the round schedule
and the retransmission parameter NTX . Each device sends its message Mx and its performance feedback Fx. At the
end of the round, the coordinator aggregates the feedback and computes the new NTX with its Deep Q-Network.
The retransmission parameter NTX increases to counteract interference, and converges back to its optimal value once
interference has passed.

TX RX TX RX TX
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RX

Forwarder SelectionAll Devices Active

Example: transmission schedule

Fig. 2. Forwarder Selection. In the interference-free case,
nodes take turn learning whether they should act as active
forwarder to help the dissemination, or passive receiver to
save energy. Under interference, all devices are active.

while the DQN was trained on traces collected on an 18-node
testbed predominantly featuring IEEE 802.15.4 jamming.

Deep RL. Traditional, tabular Q-learning provides learning
with low-complexity costs, yet only supports problems with
low-dimensional states. In Dimmer, our input space is a com-
bination of measures from many nodes, particularly energy,
that is continuous in nature. This high-dimensionality makes
tabular Q-learning unfit. Rather, we rely on neural networks
and deep RL.

IV. PROBLEM FORMULATION AND DESIGN

We formulate the problem of adaptivity in §IV-A, and frame
it as two independent RL problems in §IV-B and §IV-C. We
summarize our architecture in §IV-D and discuss selected
challenges in §IV-E.

A. Adaptivity: Two Sub-problems

To be adaptive, Dimmer needs to (1) counteract external
environment dynamics and (2) deactivate superfluous concur-
rent transmitters and leaf devices in the interference-free case.
We argue that the number of retransmission within a Glossy
flood, NTX , is a parameter allowing to improve resiliency
to external disturbances. Further, setting NTX = 0 allows a
participant to turn off its radio as soon as a packet is received
once, thus saving energy. We conclude that Dimmer is adaptive
if it assigns (possibly unique) NTX values to each device in
the network.

Curse of dimensionality. We argue that it is practically hard
to design a learning solution to adaptivity that is either fully
centralized, or fully distributed. Assuming a device chooses
from NTX = 0 to Nmax, and a network composed of D
devices, there are (Nmax+1)D possible configurations, where
many configurations actually break communication. To find
the optimal configuration, a learning system would require an
enormous amount of data; this is not practical.

Let’s instead assume a fully distributed adaptive system.
Each device selects its own NTX . If all participants try out
strategies concurrently, it is practically impossible to discern
whether a local strategy has been beneficial or if a concurrent
strategy has been harmful. If devices learn in a sequential
manner, the time required increases linearly with the number
of devices, and collecting traces to speed up the process is not
practical, for the same reason as outlined for the centralized
approach. Further, distributed learning approaches are not
guaranteed to converge to the optimal configuration [12].

Two sub-problems. To solve the challenge discussed above,
we divide Dimmer into two distinct sub-problems: (a) a
centralized adaptivity control, that leads a global update of
NTX under interference (Fig. 1), and (b) a distributed for-
warder selection scheme, that allows devices to learn if their
participation in the forwarding process is required in non-
interfered episodes (Fig. 2). Our centralized adaptivity leads
to Nmax + 1 global configurations, assuming NTX = 0 to
Nmax, as all devices now share a common value. Therefore,
it is feasible to collect traces for such a problem, under varied
disturbances, and learn an optimal solution (see §IV-B).

By making the distributed forwarder selection problem a
binary choice (active forwarder, passive receiver), we have
2D possible configurations. It is not possible to further
simplify the problem: D is the number of devices in the
entire network, and we cannot cluster devices into smaller,
independent groups. Indeed, different network subsets can
depend on the decision of a distant, bottleneck device, thus
finding independent clusters is practically hard. Instead, we
decide to tackle forwarder selection in a distributed manner.
Since collecting traces for such a number of configurations is
practically unfeasible, Dimmer learns its forwarder selection
configuration at runtime. We allow devices to sequentially
learn their role, one at a time, and measure their impact on
the overall performance. By learning sequentially, we ensure



that, from a node perspective, the environment is stable. We
describe the techniques we employ to avoid network-breaking
configurations and divergent states in §IV-C.

B. Central Adaptivity

Problem Formulation. We formulate the task of centralized
adaptivity control in Dimmer as an RL problem.
Objective: Find the global, optimal flood retransmission pa-
rameter NTX that maximizes reliability and minimizes energy
consumption at a given time.
State space: Dimmer aggregates the (a) reliability (packet
reception rate, ratio of packets received / expected) and (b)
radio-on time of a subset of the K devices with lowest
reliability. In addition, the (c) current NTX is used, and
represented as one-hot encoding. (d) M historical reliability
datapoints are used to encode past events, see Table I.
Action space: Dimmer applies to all nodes in the network
the same action: (a) Decrease NTX , (b) Maintain NTX , or (c)
Increase NTX .
Neural architecture: Dimmer uses one fully-connected hid-
den layer of 30 neurons with rectified linear (ReLU) activation,
plus three neurons for the output layer. We turn weights into
fixed point integers and we quantize them to be computed on
embedded hardware.
Reward function: At each timestep, the agent receives a
reward such as:

rt ,

{
1− C ∗NTX/Nmax, if no losses
0, otherwise

(3)

where NTX/Nmax is the normalized retransmission factor and
C = 3

10 a constant controlling the efficiency-reliability trade-
off: low values favor high reliability, higher values encourage
energy efficiency; and Nmax = 8 the maximum number of
retransmissions achievable within a slot.

Solvable RL problem. Due to space constraints, we give
the intuition that Dimmer can be modeled as an RL problem.
Dimmer operates in periodic rounds. Intuitively, the perfor-
mance of the current round depends on the current interference
as well as the chosen NTX and independent of past decisions.
Dimmer can then be modeled as an MDP, and is solvable using
RL.

Network-size independence. Neural networks suffer from
their rigid structure: their input vectors must remain constant in
size. If a neural network is trained using one input per sensor
node, the neural network needs to be entirely retrained if a
node is added or removed. To counter this limitation, our DQN
requires input from a subset of nodes only, ordered from lowest
reliability to highest. Thus, Dimmer supports deployments of
varying sizes without retraining for each new device. We select
the K devices with lowest reliability to correctly represent the
suffered packet losses. Absence of feedback is treated as 0%
reliability, and 100% radio-on time.

Deep RL. We normalize inputs to [−1, 1]. We depict any
reliability below 50% -1, and 100% reliability as 1. For
historical features, we represent the previous round as -1 if
at least one packet was lost, and 1 if all packets were received

TABLE I. Input vector of Dimmer’s DQN. Parentheses
denote the number of elements used by Dimmer during
evaluation.

Input Number of rows (31) Normalization

Radio-on time K (10) [0, 20ms] → [-1,1]
Reliability K (10) [50, 100%] → [-1,1]
N parameter Nmax + 1 (9) One-hot encoding

History M (2) -1 if losses, otherwise 1

by all nodes. Thus, we obtain an input vector with 31 elements
(see Table I). This enables a small neural network while being
able to support a wide range of deployments with varying size.
Although we limit our input space, reliability and radio-on
time are continuous values, and the state space is too large
to use traditional Q-learning. Instead, we must rely on deep
Q-learning to solve Dimmer.

Limiting the action space. Our reasons to use Decrease,
Maintain, and Increase NTX rather than an action for each
possible NTX values are two-fold: (a) An action per value
increases greatly the action space, thus causing a high re-
source overhead, i.e., a larger neural network, expensive in
resource-constrained hardware, and extends the training time;
(b) In our experience, an action per value easily overfits
the environment specifics, and behaves poorly against unseen
dynamics. Instead, a system with incremental updates learns
that increasing prevents losses, irrespective of the current
strategy. A drawback is that the system is limited to step-wise
increase, e.g., going from NTX = 1 to 4 takes three steps.

Trace environment. To train, an RL agent requires access
to a physical deployment for hundreds of hours, or a simulated
environment to speed up the learning process. We create an
environment from traces collected over multiple days, for dif-
ferent times of the day and frequencies. We give the intuition
on how traces are collected. It is impossible to play out two
actions (NTX +1 and −1) with identical wireless conditions;
we execute them sequentially, with minimal latency between.
Further, our jamming is controlled, so that all actions undergo
similar conditions. Since different actions are executed with
minimal latencies, we approximate the effects of slow-fading
interference. Transient interference (in the order of ms), affects
floods within a round, but not transitions, and is therefore
correctly represented within our traces.

Offline learning. Typical resource-constrained IoT plat-
forms, with limited memory and CPUs, are unfit to train neural
networks. Therefore, we train our neural network offline, and
embed the result of the learning on the resource-constrained
device for its inference step. We train our DQN for 200 000
iterations with an epsilon-greedy selection scheme. The selec-
tion probability in annealed from 100% to 1% linearly over
the length of 100 000 steps, and fixed to a random action
probability of 1% afterward. We select a discount factor γ of
0.7.

Embedded DQN. Our goal is a DQN able to run on various
IoT platforms, even as resource-constrained as the old TelosB



Dimmer

LWB 
Scheduler 
(centralized)

Adaptivity Policy 
Control

(centralized)

Forwarder 
Selection

(distributed)

Statistics Collector

Bus Interface: Glossy Floods

Da
ta

 P
lan

e

Application Layer

Radio Hardware

Dimmer Controller

Fig. 3. System architecture. New components are high-
lighted in bold boxes. Adaptivity is centrally controlled via
a deep Q-network, while forwarder selection is executed
as a multi-armed bandits in a distributed fashion.

(4 MHz CPU, 10 kB RAM, no FPU). Thus, we implement
our own neuronal compute-system rather than use an existing
framework, and use fixed-point integers for computation, set to
100 (two floating digits) [23]. By using 2B per weight and 4B
for intermediary computation, our DQN uses 2.1 kB to store
weights in flash, and 400 B of RAM for intermediary results.
On the old TelosB platform, a DQN execution takes 90 ms,
due to 32-bit computation on a 16-bit CPU. In comparison, a
slot takes roughly 20 ms. Thus, we execute the DQN after the
last control slot.

C. Distributed Forwarder Selection

Problem formulation. We formulate the problem of dis-
tributed forwarder selection as a two-armed bandit: each
device locally decides whether it will act as an active forwarder
(arm 1) or passive receiver (arm 2). Specifically, we use
Exp3 [20], and extend the concepts introduced for Glossy
in [12]. Here, we cannot use Q-learning: the number of input
states is too large and building knowledge requires an un-
practical amount of time. Instead, we rely on fast exploration
to find the optimal decision in the current state. Further,
from a local-device perspective, the environment is adver-
sarial; distant devices’ decisions affect our reward system.
Upper Confidence Bound (UCB) typically performs badly in
adversarial environments, we must use an adversarial MAB,
i.e., Exp3. Sequentially, devices learn their role by randomly
drawing a decision: if the communication experiences losses,
we punish the chosen arm; if communication does not suffer
losses, we reward the chosen arm.

Improving stability. Due to the environment’s non-
stationarity, a distributed approach employing Exp3 is not
guaranteed to converge: some devices might oscillate between
active or passive, depending on precedent decisions. We
introduce three techniques to reduce the risk of oscillatory
states that can degrade the network performance: (a) Learning
is sequential: each device has ten consecutive rounds to
learn a role. We thus improve the environment’s stationarity
for a given device. (b) Network-breaking configurations are
punished: Whenever a bad configuration is experienced, we

reinitialize the passive arm to its initial value; thus greatly
reducing the risk of re-entering this bad configuration. (c)
Learning follows a pseudo-random order: the learned configu-
ration depends on the device order; devices that can try actions
earlier are more likely to act as passive nodes. The pseudo-
random order ensures that learning is spread geographically,
and that early passive receivers are not clustered together.

D. System Architecture

We build Dimmer on LWB’s 2019 reimplementation [24],
and depict its architecture in Fig. 3. Dimmer is composed of
three main novel components: a statistics collector, closing
the feedback loop, the central adaptivity control incorporat-
ing our deep-Q network (DQN), and a forwarder selection
implementing multi-armed bandits. A controller manages and
coordinates the different components, by updating internal
scheduling parameters as well as the bus interface, and by
polling the collected statistics. The statistics collector has
access to the LWB runtime and sent and received packets.

Execution. Dimmer works in communication rounds, see
Fig. 1. A central coordinator starts the round with a control
slot, during which it disseminates both the communication
schedule as well as an adaptivity command: a new global
retransmission parameter NTX , or a command allowing de-
vices to execute locally their multi-armed bandits instances.
Immediately after the control slot, all nodes in the network
apply the new NTX parameter. Additionally, all devices mea-
sure their performance, i.e., reliability (packet reception rate,
ratio of packets received / expected) and radio-on time at the
end of each slot. A series of data slots follow the control slot.
For each data slot, the source appends to its payload a two-
byte header representing two performance metrics: its radio-on
time averaged over the last floods, and its reliability (packet
reception rate). All receivers locally record the performance
of distant devices. Further, Dimmer uses slot-based channel-
hopping; a static, global hopping-sequence is used for data
slots, while all control slots are executed on channel 26.

Global view. Dimmer continuously builds a global snapshot
of the network, that is used both by the coordinator for
adaptivity, and by other devices for the forwarder selection. We
estimate reliability via the schedule: if no message is received
during an assigned slot, it is considered lost. If no information
is received from a given node, its feedback is locally filled with
pessimistic values: 0% reliability and 100% radio-on time.

E. Discussions

Feedback latency. Devices share their local performance
measured prior to their data slot, while the coordinator exe-
cutes its DQN at the end of a round and shares the new value
at the beginning of the next round. If interference starts during
a round, only the later transmitting devices can report its
effects. Thus, Dimmer takes one round to adapt to interference
reported before the end of the round, or two rounds if more
feedback is required. We note that although Dimmer’s latency
has no strong dependency on the number of nodes, the round
periodicity might increase for large deployments.



Scalability. Our DQN does not require feedback from all
nodes: we use the K-lowest-reliability devices as input to
the DQN. Thus, Dimmer scales to deployments with varying
numbers of devices without the need to change its architecture.
Similarly, Dimmer does not require all devices to provide their
feedback; it is possible to define a subset of nodes that will
not be accounted in the interference evaluation. This, however,
might leave some part of the network unprotected against
localized interference.

Centralized adaptivity. Interference near the coordinator
can be harmful in centralized approaches. However, like other
LWB-class protocols, Dimmer requires nodes to receive the
schedule packet to participate during the round. In case a node
missed a schedule slot, it will simply set its NTX to the global
value once a schedule packet is received.

MAB: long-term adaptivity. Contrary to the centralized
DQN, our distributed MAB approach is slower to adapt. 10×D
rounds are required to allow all D devices to execute one
learning iteration. Further, the forwarder selection problem can
be related to building a (non-spanning) tree; since there are
many solutions to building a tree, our distributed selection
scheme can oscillate between different configurations, and
not converge to one. This is by design, as we want Dimmer
to adapt to changes in the topology, e.g., joining or leaving
devices, and slow-fading links.

Embedded DQN. In Dimmer, we do not assume the
presence of an edge where computation can be offloaded.
For example, swarms of drones can not rely on constant
connectivity to a server. Instead, our DQN is embedded in
our resource-constrained hardware.

V. EVALUATION

We evaluate Dimmer on two testbeds of respectively 18
and 48 TelosB devices. We lay out our methodology in §V-A
and investigate in §V-B how input features affect Dimmer’s
performance. Then, we quantify in §V-C adaptivity to dynamic
interference. We evaluate in §V-D our forwarder selection
approach, and finally investigate how our DQN behaves on
new topologies without retraining in §V-E.

A. Setup and Methodology

Implementation. We implement Dimmer for Contiki-NG,
based on LWB’s 2019 reimplementation [24]. Dimmer is
hardware agnostic; we use the TelosB platform (4 MHz 16-bit
CPU, 10 KB of RAM, 48 KB of firmware storage, CC2420
radio for IEEE 802.15.4) throughout this evaluation. Dimmer
and its training environment are open-source (see §I).

Testbeds. We evaluate Dimmer on two testbeds: (1) Our
18-device, 3-hop deployment, see Fig. 4a. Located in offices
and lab rooms, it shares the spectrum with WiFi and many
Bluetooth PANs (from cellphones, headphones, etc.), all out-
side of our control, and create interference during work hours.
We further use two additional TelosB as jammers, and inject
controlled IEEE 802.15.4 interference using Jamlab [25]. The
central-coordinator’s reception is (moderately) perturbed by
the nearest jammer.

(2) In §V-E, we evaluate Dimmer on the public testbed D-
Cube, featuring 48 TelosB motes and controlled WiFi inter-
ference [26]. Interferer locations and topology are unknown
to us, coordinator is device ID 202.

Baselines. To evaluate the effectiveness of deep RL, we
implement and tune a PI controller as adaptive baseline.
PIDs are among the most common solutions for closed-loop
systems [13], and make for a good comparison for traditional
vs RL methods. We set KP = 1 and KI = 0.25. We tune the
baseline PI controller through experiments on the deployment,
to maximize reliability first, and minimize energy consumption
if reliability is at 100%.

We evaluate against Crystal in §V-E, a dependable ST
protocol for aperiodic collection [5]. Crystal uses channel-
hopping, acknowledgements, and noise detection to achieve
high performance in the presence of strong interference (see
§VI). We use the parameters provided by the designers for the
EWSN 2019 dependability competition [27], i.e., the exact
scenario evaluated here. While comparing against Crystal,
we activate channel-hopping and packet acknowledgements (a
message is sent again if no ACK is received) in Dimmer.

Interference scenarios. We run the following scenarios:
• No interference: experiments run at night on channel 26,

no injected interference.
• Controlled 802.15.4 interference: We use the CC2420

radio of two additional TelosB jammers (see Fig. 4a) to
jam communication at 0 dBm on channel 26. We jam
communication with 13 ms TX bursts, which corresponds
to a typical WiFi burst of packets [25]. Bursts are
periodically repeated; a 10% interference corresponds to
a 13 ms burst every 130 ms, a 35% interference ratio
represents a 13 ms burst every 37 ms. In comparison, a
Glossy flood is given at most 20 ms to communicate.

• D-Cube [26]: We use the public testbed D-Cube, featuring
controlled WiFi interference. Experiments run at night,
using channel-hopping.

Metrics. We evaluate the following metrics:
• Radio-on time: the amount of time the radio has been ac-

tive (i.e., listening or transmitting) for one slot, averaged
over all slots. Slots in which no packet was received are
accounted for.

• Reliability: the percentage of destinations that correctly
receive a packet.

Parameters. We list the network parameters used through-
out our evaluation, respectively on our testbed and in D-Cube:
(a) Rounds have a period of 4 sec, 1 sec in D-Cube. (b) Slots
have a maximum duration of 20 ms. (c) We use periodic 4-
sec broadcast traffic from all 18 devices in our testbed, i.e., we
require 18 data-slots. We use 10 source-nodes with 1-sec traffic
period in D-Cube. (d) Packets are 30 B long, including 3-byte
LWB and 2-byte Dimmer headers. (e) Dimmer transmits at
0 dBm.

B. Deep-Q Network Features Selection
We investigate how the number of inputs, i.e., the amount of

devices’ feedback and historical features affect the behavior of
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802.15.4 Jammer
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(a) Testbed spanning 23× 23m2.
18 TelosB compose a 3-hop net-
work and share the medium with
uncontrolled WiFi and Bluetooth
PANs. Two additional TelosB act
as 802.15.4 jammers. The central
coordinator (C) is moderately af-
fected by the nearest jammer.
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(c) Dimmer. Reliability: 99.3%, Radio-on time:
12.3 ms (average).
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(d) PID baseline. Reliability: 99.3%, Radio-on
time: 14.4 ms (average).

Fig. 4. Tuning and evaluation Dimmer.

Dimmer. We collect an evaluation dataset of 25 000 samples
over channel 26, featuring some periods of mild and heavy
interference, and some interference-free episodes. For each
parameter we evaluate, we train three models, and average the
overall performance over those models. For each model, we
run 100 episodes comprising 100 consecutive decisions each
for the number of nodes and reward. Throughout the section,
error bars represent standard deviation.

Number of devices. We evaluate how many devices’ inputs
are necessary for Dimmer. As described in §IV-B, Dimmer
selects K nodes with lowest-reliability as input to its DQN.
We fix the number of historical features to 2, and vary K from
one, i.e., only the device with lowest reliability is used, up to
all 18 devices used as input.
Results. Fig. 4b(i) depicts the effect of K on Dimmer’s
radio-on time. Limited device subsets (K = 1 to 5) lead
to conservative policies, with high retransmission parameters
even under non-interfered episodes, thus wasting energy. Using
all 18 devices, the DQN overfits the deployment and reacts
to transient losses, thus also wasting energy after short-term
interference. Note that reliability is roughly constant for all
experiments, i.e., conservative policies do not provide higher
protection against losses on average. For the remainder of
this evaluation, we choose K = 10 as our input, which both
minimizes the radio-on time, as well as provides a good trade-
off w.r.t. the neural network size.

History size. We evaluate how historical features affect the
DQN results. We focus on short decision updates in low and
mild-interference episodes, to test Dimmer’s ability to dis-
tinguish transient disturbances from longer-term interference.
We average the results over 1000 episodes of 2 consecutive
decisions.
Results. Fig. 4b(ii) shows the impact of historical features.
Adding historical data helps Dimmer differentiate transient
interference that affects a single round, from long-term in-
terference that must be dealt with. In the absence of historical

features, the DQN obtains 98.5% reliability on average, while
it achieves 99% with historical features. Adding further his-
torical features does not seem to have a measurable impact on
the overall performance in our evaluation. For the remainder
of this evaluation, Dimmer uses two historical features (i.e.,
data about losses over the last 8 sec).

C. Adaptivity Against Interference

Next, we evaluate how Dimmer and the PID baseline adapt
to interference. First, we investigate adaptivity against dynamic
interference. Then, we evaluate reliability and radio-on time
against static levels of disturbances.

Dynamic interference. We operate Dimmer and the PID
baseline on our deployement on channel 26, during the day
(see §V-A, Fig. 4a). We use two additional TelosB devices to
inject IEEE 802.15.4 interference. The experiment starts with
the jammers off. After 7 min, we inject heavy interference
occupying the medium 30% of the time (a 13 ms burst at
0 dBm, repeated every 43 ms). The interference lasts 5 min,
after which we turn off the jammers. After 5 min of calm,
we inject light interference, occupying the medium 5% of the
time (13 ms burst at 0 dBm, every 230 ms). After 5 min, the
jammers are turned off.

Results. Fig. 4c depicts a typical execution of Dimmer in
the presence of dynamic interference, while Fig. 4d depicts
the PID baseline against the same scenario. In the absence
of interference, Dimmer learns that NTX = 3 provides high
reliability. The PID baseline slowly reduces NTX to save
energy, and increases if losses are experienced; it oscillates
around NTX = 3 in the absence of injected disturbances.
Both Dimmer and the PID baseline detect the heavy interfer-
ence (30%) we inject, and react by increasing the number
of retransmissions. Both protocols also decrease once the
interference has stopped, although the PID baseline is slower
here due to its integrative component. Under light interference
(5%), Dimmer detects that allowing the maximum amount of
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(a) Reliability against interference. Both Dimmer and the PID
baseline tackle interference with increased retransmissions.
Because some slots manage to fit between two interference
bursts, LWB is able to maintain some communication.
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(b) Radio-on time against interference. The PI controller quickly
reacts to interference and over-provisions retransmissions, lead-
ing to a maximized energy consumption. In contrast, Dimmer
adapts to the interference level, leading to a lower radio-on time
compared to the PID, for similar reliability.

Fig. 5. Adaptivity to intermediate interference levels.

retransmissions is not necessary, and searches for the optimal
setpoint for the current disturbance. The PID baseline, after
detecting losses, overshoots to the maximum retransmission;
due to its I component, it converges slowly back to normal.
Both Dimmer and the PID baseline provide 99.3% reliability
over the experiment, yet Dimmer requires only 12.3 ms of
radio-on time, while the traditional PID baseline, oscillating
during interference-free and overshooting under interference,
requires 14.4 ms.

Interference levels. We investigate how Dimmer and the
PI baseline scale to various interference levels, to see whether
Dimmer overshoots interference or is able to measure interfer-
ence strength. Comparison against state-of-the-art protocols is
carried in §V-E. We run Dimmer, the adaptive PID baseline,
and the static LWB (NTX = 3) against a continuous, static
interference-pattern, ranging from 0% (no interference) to 35%
(13 ms burst every 37 ms). Results are averaged over all rounds
of three 30-minute runs, for each interference level; error bars
represent standard deviation between rounds.

Results. Fig. 5a depicts the reliabilty of Dimmer, LWB
and the PI baseline, Fig. 5b the average time their radios
were active per slot, a proxy for energy consumption. As
interference arises, reliability of all protocols decreases; both
the PID baseline and Dimmer allow communication to survive
to higher interference levels. Since the PID baseline is unable
to quantify interference levels, radio-on time quickly grows to
the maximum slot size, 20 ms. Dimmer is able to distinguish
interference strength, and requires less energy than the PID
baseline for low interference (below 15%, 13 ms burst every
87 ms), for similar reliability. At higher interference strength,
all retransmissions are necessary, Dimmer requires 20 ms
radio-on time. As interference arises, LWB requires more time
to achieve its 3 static receptions and retransmissions within a
flood, but never requires the full slot duration on average.

Main findings. Both the PID baseline and Dimmer are
adaptive: interference is detected and counteracted through
higher retransmissions. Yet, the PID baseline is unable to dis-
tinguish interference levels, overshoots under low interference,
thus wasting energy. More complex PID systems are possible,
yet they require expert knowledge to be designed and tuned.
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Fig. 6. Forwarder Selection with Multi-Armed Bandits.
Nodes takes turn learning whether to act as forwarder. As
learning occurs, the number of forwarders decreases, but
learning might cause transient packet losses.

In contrast, Dimmer distinguishes interference strength, and
does not require expert knowledge: from unlabelled traces, it
learns how to deal with interference patterns.

D. Forwarder Selection with MAB

Next, we evaluate how Dimmer deactivates superfluous
transmitters during interference-free episodes.

Scenario. We execute the forwarder selection scheme on
channel 26 during the night, for 5 hours. During that time,
the DQN is deactivated. We show that the forwarder selection
alone prohibits breaking configurations. Each of the 18 devices
is sequentially given 10 consecutive rounds to learn a decision
(1) act as forwarder or (2) act as passive receiver. A single 5-
hour learning instance is depicted.

Results. Fig. 6 shows (a) the number of active forwarders,
(b) the reliability, and (c) the average radio-on time as a
function of time. During the first two hours, we see a rapid
decrease of active forwarders; devices are encouraged to try
passivity. At the 30 min mark, the first network-breaking
configuration is encountered; the learning passive devices
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Fig. 7. Dimmer on the 48-device D-Cube. Without retrain-
ing, Dimmer is able to tackle previously unseen 802.15.4
and WiFi patterns.

are punished and reliability is maintained. A similar event
happens after the first-hour mark. Then, devices maintain a
conservative configuration, with around 14 active forwarders
and 4 passive receivers. As learning is continuous, devices tend
to exchange roles, acting passive for a while, and then helping
the dissemination as forwarder. Over the five hours, Dimmer
achieves a reliability of 99.9%; for an average radio-on time
of 9.55 ms (against 11.04 ms in the absence of forwarder
selection).

Main findings. By favoring conservative decisions, our
forwarder selection prohibits network-breaking configurations.
Further, Dimmer continuously adapts to the slow-fading of its
environment.

E. Performance on Unknown Deployments

Next, we evaluate how Dimmer performs on a larger de-
ployment, for which it has not trained for, against unseen WiFi
interference. Further, we investigate how Dimmer compares to
the state-of-the-art with Crystal [5].

Scenario. We execute Dimmer on D-Cube, featuring 48
TelosB devices forming an unknown topology [26]. We eval-
uate an aperiodic data collection scenario (Data Collection
V1, used in the EWSN competitions): five known sources
transmit packets at random intervals to a known sink; reli-
ability represents the number of packets received at the sink.
We compare Dimmer with the baseline LWB (NTX = 3),
as well as Crystal, a dependable ST protocol for aperiodic
collection [5]. Crystal has been configured after preliminary
trials on the deployment, while our DQN has not been trained
for this topology. Interference patterns are unknown to both
protocols. Here, we execute Dimmer with channel-hopping
and packet acknowledgements. We run three episodes: (a)
interference-free, (b) WiFi interference (level 1), and (c) WiFi
interference (level 2), where the WiFi levels are defined by the
D-Cube maintainers. Results are averaged over ten 10-minute
experiments, error bars denote standard deviation.

Results. Fig. 7 depicts the reliability and energy consump-
tion of LWB, Dimmer, and Crystal. LWB is single-channel
and best-effort, all packets are received in the absence of
interference, but reliability drops to 93.6% and 27% under

WiFi interference, while energy increases due to higher failed
receptions and lost synchronization. Crystal’s design relies on
expert knowledge and its configuration on preliminary trials;
all packets are received against the first WiFi interference level,
while 99% are received against the second level. With Dimmer,
we do not rely on expert knowledge, nor did we collect traces
for this specific testbed and interference patterns. We reuse
the DQN trained for 18-nodes against 802.15.4 interference,
and simply add application-layer ACKs. Dimmer achieves
100% reliability in the absence of interference, and 98.3% and
95.8% against WiFi levels 1 and 2. Compared to LWB, energy
usage greatly increases as soon as interference is detected as
Dimmer increases the number of retransmission to NTX = 8,
yet energy consumption is comparable to the state-of-the-
art Crystal. As interference is much stronger than evaluated
before, the PID baseline provides similar performance as the
DQN under interference, but oscillates heavily under normal
conditions, and is not depicted here.

Main findings. Without retraining, Dimmer performs on a
new topology with 2.6× the number of devices, and is able
to react to unseen WiFi interference patterns. Further, without
expert knowledge and without traces collected from the new
deployment, Dimmer approaches the performance offered by
the state-of-the-art Crystal protocol.

VI. RELATED WORK

AI-enabled wireless. Machine learning has been used in the
literature to tackle the problem of interference identification.
Using SVM, SoNIC classifies different interference patterns
(WiFi, Bluetooth, etc.), using features such as RSSI and error
burst spanning [28]. Grimaldi et al. rely on classification trees
and multiclass SVM to provide interference classification [29].
In both approaches, classification is separated from the system
reaction to interference, and requires an annotated dataset.
Instead, RL provides tools to learn how to directly operate
over the wireless medium. Amuru et al. use post-decision state
learning to learn how to backoff in CSMA/CA [30]. Mastron-
ade et al. also employ post-decision state learning and propose
a rate-adaptive flavor of CSMA/CA [18]. Zhu et al. rely
on deep Q-learning to schedule transmissions on relay de-
vices [31]. Dakdouk et al. propose to use MABs and the
Upper Confidence Bound to select the next channel in 802.15.4
TSCH [32]. In Less is More, Zhang et a. use Exp3 to optimize
individual-device retransmission at runtime in Glossy [12].
Their work differs from ours on two major points: (a) They
investigate optimizing Glossy (one-to-all) in the interference-
free case; our forwarder selection solves a larger problem
generalized to wireless-bus abstractions (all-to-all). (b) They
require a feedback header that changes during a flood, thus
breaking constructive interference. Our solution provides feed-
back with the next round, thus maintaining Glossy’s properties.

Dependable ST protocols. A large body of literature stud-
ies dependability in ST protocols. Robust Flooding improves
over Glossy through TX-based channel-hopping and additional
retransmissions [4]. Al Nahas et al. also rely on channel-
hopping for A2 [3]. DeCoT+, relies, among other things,



on channel-hopping, payload retransmissions, and network-
coding to survive harsh interference [6].

Istomin et al. improve Crystal against heavy interference [5].
In addition to the original Transmission-Acknowledgement
(TA) scheme, allowing Crystal to survive against collisions
and transient losses, the authors extend their original design
with TA-pair channel-hopping and noise detection. If noise is
detected, additional TA pairs are available before turning off
the radio. Crystal is adaptive: upon noise detection, additional
slots are added. Yet, those general parameters were obtained
via expert knowledge. In contrast, Dimmer is self-adaptive:
we do not retrain the DQN when changing from periodic to
aperiodic collection and from 802.15.4 interference to WiFi,
nor when we evaluate on a 48-device testbed featuring strong
WiFi jamming, after training with 18 devices and 802.15.4
jamming.

VII. CONCLUSION

Synchronous Transmissions (ST) are a high-performance
and energy-efficient communication paradigm in low-power
wireless networks. Through the use of custom rules, hand-
tailored parameters, and additional retransmissions, depend-
able ST are shown to provide high-performance in harsh and
highly-interfered environments. Yet, tuning those dependable
ST protocols is arduous, requiring expert knowledge, extensive
testing, and is often achieved for a specific deployment and
given scenario. We introduce Dimmer, a self-adaptive ST pro-
tocol. Through the use of deep reinforcement learning, from
unlabeled traces, and in the absence of human supervision,
Dimmer learns by itself how to detect interference and how to
adapt its retransmission parameter to maintain communication
in harsh and dynamic environments. Further, using multi-
armed bandits, Dimmer deactivates superfluous transmitters
at runtime, thus saving energy and adapting to the long-term
dynamics of its deployment. We show that Dimmer achieves
95.8% reliability against strong WiFi interference, thus ap-
proaching the performance of the state-of-the-art Crystal, in
the absence of any human supervision. Further, Dimmer is able
to support new deployments and unseen interference without
retraining.
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