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Abstract—Container technologies have been evolving rapidly in
the cloud-native era. Kubernetes, as a production-grade container
orchestration platform, has been proven to be successful at
managing containerized applications in on-premises datacenters.
However, Kubernetes lacks sufficient multi-tenant supports by
design, meaning in cloud environments, dedicated clusters are
required to serve multiple users, i.e., tenants. This limitation sig-
nificantly diminishes the benefits of cloud computing, and makes
it difficult to build multi-tenant software as a service (SaaS)
products using Kubernetes. In this paper, we propose Virtual-
Cluster, a new multi-tenant framework that extends Kubernetes
with adequate multi-tenant supports. Basically, VirtualCluster
provides both control plane and data plane isolations while
sharing the underlying compute resources among tenants. The
new framework preserves the API compatibility by avoiding mod-
ifying the Kubernetes core components. Hence, it can be easily
integrated with existing Kubernetes use cases. Our experimental
results show that the overheads introduced by VirtualCluster, in
terms of latency and throughput, is moderate.
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I. INTRODUCTION

Modern application platforms empowered by container tech-
nologies greatly simplify the processes of application develop-
ment and management. As a pervasive container orchestration
platform, Kubernetes [1] provides well-adapted resource ab-
stractions, rich resource management capabilities, and great
extensibility for end users. Almost all major cloud vendors
provide container services [2]–[5] built on top of Kubernetes.
Kubernetes has been proven capable of support on-premises
clusters [6], where users are trustworthy. However, there is a
debate about whether Kubernetes is suitable for cloud multi-
tenant use cases, i.e., one cluster serves multiple customers,
also known as tenants, or not.

Multi-tenancy is one of the essential attributes of cloud
computing for resource efficiency. In the typical multi-tenant
use case, the compute resources are usually abstracted, so
tenants would not need to know the details of the shared
physical infrastructure. Besides, tenants should not be aware of
others’ existence by all means since they are not trustworthy.
We would argue that Kubernetes is barely satisfactory in
supporting multi-tenancy. First, to use Kubernetes properly,
tenants have to understand the details of the node resources,
such as the topology, the capacity, and the utilization. More
importantly, Kubernetes lacks strong isolation mechanisms. In
Kubernetes, an object is either cluster scoped or namespace

Fig. 1: The impact of sharing one Kubernetes control plane
among multiple tenants.

scoped. The namespace scoped Pod object is the most popular
one, which encapsulates the containers and describes their
resource specifications. Currently, to support multiple tenants
in Kubernetes, a cluster administrator has to use namespaces
to group all tenant resources and apply role-based access
control (RBAC) [7] to limit the tenant accesses. Kubernetes
also supports network policy and Pod security policy to protect
the tenant containers. The above techniques are necessary but
still insufficient to satisfy the multi-tenant requirements in
productions.

The Kubernetes control plane is composed of an apiserver
and a set of built-in controllers. As illustrated in Figure 1,
allowing multiple tenants to share one apiserver will at least
lead to the following problems:

• Performance interference. When tenants simultaneously
send requests to the apiserver, performance abnormalities
such as priority inversion, starvation, etc., may occur. In
the worst case, a buggy or overwhelming tenant (e.g.,
tenant A in Figure 1) can completely crowd out others by
issuing many queries against a large number of resources.
For instance, tenants may frequently query all Pods in
their namespace, making the requests from other tenants
significantly delayed.

• Lack of API supports. Although using RBAC can
prevent a tenant from accessing the objects of others,
some information cannot be protected without proper API
supports. For example, the namespace object is a cluster
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scoped object, while the namespace List API cannot
filter the result based on the tenant identity. Once tenants
are granted permission to list the namespaces to find their
own ones, they can see all namespaces in the cluster,
which might be problematic since the namespace name
may contain sensitive information.

• Management inconvenience. To avoid affecting others,
tenants usually have strict restrictions in operating cluster
scope resources. As a result, tenants cannot freely create
namespaces, clusterroles, or install custom resource defi-
nitions (CRDs [8]), and webhooks. To work around such
restrictions, tenants must go through rigorous negotiations
with the cluster administrator.

Kubernetes data plane does not fully support multi-tenancy
either. Its service discovery mechanism assumes a flat network
model, meaning all Pods and the node daemons are accessible
from each other. This assumption is completely broken in
cloud multi-tenant environments where the tenant containers
typically connect to a virtual private cloud (VPC) to achieve
network isolation. As a result, native Kubernetes service APIs,
such as cluster IP type service, usually do not work in the
public cloud without vendor supports.

Fully supporting multi-tenancy in Kubernetes is challenging
since many core components need to be re-architectured. There
are ongoing efforts to address some of the problems in the
community. For example, there is a proposal to implement
priority and fairness for apiserver requests [9]. The multi-
tenancy working group proposes a CRD to allow namespace
self-service creation [10]. In enterprise products built on top of
Kubernetes, the multi-tenancy support is usually implemented
by encapsulating the Kubernetes apiserver with another layer
and exposing a set of new APIs [11]–[13]. Last but not
least, one might create dedicated clusters for different tenants,
but the resulting low resource utilization would always be a
concern.

In this paper, we propose VirtualCluster, a new framework
that addresses the above isolation problems in Kubernetes with
specific design goals. The goals are:

• Supporting multi-tenancy in Kubernetes with full API
compatibility, which is the key to minimize the cost of
integrating VirtualCluster with existing Kubernetes use
cases.

• Leveraging Kubernetes extensibility, i.e., CRDs, and
avoiding modifying the core components.

• Sharing the node resources among tenants to maximize
the resource utilization.

To achieve the above, in VirtualCluster, each tenant is assigned
a dedicated Kubernetes control plane, which is referred to as
a tenant control plane. Tenants now can create cluster scope
resources such as namespaces or CRDs in their own control
plane without affecting others, and most of the performance
problems due to sharing one control plane do not exist. The
cluster that manages the physical nodes now becomes the
container resource provider, which is referred to as a super
cluster. We developed a syncer controller to populate objects

from the tenant control planes to the super cluster, and update
the object statuses back to the tenant control planes. The
syncer also ensures data consistency under the conditions
of failures or races. Kata sandbox container [14] is used to
provide a VM standard container runtime isolation. The Kata
agent running in each guest OS is slightly modified to work
with an enhanced kubeproxy to support Kubernetes cluster IP
type of service. We developed a virtual node agent to proxy
all log and exec requests from the tenant control planes
to the Pods running in the super cluster. With all the above,
from a tenant’s perspective, each tenant apiserver behaves like
an intact Kubernetes with elastic cluster capacity. The core
VirtualCluster components are open-sourced in [15].

We have conducted experiments to evaluate the performance
impact of the VirtualCluster framework. The results show that
in large-scale stress tests, the operation latencies of using
VirtualCluster are comparable to baseline cases. VirtualCluster
also maintains a sustainable throughput. For example, when
creating ten thousand Pods in one hundred tenant control
planes simultaneously, it took ∼23 seconds to create all Pods.
The same took ∼18 seconds when all Pods are created in the
super cluster directly. We have verified that VirtualCluster can
pass all Kubernetes conformance tests except one1.

In terms of the target use cases, VirtualCluster is particularly
suitable for building a cloud container service or Kubernetes-
based software as a service (SaaS) product. Using Virtual-
Cluster, a user can offload the burden of maintaining physical
nodes and only pay for the resources used by the workloads.
Most of the existing Kubernetes plugins and operators can be
ported to VirtualCluster with almost zero integration efforts.
Moreover, better compute resource utilization can be achieved
when supporting multiple tenants.

II. BACKGROUND AND RELATED WORK

Multi-tenancy has been a long-standing research topic in
cloud computing. Previously, researchers investigated how to
improve isolation and security in cloud environments [16]–
[22] for the control plane, networking, and storage. Some
detection mechanisms were proposed to identify malicious
tenants [23], [24]. Some studies focused on the resource
management aspects in multi-tenant environments [25], [26]
for better resource utilization. Many problems mentioned in
previous work do exist in Kubernetes, but the proposed solu-
tions cannot be easily applied. Some multi-tenant requirements
need architecture changes such as supporting nested names-
paces, supporting namespace scoped CRD, etc. Without formal
API supports, most of the existing Kubernetes multi-tenant
solutions suffer from either API incompatibility or component
version incompatibility (due to modifying the component).

For example, virtual kubelet [27] supplies Pods using con-
tainer services from cloud providers, such as AWS Fargate,
instead of using worker nodes. Users can benefit from the
new container techniques invented by the cloud vendors, such

1The failed test requires the super cluster to use the subdomain name
specified in the tenant control plane. This cannot be supported in the current
design.



Fig. 2: Kubernetes architecture overview.

as the sandbox runtime [28]. However, virtual kubelet defines
a simple provider interface (∼7 APIs vs. ∼25 CRI APIs
implemented by the kubelet) hence cannot fully support the
Kubernetes Pod APIs, which inevitably leads to usability
issues in production. There are hybrid cloud solutions, such
as Google Anthos [12] and VMware Project Pacific [13], aim
to provide serverless user experiences. They address some of
the multi-tenant problems by introducing a new control plane
or modifying the apiserver to leverage the underlying VM
infrastructure. K3V from Rancher [29] is the closest open-
source project compared to VirtualCluster. In K3V, each tenant
is assigned a modified Kubernetes distribution named K3S. A
controller is installed in each K3S, which copies tenant objects
to a cluster for Pod provision. K3V still relies on a modified
apiserver and does not address any data plane isolation prob-
lems. Loft [30] is a commercial developer platform that has a
feature using a similar design in supporting multi-tenancy, i.e.,
each tenant is assigned a dedicated Kubernetes control plane.
However, the tenant objects from multiple tenant namespaces
are copied to one namespace in the underlying cluster, which
breaks the Kubernetes API compatibility. To the best of our
knowledge, VirtualCluster is the first open-source effort to
support both control plane and data plane isolations natively
in Kubernetes without sacrificing the API compatibility.
Kubernetes Basics. Kubernetes is an open-source container
orchestration platform. Figure 2 presents a high-level overview
of its architecture. The Kubernetes control plane consists
of several centralized components, including an apiserver,
a controller manager, and a scheduler. The user interacts
with the apiserver by operating various objects, and the
Kubernetes controllers ensure all objects reach their desired
states eventually. All object states are persisted in etcd [31]
storage. Kubernetes has dozens of built-in object types such
as Pod, Service, Node etc., and it allows users to create custom
resource definition (CRD) to extend its capabilities. It manages
multiple worker nodes and uses a centralized scheduler to
determine where a Pod should run. A few daemons are
installed in every worker node in which kubelet is the most
important one. Kubelet is responsible for container lifecycle

Fig. 3: The interactions between client-go components and
custom controller. Note that this figure is a simplified version
of the figure in [33].

management based on the Pod specification stored in the
apiserver. It interacts with node container runtime using the
container runtime interface (CRI). Container network/storage
can be configured using network/storage plugins. Kubernetes
service discovery mechanism assumes that all container net-
work traffics goes through the host network stack. A node
daemon, kubeproxy [32], manipulates the host IPtable and
configures the L3 forwarding rules to route the requests to
the service virtual IP to the service endpoints. Meanwhile, a
service controller running on the control plane maintains the
service virtual IP and its endpoints.

Kubernetes controllers manage the states of the cluster.
Figure 3 illustrates the primary workflow of a running con-
troller utilizing the client-go library [34]. A client-go reflector
watches for the changes of a specific resource type in the
apiserver. The changes are updated to a thread-safe store, i.e.,
a read-only cache, and sent to an informer’s controller event
handler. The event handler sends the changed objects to a
FIFO-style worker queue. The reconciler has multiple worker
threads, each draining the worker queue and performing the
reconciling logic to reach the object’s desired state. A worker
thread can access the read-only cache to retrieve an object’s
state, but all object updates are sent to the apiserver directly.
In VirtualCluster, the resource syncer is a typical Kubernetes
controller whose goal is to keep the states of the synchronized
objects consistent. More details are presented in Section III-C.

III. DESIGN

In this section, we will present our design assumptions in
Section III-A, and the overall architecture in Section III-B.
We will describe the resource syncer design in detail in
Section III-C, and discuss the pros and cons of this design
in Section III-D.

A. Assumptions

The proposed framework is designed for Kubernetes-based
cloud container services. We assume the following threat
models and requirements:

• Tenant users are untrustworthy. They may generate harm-
ful usage patterns intentionally or unintentionally. A
tenant cannot share objects with others in the apiserver.



Fig. 4: VirtualCluster architecture overview. We omit the
storage components in this figure since they are not affected
in our design. For example, a dedicated etcd can be assigned
to each tenant control plane.

• Containers are required to use tenant’s virtual private
cloud (VPC) through a vendor-specific network interface
such as AWS elastic network interface [35], to achieve
network isolation.

• Containers are not safe. To prevent the containers from
obtaining the node root privileges, the service provider
needs to run them using sandbox runtime.

B. Architecture

In Figure 4, the dark green components are newly intro-
duced in VirtualCluster. The super cluster is an upstream
Kubernetes that manages the physical nodes but behaves
like a Pod resource provider. Tenant control planes own the
sources of the truth for the tenant objects and are responsible
for maintaining their states. We use Kata sandbox container
runtime in each physical node to achieve VM standard runtime
isolation. We will explain each component in detail.
1© Tenant operator. A VirtualCluster CRD, referred to as VC,

is defined to describe the tenant control plane specifications
such as the apiserver version, resource configurations, etc. VC
objects are managed by the super cluster administrator. The
tenant operator reconciles the states of VC objects whenever
they are changed to deal with the lifecycle events of the tenant
control planes. Note that a tenant control plane does not need a
scheduler since the Pod scheduling is done in the super cluster.
VC currently supports local mode and cloud mode to provision
tenant control planes. In the cloud mode, the tenant operator
leverages the public cloud services such as AliCloud ACK [5]
or AWS EKS [2], to manage the control plane components. It
also stores the kubeconfig, the cluster access credential, of
each tenant control plane in the super cluster so that the syncer
controller can access all tenant control planes from the super
cluster. Tenants are disallowed to access the super cluster.

2© Syncer controller. It only populates the tenant objects used
in Pod provision, such as namespaces, Pods, services, secrets,
etc., to the super cluster, excluding all other control or exten-
sion objects. Note that all read requests to the synchronized
objects are served by the tenant apiservers, alleviating the
super cluster’s pressure compared to the case where all tenants
access the super cluster directly. In Kubernetes, any namespace
scoped object’s full name, i.e., namespace/objectname
has to be unique. The syncer adds a prefix for each synchro-
nized tenant namespace to avoid name conflicts. The prefix is
the concatenation of the owner VC’s object name and a short
hash of the object’s UID. The syncer does more than merely
copying objects. More details are discussed in section III-C.
3© Virtual node agent. In Kubernetes, kubelet can only
register itself to one apiserver, i.e., the super cluster in Virtual-
Cluster. Hence, commonly used kubelet APIs such as log and
exec do not work for tenants since the tenant apiserver cannot
directly access the kubelet. We implement a virtual node agent
(vn-agent) to resolve this problem, which runs in every node
to proxy tenants’ kubelet API requests. More specifically, once
a Pod is scheduled in the super cluster, the syncer will create
a virtual node object in the tenant apiserver. To intercept the
kubelet API requests, the virtual node points to the vn-agent
in the physical node instead of the kubelet. When proxying the
requests, vn-agent needs to identify the tenant from the HTTPS
request because the tenant Pod has a different namespace in
the super cluster. The tenant who sends the request can be
found by comparing the hash of its TLS certificate with the
one saved in each VC object. The namespace prefix used in
the super cluster can be figured out after that.
4© Enhanced kubeproxy. In Kubernetes, the cluster IP type
service defines a routing policy to access a set of endpoints
(i.e., Pods) inside the cluster. The routing policy is enforced by
a kubeproxy daemon, which updates the host IPtable whenever
the service endpoints change. This mechanism is broken when
containers are connected to a virtual private cloud (VPC)
because the network traffics might completely bypass the host
network stack through a vendor-specific network interface. To
enable cluster IP type service in such an environment, we
enhance the kubeproxy by allowing it to directly inject or
update the network routing rules in each Kata container’s guest
OS. More specifically, the Kata agent ( 5©) running inside the
guest OS opens a secure gRPC connection with the kubeproxy
through which the service routing rules can be applied in the
IPtable of the guest OS. The changes to the kubeproxy are
moderate. It needs to watch for the Pod creation events and
coordinate with a Pod initcontainer, which is run ahead of any
workload container and checks for the IPtable update progress,
to ensure the routing rules are injected before the workload
containers start.

C. Resource Syncer

The syncer could be installed for every tenant like the design
in [29]. We choose a centralized design in VirtualCluster due
to a few reasons. First, the object create, update or delete
operations issued by the tenants are generally infrequent. It



Fig. 5: Resources syncer components. The caches are read
only object stores used in client-go informers. There are per
resource reconcilers which perform downward and upward
synchronizations.

Fig. 6: Comparison between a vNode in VirtualCluster and a
virtual kubelet.

would be a waste of resources had a syncer been installed per-
tenant basis. Secondly, the syncer needs to fetch the watched
objects’ states from the super cluster to its informer cache
whenever itself or the super cluster apiserver restarts. If there
are too many of them, when the super cluster apiserver restarts,
the object list requests from the syncers could quickly flood
the super cluster and make it unserviceable. Therefore, in
VirtualCluster, one syncer instance serves many tenant control
planes. If the syncer or the super cluster apiserver restarts,
the super cluster objects’ states are fetched only once. In
Section IV, we will show that this centralized design will not
cause scalability issues for latencies.

The syncer currently synchronizes twelve types of resources

between the super cluster and the tenant control planes, which
are sufficient to ensure compatible behaviors from a tenant’s
perspective. Figure 5 presents the internal structure of the
syncer controller. Based on the sources of the truth of the
synchronized objects, the syncer either populates the states
(e.g., Pod specifications) from tenant control planes to the
super cluster, i.e., downward synchronizing, or back populates
the states (e.g., Pod statuses) from the super cluster to a
tenant control plane, i.e., upward synchronizing, using the
per resource reconcilers. The state comparisons are made
against the super cluster and tenant control plane informer
caches to avoid intensive direct apiserver queries, assuming
the client-go reflectors work reliably. From Figure 5, we
can see that all tenant informers send the changed objects
to a shared downward FIFO worker queue, which can lead
to a well-known queuing unfairness problem for tenants. To
eliminate the potential contention, we extend the standard
client-go worker queue with fair queuing support. Specifically,
we add per tenant sub-queues and use the weighted round-
robin scheduling algorithm [36] to dispatch tenant objects to
the downward worker queue. As a result, none of the tenants
would suffer from significant object synchronization delays,
preventing starvation.

Kubernetes controllers follow an eventual consistency
model. Hence the object states in the informer cache can be
inconsistent with the states in the apiserver in a short period
(usually a few milliseconds). This temporal inconsistency may
occasionally introduce races in the syncer. For example, an
object might have been deleted in the apiserver while the
syncer is handling the object’s update event. Although the
syncer is resilient to such races, some states could be perma-
nently inconsistent under rare failure conditions. To deal with
this issue, the syncer will periodically scan the synchronized
objects and remediate any state mismatch by resending the
object to the worker queue again. This design significantly
reduces the complexity of recovering inconsistencies caused
by various rare reasons. In Section IV, we will show that the
cost of periodic scan is moderate.

The syncer controller manages all virtual node objects in
the tenant control planes. The physical node heartbeats will
be broadcasted to all virtual nodes periodically. The binding
associations between the tenant Pods and the virtual nodes
are tracked in the syncer as well. Once a virtual node has
no binding Pods, it will be removed from the tenant control
plane by the syncer. Each virtual node object represents a real
physical node in the super cluster from a tenant’s perspective.
The one-to-one mapping between a virtual node and a real
node is a unique abstraction that preserves all Kubernetes
node semantics. The user experience in VirtualCluster is quite
different compared to that of using a virtual kubelet, which
typically connects to a cloud container service, not a real node.
For example, as illustrated in Figure 6, assuming there is a
constraint that Pod A and Pod B cannot run in the same host,
i.e., an inter-Pod anti-affinity rule, this constraint is correctly
represented in VirtualCluster since two Pods are bound to
different vNodes (Figure 6(a)). However, in the case of using



virtual kubelet (Figure 6(b)), two Pods are bound to the same
virtual kubelet node object, which will cause user confusion
since the user has no idea whether the constraint has been
enforced or not.

We assign multiple worker threads for downward and up-
ward worker queues to speed up the synchronizations. The
syncer’s memory footprint is determined by the total size of
the synchronized objects in the informer caches, which is
dominated by the size of the Pod objects in most cases. There
are dynamic memory allocations in the worker queues as well.
Note that each tenant control plane has Kubernetes built-in
rate limit control enabled, and more importantly, the client-go
worker queue has the capability of deduplicating the incoming
quests, the memory consumptions of the worker queues are
unlikely to grow infinitely.

D. Discussions

The benefits of this design are straightforward. By providing
dedicated control planes to tenants, the classic noisy neighbor
problems due to sharing a single control plane are largely
mitigated. The blast radius of security vulnerability is also
limited. If a tenant triggers a control plane security issue,
only that tenant is the victim. A tenant has full permissions
to operate the tenant control plane, hence gains the same user
experiences as if using a dedicated upstream Kubernetes. How-
ever, better isolations can be costly. The required resources
for running all tenant control planes grow as the number of
tenants increases. There is an advantage such that Kubernetes
follows a thin server, thick client design pattern. All extended
capabilities are implemented in client controllers. Hence the
resource requirements of running core Kubernetes components
are usually small and stable. VirtualCluster has limitations.
For example, there exist other shared components in the super
cluster uncovered in this paper, such as the local image store,
local volumes, etc. Their isolations are out of the design scope
of VirtualCluster. In addition, other aspects of multi-tenancy
besides isolation such as security, availability depend on the
upstream Kubernetes capabilities and are not addressed in
VirtualCluster. Besides, VirtualCluster cannot support cases
where tenants need to install plugins in the shared worker
nodes.

IV. EVALUATION

Environment. We set up the super cluster using a 1.18 Kuber-
netes cluster that consists of two worker nodes. Each worker
node is a bare-metal 4-sockets Intel Xeon 8163 machine with
96 cores and 328GB memory. As we need to measure the
resource usage of the syncer controller, to avoid potential
interferences from other components, we deployed the syncer
controller in one worker node, and all tenant control planes
in another worker node. Each tenant control plane used a
dedicated etcd. All control planes are connected to the same
VPC using a high-speed virtual switch. Due to the limited
resources, we installed one hundred virtual kubelets in the
super cluster to simulate a cluster with one hundred nodes
running a large number of Pods. Note that the Pod creation’s

latencies reported in our experiments exclude the time spent
on pulling images and constructing containers in real nodes
because of using virtual kubelet. These are static overheads
and not affected by VirtualCluster at all.
Workload. Since VirtualCluster uses a dedicated control plane
for each tenant, the isolation between tenants is solid. There-
fore, our evaluation focused on the performance impact of the
framework. We chose the end-to-end Pod creation time as the
major performance metric due to the following reasons:

• The queuing delay introduced by the syncer is the primary
performance concern when VirtualCluster is under heavy
loads.

• The Pod object, as one of the primary objects in Ku-
bernetes, has arguably the most complicated schema
and many other objects were invented to serve it. The
performance of operating Pod objects will be highly
representative.

• Pod creation triggers a complicated workflow involving
other major Kubernetes components such as scheduler
and kubelet. It is in the critical path of application
deployment. Hence its performance is often highlighted.

We believe VirtualCluster will perform equally or even better
when handling other objects such as services, namespaces,
secrets, etc.

When VirtualCluster is under normal loads, e.g., tens of
requests per second, we found the syncer added one or two
milliseconds delays, which are negligible in typical Kubernetes
use cases. We developed a load generator that created a large
number of Pods simultaneously in all tenant control planes
to stress the system. In the super cluster, each virtual kubelet
runs a mock Pod provider, which marks all Pods scheduled
to the virtual kubelet ready and running instantaneously. The
Pod creation time was measured as the difference between
the tenant Pod creation timestamp and the timestamp that the
Pod’s condition is updated as ready in the tenant, including
all queuing delays and the object synchronization overheads
added by the syncer. We evaluated a few baseline cases in
which the load generator sent all requests to the super cluster
directly to make comparisons. The Pod creation time in the
baseline was calculated based on the Pod creation timestamp
and the Pod’s ready condition timestamp.

A. The impact of the syncer controller on latency

First, we considered three factors that could impact the
syncer performance in terms of latency. They are the number
of created Pods, the number of tenants, and the number of
downward worker threads. We conducted twelve cases by
varying the number of each factor, and the results are presented
in Figure 7. In each case, the number of Pods created in
each tenant is equal. In contrast, for the baseline, the load
generator used the same number of threads as the number
of tenants to submit Pods to the super cluster directly. For
each configuration, we repeated the tests several times and
calculated the average for evaluation.

We compared the Pod creation time histograms against
the histograms of the baseline cases, and the results are
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Fig. 7: The histograms of Pods creation time with different number of tenants, different number of Pods and different
number of downward worker threads in the syncer.

presented in Figure 7. A concentrated histogram means stable
performance, and a flat histogram indicates high-performance
variations. Figure 7 shows that using VirtualCluster does not
significantly lengthen the Pod creation time. The majority of
the operations had latencies within the baseline latency range.
For example, when using one hundred tenants and twenty
worker threads, the 99% percentile latencies were 3 (vs. 1
in the baseline) seconds, 4 (vs. 2 in the baseline) seconds,
8 (vs. 8 in the baseline) seconds, 14 (vs. 8 in the baseline)
seconds when creating 1250, 2500, 5000, and 10000 Pods,
respectively. It is interesting to see that the baseline cases ex-
pressed noticeable performance variations with a high number
of created Pods. We found that the scalability bottleneck of
the super cluster was the scheduler. The default Kubernetes
scheduler has a single queue, and it schedules Pod sequentially.
Therefore, we have seen the scheduler throughput peaked at a
few hundred Pods per second in our experiments. The queuing
delay in the scheduler can slow down the Pod creation process
under a high Pod churn rate, which also explained another
observation such that increasing the number of downward

worker threads did not help reduce the latencies at all. As we
will illustrate later, the time spent on the syncer’s downward
reconciling loop is trivial (Figure 8). Using twenty worker
threads was enough to push the super cluster to reach the upper
limit of the scheduling throughput. However, the number of
upward worker threads did affect the latency (not shown in
the figure) since the tenant control plane had no bottleneck
in handling object status updates. Therefore, we set a high
default number of one hundred upward worker threads and a
low default number of twenty downward worker threads in
the syncer. Those default numbers were used in the rest of the
experiments unless otherwise mentioned.

In Figure 7, we can also observe that the number of tenants
did not impact the latency for the same amount of created
Pods. Intuitively, the syncer performance should be affected
as the number of tenants increased since the syncer needed
to create more sub-queues to support fair queuing and the
complexity of the weighted round-robin algorithm, used in
sub-queue dequeue, is O(n), where n is the number of sub-
queues. However, in our experiments, all tenants were assigned



Fig. 8: The breakdown of the average Pod creation round-trip
latency when creating ten thousand Pods in one hundred tenant
control planes simultaneously.

Phase
Bucket [0, 2] [2, 4] [4, 6] [6, 8] [8, 10]

DWS-Queue 2935 2663 1626 1998 778
DWS-Process 10000 0 0 0 0
Super-Sched 3607 6393 0 0 0
UWS-Queue 2798 6870 332 0 0
UWS-Process 10000 0 0 0 0

TABLE I: The time bucket counts of each Pod creation phase
in the same case of Figure 8. The bucket unit is second.

the same weight. Hence the algorithm effectively became
a standard round-robin algorithm with O(1) complexity. If
the weights of tenants were different2, we would expect the
latency not to be significantly affected unless the number of
tenants was large.

To understand where the time was spent during Pod creation
in VirtualCluster, we divided the Pod creation latency into
five phases in chronological order: 1) The time spent in the
downward worker queue (DWS-Queue); 2) The downward
synchronization time (DWS-Process); 3) The time spent in
the super cluster until the Pod is marked as ready and running
(Super-Sched); 4) The time spent in the upward worker queue
(UWS-Queue); 5) The upward synchronization time (UWS-
Process). Figure 8 presents the average latency breakdown
in the case of creating ten thousand Pods in one hundred
tenants. In the figure, we can see that the delays in the two
syncer worker queues contribute ∼75% of the latency on
average, 48.5% by the downward worker queue and 25.3%
by the upward worker queue, respectively. The time spent in
the downward and upward synchronizations is negligible. The
scheduling delay (21%) in the super cluster is remarkable due
to the reasons explained above. Table I presents the detailed
bucket counts of each Pod creation phase considering all Pods.
As we can see, the delay variations in all phases are small
besides the DWS-Queue phase, in which the burst requests
start to accumulate.

2Currently, VirtualCluster does not support custom weight for different
tenants, which is part of our future work.

(a) (b)

Fig. 9: The Pod creation throughput comparisons by fixing the
number of Pods (a) and fixing the number of tenants (b).

Overall, the experiment results show that a centralized
syncer can handle burst Pod creation requests with small to
moderate added delays. Note that such delays may not be
noticeable in practice when considering the time spent in the
real node during Pod creation (e.g., the time to pull container
image). In addition, since the super cluster scheduler can be
the bottleneck of the syncer scalability, adding more worker
threads or more syncers cannot improve the latency effectively.
Lastly, the syncer is stateless and can be scaled out to support
a huge number of tenants if needed.

B. The impact of the syncer controller on throughput

Next, we evaluated the VirtualCluster throughput by calcu-
lating the number of created Pods per second and the results
are presented in Figure 9. From Figure 9(a), we can see that
the number of tenants does not affect the throughput for the
same number of created Pods. VirtualCluster introduced a
constant ∼21% throughput degradation. The lower throughput
is expected since a few critical sections in the syncer, such as
the worker queue enqueue or dequeue cannot be parallelized.
The lock contentions in the syncer could downgrade the
throughput. Figure 9(b) shows that the throughput is roughly
constant for VirtualCluster, but becomes lower for the baseline
cases as the number of Pods increases. The maximal through-
put degradation is ∼34%. Note that adding more syncers might
improve the overall throughput by reducing per syncer lock
contentions. However, it is not preferable due to a few reasons:
1) Using one syncer still achieved sustainable throughput
regardless of the number of tenants and the number of Pods;
2) The operation latency is more important from a tenant’s
perspective compared to the control plane throughput.

C. The overhead of the syncer controller

The available compute resources for the syncer can affect its
performance when it is busy. In our experiments, we did not
set a resource limit for the syncer. It would be interesting to
analyze the resource usages in those intensive test cases built
for benchmarking purposes. Figure 10 presents the CPU and
memory usages of the syncer controller in our experiments. As



Fig. 10: The resource usages of the syncer controller. The
CPU usage was measured as the accumulated process CPU
time. The number in each circle represents the process wall-
clock time (in seconds) to which the size of each circle
is proportional. The memory usage was measured as the
process’s peak resident set size (rss).

expected, the resource usages increase almost linearly as the
number of Pods increases. The average number of consumed
CPUs can be estimated by calculating the division of the
accumulated CPU time by the process wall-clock time. For
example, in the ten thousand Pods case, the syncer roughly
consumed 138

23 i.e., six CPUs during the experiment, which is
far beyond the requirements for normal cases. Usually, a CPU
limit of one to two CPUs is recommended for the syncer.
The syncer’s peak memory usage is around 1.2GB in the ten
thousand Pods case. The peak memory growth rate is roughly
40KB per Pod, which is estimated by calculating the ratio of
the curve. The major memory consumers in the syncer are the
informer caches. One tenant object has at least two copies in
the syncer, one in the informer cache of the tenant control
plane and another in the super cluster informer cache. The
syncer worker queues also consume memory when they grow,
but the queued request’s size is usually small (a few bytes), and
the queues would not grow infinitely because of deduplication.
We have also examined the syncer restart performance and
found that it took less than twenty-one seconds to initialize all
informer caches with one hundred tenant control planes and
ten thousand Pods, which is reasonably fast because syncer
restart would be rare. Besides, we have also measured the
overhead of the periodic scanning threads in the syncer. The

(a) Fair queuing enabled

(b) Fair Queuing disabled

Fig. 11: The average Pod creation time of each tenant with
and without fair queueing enabled.

number of parallel scanning threads was equal to the number
of tenants, and the scan interval was set to one minute. We
found that it took less than two seconds to finish scanning
10000 Pods on average.

D. The impact of fair queuing on fairness

In previous experiments, the load generator sent an even
number of Pod creation requests to each tenant, assuming
they have the same usage pattern. To evaluate the impact of
the fair queuing mechanism in the syncer on performance,
we divided the tenants into two groups: ten greedy users and
forty regular users. Each greedy user issued nine hundred Pod
creation requests concurrently, while each regular user sent
ten Pod creation requests sequentially. All tenants had the
same weight. Hence, the syncer should ensure that the regular
users’ Pods would not be affected by the greedy users’ burst
requests from the aspect of fairness. As shown in Figure 11(a),
under the help of the fair queueing mechanism, the average
Pod creation time for all regular users was small (less than
two seconds), and all greedy users suffered from much higher
average Pod creation time. To make a comparison, we repeated
the experiment with fair queuing disabled in the syncer. As
shown in Figure 11(b), the shared worker queue caused severe
contentions, and the creations of many regular users’ Pods
were significantly delayed due to the burst requests from the
greedy users. Note that without a centralized syncer, it would
be challenging to implement fair queuing. For example, if each
tenant had a syncer, we had to rely on the super cluster’s
apiserver to provide quality of service (QoS) when serving



concurrent requests. Unfortunately, Kubernetes has no mature
QoS support for user access controls yet 3.

E. The impact of the enhanced kubeproxy on latency

Lastly, we evaluated the enhanced kubeproxy performance
using a different methodology. In the experiment, we created
Pods in one real worker node in the super cluster instead of
using a virtual kubelet, i.e., creating thirty Pods in one worker
node using kata container runtime and connected to a VPC.
We also created one hundred artificial services beforehand so
that the enhanced kubeproxy would inject one hundred routing
rules into each guest OS before the workload containers
started. We found that the extra latency caused by injecting
those rules was ∼1 second on average, including the gRPC
cost and the time to update the IPtable. The time to scan
all thirty Pods rules was around three hundred milliseconds,
which lengthened the periodic reconciling loop’s execution
time in the kubeproxy. Overall, the cost of supporting the
cluster IP type of service in VirtualCluster is small.

V. FUTURE WORK

Several cloud SaaS products have adopted the VirtualClus-
ter framework. We have realized that VirtualCluster can be
further improved in at least the following aspects in order to
accommodate more use cases:

• Synchronizing CRDs. The syncer controller currently
only synchronizes the built-in Kubernetes resources used
for Pod provision. However, the super cluster may of-
fer extended scheduling capabilities by introducing new
CRDs. For example, there exist quite a few scheduler
plugins for running artificial intelligence (AI) or big data
workloads in Kubernetes using new CRDs. A tenant user
cannot use the extended scheduling capability unless the
syncer starts to synchronize the required CRD from the
tenant control plane. Therefore, adding CRD support in
the syncer is a legitimate request and in our roadmap.

• Reducing the cost of running tenant control planes.
For a few tenants, the resources used for the tenant control
planes would not be a concern. However, the cost could
be a blocking factor if the number of tenants reaches
thousands or more. How to reduce the tenant control
plane resources, especially for idle tenants, is challenging.
Since Kubernetes is moving towards supporting memory
swapping for the running Pod [37], one possible solution
is to allow memory overcommitment in the nodes that run
the tenant control planes and swap the idle tenant control
plane memory out. However, the above idea requires a
sophisticated design to make proper tradeoffs between
the performance and the cost.

• Supporting multiple super clusters. Since VirtualClus-
ter hides the underlying super cluster capacity to the
tenants, the ability of autoscaling is the key for the super
cluster to provide reliable services to the tenants. In cases

3Kubernetes does provide user-based request rate limit controls, but it is
hard to set proper limits for tenants in practice.

where worker nodes cannot be automatically added to
or removed from a super cluster, supporting multiple
super clusters is an option to break through the capacity
limitation of a single super cluster. Note that this request
is different from the use cases that Kubernetes federa-
tion [38] targets, where the users explicitly know the
states of all managed clusters. In VirtualCluster, the users
would not be aware of multiple super clusters, making
the solution more robust and retaining a consistent user
experience.

Last but not least, some VirutalCluster components such as
the vn-agent could be simplified by leveraging newly proposed
Kubernetes features. We will continue to work closely with the
upstream community.

VI. CONCLUSION

In this paper, we propose VirtualCluster, a new multi-tenant
framework that provides complete control plane isolations
among tenants and allows them to share the underlying com-
pute resources. It enhances Kubernetes data plane to support
cluster IP type of service in VPC environments. VirtualCluster
complements Kubernetes by working around its design limi-
tations in multi-tenancy. From a tenant’s perspective, Virtual-
Cluster presents an intact Kubernetes cluster view by preserv-
ing full API compatibility. The experimental results show that
VirtualCluster introduces small to moderate overheads in terms
of operation latency and throughput. Overall, VirtualCluster
framework can be easily integrated with most of the existing
solutions, and we believe it has great potential to support more
multi-tenant use cases in cloud computing.
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