arXiv:2004.09583v1 [cs.CR] 20 Apr 2020

FlashFlow: A Secure Speed Test for Tor

Matthew Traudt

Rob Jansen

Aaron Johnson

U.S. Naval Research Laboratory
{matthew.traudt, rob.g.jansen, aaron.m.johnson } @nrl.navy.mil

Abstract

The Tor network uses a measurement system to estimate its
relays’ forwarding capacity and to balance traffic among them.
This system has been shown to be vulnerable to adversarial
manipulation. Moreover, its accuracy and effectiveness in be-
nign circumstances has never been fully quantified. We first
obtain such a quantification by analyzing Tor metrics data
and performing experiments on the live network. Our results
show that Tor currently underestimates its true capacity by
about 50% and improperly balances its traffic by 15-25%.
Then, to solve the problems with security and accuracy, we
present FlashFlow, a system to measure the capacity of Tor
relays. Our analysis shows that FlashFlow limits a malicious
relay to obtaining a capacity estimate at most 1.33 times its
true capacity. Through realistic Internet experiments, we find
that FlashFlow measures relay capacity with >89% accuracy
95% of the time. Through simulation, we find that FlashFlow
can measure the entire Tor network in less than 5 hours us-
ing 3 measurers with 1 Gbit/s of bandwidth each. Finally,
simulations using FlashFlow for load balancing shows that,
compared to TorFlow, network weight error decreases by 86%,
while the median of 50 KiB, 1 MiB, and 5 MiB transfer times
decreases by 15%, 29%, and 37%, respectively. Moreover,
FlashFlow yields more consistent client performance: the me-
dian rate of transfer timeouts decreases by 100%, while the
standard deviation of 50 KiB, 1 MiB, and 5 MiB transfer times
decreases by 55%, 61%, and 41%, respectively. We also find
that the performance improvements increase relative to Tor-
Flow as the total client-traffic load increases, demonstrating
that FlashFlow is better suited to supporting network growth.

1 Introduction

Tor [15] is the most popular system on the Internet for anony-
mous communication. Tor is currently comprised of about
6,500 geographically diverse volunteer-operated proxy re-
lays transferring nearly 200 Gbit/s in aggregate traffic from
between 2 million [8] and 8 million [26] daily active users.

Tor has seen significant growth recently, nearly doubling the
amount of traffic it forwards in the last two years [8].

Tor uses a load-balancing system called TorFlow [30] to
balance load from its millions of users across its thousands of
relays. The goal of TorFlow is to equalize Tor performance
across all clients, regardless of which relays they use. It re-
ceives bandwidth self-measurements from relays and also
makes active measurements of download speeds through each
relay. It then computes per-relay weights by multiplying the
self-measured bandwidths by their actively measured speed
relative to the average. Clients choose relays for their circuits
with probabilities proportional to these weights.

Previous work has shown that TorFlow is insecure. A mali-
cious relay can increase the fraction of traffic it can observe be-
yond the fraction of Tor bandwidth it provides [11, 12, 25, 36],
increasing its ability to deanonymize Tor users using a traffic
correlation attack [24, 28]. A main reason for its vulnerability
is that it trusts relays to accurately self-report their observed
capacity. Also, TorFlow’s active measurements are supposed
to occur concurrently with normal client traffic, but a ma-
licious relay can detect its measurement and throttle client
traffic to increase its measured speed.

In addition to its insecurity, TorFlow has not been demon-
strated to be accurate even when not under attack. A relay es-
timates its capacity using the maximum amount of throughput
it is able to sustain for any 10 second period over each of the
last 5 days [14, § 2.1.1]. However, a relay that is consistently
under-utilized may never produce an accurate self-estimate
of its capacity, leading TorFlow to produce lower weights
for that relay than it should. Moreover, the active measure-
ments depend on client traffic and the speed of other relays
randomly chosen for the same measurement circuits, poten-
tially leading to suboptimal and variable weights. Inaccurate
weights reduce client performance by improperly balancing
load. Moreover, inaccurate capacity estimates make it more
difficult to understand how to spend research and develop-
ment effort on improving the network. For example, obtaining
funding to improve Tor scalability is more challenging with-
out understanding the current limits of the network. Improper

network management also complicates relay recruitment and
retention, and may dissuade the development of incentive
schemes [19, 21, 27, 29].

We explore the error and inconsistency in Tor’s estimated
relay capacities and weights using Tor metrics data [8] and an
active measurement experiment. Our analysis of 11 years of
data shows that 25% of relays have a mean capacity error of
49% or greater, that total network capacity error has reached
as high as 60%, and that relay capacity estimates vary by 82%
or greater for 25% of relays. The analysis also shows median
load balancing errors between 15% and 25% over time. Our
measurement experiment on Tor further indicates that relays
significantly under-estimate their own capacity, and the
network capacity as a whole is underestimated by about 50%.

We present FlashFlow to solve these problems. FlashFlow
is a system designed to securely, accurately, and quickly mea-
sure the capacity of relays in the Tor network. In addition to
providing weights for load balancing, the capacity measure-
ments allow Tor to accurately assess the network’s resources
and plan for the future.

The need for security heavily influences the design choices
of FlashFlow. We cannot make use of measurement ap-
proaches that are vulnerable to manipulation, such as packet
pairs [31]. Previously proposed systems attempt to measure
Tor surreptitiously [9, 30] or to securely aggregate passive
observations made by many relays [25, 34]. FlashFlow takes a
new approach to this problem by using separate measurement
teams that attempt to actively utilize the full capacity of re-
lays. This approach improves security as it requires the direct
demonstration of a relay’s capacity rather than relying on an
indirect measurement that may be falsifiable. It also yields
higher accuracy, as the traffic is actively generated to deter-
mine the relay’s limit, with the normal client traffic carefully
reduced to limit its impact on the result without excessively
reducing client performance. FlashFlow additionally aggre-
gates results from multiple measurers in order to accurately
measure the highest-bandwidth relays in Tor.

We implement FlashFlow and conduct extensive experi-
ments in a lab setting, on the Internet, and in simulation. With
our suggested parameter settings, FlashFlow limits a mali-
cious relay to obtaining a capacity estimate of at most 1.33
times its true capacity. Through Internet experiments across
a range of geographic locations, we find that FlashFlow is
able to measure a target relay with a capacity ranging from
10 Mbit/s to 1 Gbit/s to within 11% of ground truth in 30
seconds 95% of the time (or within 20% of ground truth
99.8% of the time). Through simulation, we find that Flash-
Flow can measure the entire Tor network in less than 5 hours
using 3 measurers each with 1 Gbit/s of bandwidth. Through
private Tor network simulations in Shadow, we find that Flash-
Flow reduces network weight error by 86%. The resulting
improvement in load balancing reduces transfer times for all
tested transfer sizes: the median of 50 KiB, 1 MiB, and 5 MiB
transfer times decreases by 15%, 29%, and 37%, respectively.

FlashFlow also yields more consistent client performance: the
median rate of transfer timeouts decreases by 100%, while
the standard deviation of 50 KiB, 1 MiB, and 5 MiB transfer
times decreases by 55%, 61%, and 41%, respectively. Finally,
we find that the performance improvements increase further
as the total client-traffic load increases, demonstrating that
FlashFlow is better suited to supporting Tor network growth
than is TorFlow.

2 Background

Overview: As of August 2019, the Tor network includes
about 6,500 relays that forward a combined 200 Gbit/s of
Tor traffic, and 9 Directory Authorities (DirAuths) that act as
trust anchors for the distribution of network information to
Tor users. When new relays join the network, they publish
their public key and network address to the DirAuths, who
then verify reachability and validate Tor protocol support. A
voting process occurs every hour, after which the DirAuths
add valid relays to a network consensus document signed by
all authorities and distributed to all Tor clients and relays. The
consensus document stores information about all available re-
lays and is required for new clients to use Tor. New relays that
appear in a consensus are not used until their performance has
been measured by a majority of the 6 Bandwidth Authorities
(BWAuths) that participate in Tor’s load balancing system.
TorFlow: Each Bandwidth Authority runs the TorFlow [30]
relay-measurement tool to measure the relative performance
of relays in the Tor network over time. TorFlow conducts per-
formance measurements of Tor relays by creating 2-hop Tor
circuits through them and downloading one of a set of 13 fixed-
sized files (2/ KiB for i € {4,...,16}) from a known desti-
nation through each circuit. Every hour, TorFlow aggregates
the latest relay measurements and produces a load-balancing
weight for each relay.

To assist in balancing load across relays, TorFlow attempts
to produce larger weights for relays that can better handle
Tor traffic. To compute the weights, TorFlow relies on two
data sources. First, TorFlow uses each relay’s self-reported
bandwidth information that is published every 18 hours in a
server descriptor. This information includes any rate limit set
by the relay (e.g., with the BandwidthRate and BandwidthBurst
options [7]), as well as its observed bandwidth, which is the
highest Tor throughput that the relay was able to sustain for
any 10-second period during the last 5 days [14, §2.1.1]. From
this information, TorFlow computes the relay’s advertised
bandwidth as the minimum of the observed bandwidth and
any rate limit set by the relay. Second, TorFlow uses the results
of its own measurements to compute for each relay a ratio of
the measurement speed of the relay to the mean measurement
speed of all relays in the network. Finally, TorFlow computes
a weight for each relay by multiplying the computed speed
ratio for that relay by its advertised bandwidth.

Load Balancing: The TorFlow weights are collected and re-
ported to the Directory Authorities, added to the following
network consensus, and distributed to clients. Tor clients then
use the normalized weights as probabilities when selecting
relays for theirs path through the Tor network in an attempt
to balance user load across relays. To use Tor, a client creates
a circuit through a sequence of three relays, over which a
TCP connection can then be made to any Internet host. Com-
munication cells of a fixed 514-byte length are sent through
the circuit and are encrypted (or decrypted, depending on the
direction) by each relay using a key exchanged with the client
during circuit construction.

Terms: We use the term throughput to mean an amount of
traffic that an application or a segment of the network stack
(e.g., TCP) has been measured to have forwarded (i.e. received
and then sent). We use the term capacity to mean the maxi-
mum throughput that an application or network segment can
handle. Thus a Tor throughput is an amount of traffic that a
Tor process has been measured to have forwarded, potentially
as an estimate of Tor capacity. Tor throughput includes cell
payloads and headers but excludes TCP, IP, and other network
packet headers. Finally, Tor ground truth is an estimate of
Tor capacity experimentally determined by sending load from
increasing numbers of simulated clients and measuring them
at the relay. Tor ground truth measurements are accurate but
expensive and require trust in the relay.

3 TorFlow Analysis

A primary goal of Tor’s load balancing system is to drive
more user traffic to Tor relays that can better support it. Fun-
damentally, Tor attempts to spread user load among relays
according to two relay characteristics: (i) relay capacity, i.e.,
the maximum rate at which a relay can forward Tor traffic;
and (ii) relay performance, i.e., the current speed of fixed-
size download. As explained in § 2, TorFlow uses relays’
advertised bandwidths as an estimate of relay capacity, and
its own client measurements to estimate relay performance.
Because TorFlow uses relay capacities as the basis for the
load-balancing weights it produces, accurate relay capacity
estimates are essential to load balancing and, ultimately, Tor
network performance and scalability.

A relay’s capacity estimate is derived from a heuristic mea-
sure of unknown accuracy, i.e., its observed bandwidth (see
§ 2). The observed bandwidth is likely inaccurate in many
realistic cases: (i) a new relay will not have forwarded any
traffic and thus will be estimated to have a low capacity re-
gardless of its available resources; (ii) a relay that clients use
inconsistently may not sustain a high throughput long enough
to result in an accurate capacity estimate; (iii) a relay that
clients underutilize will underestimate its capacity; and (iv)
a relay with co-resident processes that consume bandwidth
inconsistently may overestimate its capacity.

< 1.00 - 33 —

o —— 3

= -

+ .

8 0.75 ‘/.,:‘; =~

[o

O = o “ = Day

S 0.50 P .

ﬁ e Week

_g 0.25 4 /"/ = === Month |

S 2 == Year

© 0.00 ; ;
0 20 40 60 80 100

Mean Capacity Error Per Relay (%)
Figure 1: Relative error in relay capacity, computed using 11 years

of archived Tor metrics data [8].

To better understand the accuracy of Tor’s capacity-
estimation heuristic and its effect on load balancing, we an-
alyze publicly available Tor metrics data over time. Relays’
capacity estimates are published in their server descriptors [14,
§ 2.1.1], and load-balancing weights are published in network
consensus files [6, § 3.4.1]. The Tor Project has collected
these documents for over a decade, and it publishes monthly
archives [8]. We use 11 years of such data from the period
2008-08-01 to 2019-07-31, and we analyze the error in both
capacity estimation and load balancing.

3.1 Capacity Estimation Analysis

We compute the inaccuracy of relay capacity estimates
across relays and over time. In our analysis, we suppose that
arelay’s true capacity does not often change (it usually runs
on the same machine with the same network interface card
and access link) and that a relay’s observed bandwidth is not
higher than its true capacity (a relay’s capacity is not usually
limited by co-resident processes).
Relay Capacity Accuracy: We observe that advertised band-
widths exhibit high variance over time, which suggests that
they often underestimate true capacity (see Appendix A). To
quantify this error, we use a relay’s maximum advertised
bandwidth over a given time period as a proxy for its true
capacity. Comparing advertised bandwidths to this maximum
should yield a conservative error estimate, as the maximum
should only be lower than the true capacity, assuming the true
capacity does not vary during the given period.

Let A(r,7) be the advertised bandwidth of relay r at time
t, and let A(r,z, p) be the multiset of advertised bandwidths
published during the period of length p preceding time .
Varying the length of time p allows us to examine error over
different timescales. We thus estimate the true capacity of
relay r at time ¢ using the maximum bandwidth during the
period of some length p preceding ¢:

C(nt,p) =max (A(nt,p)). (1)

We can then assess the relay capacity error for relay r at
time ¢ as the fraction by which its advertised bandwidth un-
derestimates the maximum observed in the previous p time:

RCE(r,t,p):l—A(r,t)/C(r,t,p). (2)
We summarize these errors by computing the mean of
RCE(r,t, p) over the times ¢ on the hours between 2009-08-01
and 2019-07-31. We plot the distribution of these means over
all relays r in Figure 1 for various values of p.

<= 60
S A A
g - . DA
R T
w 5)
2z T
E ot A RPEh
] "
a V_\ ! 4
T T T —
2010 9011 9012 9013 914 9015 9010 01T 9018 9019

Time
Figure 2: Network capacity error over time, computed using 11 years
of archived Tor metrics data [8].

From the results in Figure 1, we observe that larger errors
are estimated when the true capacities are based on longer
time periods: the median of the mean capacity error is 28%
when true capacities are computed using 1 year of reports,
compared to 7% when they are computed using only 1 day
of reports. A plausible explanation for this observation is that
relays are typically underutilized and experience random load
fluctuations, and so the longer a relay is observed the more
likely it is to receive traffic at or close to its true capacity. We
also find that over 85% of relays have non-zero capacity error,
and for 25% of relays the capacity error is 18% or greater
for p = 1 day and 49% or greater for p = 1 year. Overall, our
results indicate significant underestimation of true capacities.
Network Capacity Accuracy: Although Figure 1 shows non-
trivial error in the relay advertised bandwidths, it does not
necessarily indicate that the network suffers from inaccuracy
as a whole. For example, it could be the case that relays with
highly erroneous advertised bandwidths are slow relays that
do not carry much user traffic. Therefore, we also explore a
notion of network accuracy. We compute the network capacity
error at time ¢t by summing the advertised bandwidths and
true capacities from all relays and then calculating the fraction
of total network underestimation:

NCE(t,p) =1-Y A(r.t,p)/ Y. C(r.t,p). 3)

The network capacity error gives us an understanding of the
total fraction of Tor’s capacity that is being underestimated,
as opposed to the fraction of relays with underestimation.

We show Tor’s network capacity errors over time in Fig-
ure 2. In the median hour between 2009-08-01 and 2019-07-
31, we find a network capacity underestimate of 5% when
using the preceding day to determine true capacities, 14%
when using the preceding week, 22% when using the preced-
ing month, and 36% when using the preceding year. As with
relay capacity errors, we see larger errors when we determine
the true capacity based on longer periods. The largest network
capacity error we discovered was 60% (for p = 1 year). These
results provide evidence that Tor significantly and consis-
tently underestimates its total capacity. We discuss additional
conclusions in § 3.3.

3.2 Load Balancing Analysis

Our previous results quantify the inaccuracy present in the
relays’ advertised bandwidths. A main reason such inaccuracy

5 100 ——

g /

@ 0.75 ¢

= d — s

2 0.50 3 A

'ﬁ ; Week
g 0.25 J «= =+ Month -
3 j == Year

O 0.00 — ;

-4 -2 0 2 4
log1o(Mean Weight Error Per Relay)
Figure 3: Relative error in relay weights, computed using 11 years

of archived Tor metrics data [8].

is a problem is that it affects the consensus weights used
by clients to balance load across relays. We analyze these
consensus weights over time to better understand the accuracy
in the load balancing system.

Relay Weight Accuracy: The probability that a relay is se-
lected in a circuit is roughly its normalized consensus weight,
that is, its fraction of the total weight assigned to all relays.
Let W (r,1) represent this value for relay r at time ¢, and let
W (r,t, p) be the multiset of these values over the consensuses
during the period of length p preceding time ¢. Ideally, a
relay’s normalized consensus weight would equal its normal-
ized capacity, that is, its fraction of the total capacity. Let
C(r,t, p) be the normalized capacity of relay r at time ¢:

C(rt,p) =C(rt,p)/ Y.C(s,,p). @)

At any time ¢, we can consider any deviation of the normal-
ized consensus weight W (r,) from the normalized capacity

C(nt, p) as error. We can then quantify this relay weight error
by computing the ratio of these values:

RWE(r,t,p) = W(r,t)/C(rt,p). %)
We then collapse the results to a single value per relay by
computing the mean over all ¢ starting from ¢ = 2009-08-
01. Notice that it is possible that the normalized consen-
sus weight is less than the normalized capacity, in which
case RWE(r,z,p) € [0, 1), and that the normalized consensus
weight is greater than the normalized capacity, in which case
RWE(r,t,p) > 1. Therefore, to better visualize the results,
we plot in Figure 3 the distribution of the per-relay means of
RWE(r,t, p) (over all) by taking the logo of the means. As a
result, x-axis values less than 0 indicate that relays are under-
weighted compared to their capacity, and x-axis values greater
than O indicate that relays are over-weighted compared to their
capacity (by a factor of 10 for each unit). The results show
that more than 85% of relays are under-weighted compared
to what we would expect based on their capacities, while few
relays (at x = 0) are ideally weighted. Since consensus weight
is zero-sum, it must be the case that the disproportionately
small number of relays that are over-weighted account for a
disproportionately large amount of total user load; we account
for this in the following metric.
Network Weight Accuracy: To get a better sense of how
weight errors affect the network overall rather than individual
relays, we compute the network weight error as the total

50

===+ Month

—_
o

S 40 £NK — Day

\: Week === Year
S - :

5% I VO I

- 20 "\"'l-’.“,é.....»‘.-‘ "\
£ SRR 4
2

=

o

2010 5011 9012 9013 2014 9015 916 01T 018 9019
Time
Figure 4: Network weight error over time, computed using 11 years
of archived Tor metrics data [8].

variation distance between the normalized consensus weight
and the normalized capacity:

1 _
NWE(z,p) = EZ |W(r,t)—C(rt,p)|. (6)

This better represents error in Tor’s load balancing system
overall, since subtracting the normalized values (rather than
dividing them as we did in Equation 5) means that relays will
contribute to the network error proportional to the amount of
traffic they carry. Figure 4 shows the network weight error
NWE(z, p) over time starting from ¢ = 2009-08-01 for various
values of p. We again observe that error increases as our capac-
ity estimates are based on data from longer periods. However,
the difference in error over greater values of p is much less
pronounced: the network weight error is 21%, 22%, 24%, and
30% in the medians when using normalized capacities from
the preceding day, week, month, and year, respectively. Our
results over the latest year of data (2019) show a 15-25% er-
ror in load balancing weights, indicating that Tor will benefit
from improvements to their load balancing system.

3.3 Conclusions and Observations

Our analysis shows consistent error in both network capac-
ity and network weights over time. We make two observations
from our results. First, we observe that we get a significantly
higher estimate of true capacity when aggregating more ad-
vertised bandwidths into the estimate, and we generally find
significant under-weighting of relays relative to their capac-
ity. Second, we observe that both capacity and weight error
has decreased in recent years (2018-2019) compared to early
years (2010-2011). We hypothesize that these observations
result from the under-utilization of relays: a relay that is not
fully utilized will report an advertised bandwidth that is below
its true capacity. We suspect that the error has decreased in
more recent years because Tor’s increase in relay bandwidth
resources has outpaced its increase in user load, and therefore
even after aggregating advertised bandwidths over a year, our
estimate of true capacity is still an under-estimate (leading us
to compute a lower error). We further explore this hypothesis
through a Tor network measurement experiment.

3.4 Relay Speed Test Experiment

To test our hypothesis that advertised bandwidths reported
by relays under-estimate their true capacity, we designed a

relay speed test experiment in which we flood each Tor relay
with traffic for 20 seconds. The additional traffic that we
transfer through the relays will cause them to produce better
estimates of their true capacities, which they will then report
in their server descriptors (see § 2).

Setup: We added 487 lines of code to Tor v0.3.5.7 to support
anew SPEEDTEST cell that, when sent from a client to a sup-
porting relay, would simply be forwarded back to the client on
the same circuit. We also added client controller commands
to start and stop a speed test with a particular target relay and
to monitor bandwidth information during each test. We cre-
ated 10 measurement “teams” that each consisted of a client
and a relay running our modified Tor, and we ran a master
python script that would keep track of the relays available in
the network consensus over time. The master script iterated
through the online relays one at a time, directing the speed
test client in each team to create a circuit through the target
relay to the speed test relay in that team. Once all teams’
circuits were built, the speed test clients and relays sent and
forwarded SPEEDTEST cells as fast as possible for 20 seconds,
taking care not to overflow circuit queue length limits. This
resulted in 20 new bidirectional, high volume sockets on each
target relay, who forwarded the traffic as they would on any
other circuit. We ran all speed test clients and relays on the
same dedicated machine with 32 GiB of RAM, 8 CPU cores,
and a 1 Gbit/s network link.

Ethics: We designed our experiment to minimize Tor network
relay overhead. We submitted our experimental design and
plans to the Tor Research Safety Board' for feedback. We
received encouraging feedback and a “no objections” decision.
We also explained our plans to the Tor community through a
post to the public for-relays mailing list. We gave instructions
on how to opt out and allowed one week to collect feedback.
Finally, we served a web page containing a link to the mailing
list post on the IP addresses used in the experiment.
Results: Our speed test experiment ran for just over 2 days
(51 hours) starting on 2019-08-06, as shown in the shaded
region in Figure 5. During this time we successfully measured
4,867 relays and we observed timeouts for 2,132 relays. We
plot in Figure 5 the estimated capacity of the network, i.e.,
the sum of advertised bandwidths for all online relays over
time. We find that the estimated network capacity increases by
about 200 Gbit/s (about 50%) after our speed tests push relays
into reporting higher observed bandwidths, and that 10% of
relays reported a change in observed bandwidth of 140 Mbit/s
or more. Note that the delay in the increase and decrease in
capacity relative to our experiment is caused by (i) the 18 hour
server descriptor publishing interval, and (ii) the observed
bandwidth algorithm which stores history for each of the last
5 days. We also plot in Figure 5 the network weight error
as defined in Equation 6, which represents the overall effect
on load balancing. We find that weight error increased by

Uhttps://research.torproject.org/safetyboard

https://research.torproject.org/safetyboard

600 - : - -
b = Capacity /"' -\
= e e k
& 500 » : \
: Error / \
2 S y Speed i N
g 400 e gt
8 : T b Test
(3] .
S Active
300 - - :

o Sﬁq’@ﬁc’ oS o I AY oA A
B oS T oS
Figure 5: Our relay speed test discovered ~200 Gbit/s of excess ca-

pacity (=50%), and the network weight error (Equation 6) increased
by between 5% and 10% due to more accurate capacity estimates.

between 5% and 10% as a result of more accurate capacity
estimates, to a maximum of 23% during the speed test. Then,
we observe a decrease in weight error immediately following
our experiment, which we believe is a result of TorFlow using
the new information to correct consensus weights. From these
results, we conclude that Tor significantly under-estimates
its available network capacity and that better estimates of
capacity would reduce error in load balancing.

4 FlashFlow Design

We now present the design for FlashFlow, a system to measure
the capacity of Tor relays. The key technique behind Flash-
Flow is to actively measure the full capacity of Tor relays
using multiple measurement hosts. This approach improves
security over prior approaches, as relays must demonstrate
their true capacity, a process that cannot be faked. It also
improves accuracy, as the measurement does not depend on
background traffic or on other relays.

Setup: FlashFlow uses a measurement team to perform re-
lay capacity measurements. The measurement team consists
of a set of measurers running on hosts whose resources are
dedicated to the measurement process. The measurers will
cooperatively measure relays, and so the primary requirement
for measurers is that they collectively have sufficient network
capacity to measure all Tor relays. A team is considered to
have sufficient capacity if the sum of capacities over all mea-
surers is at least some constant factor f (see § 6) times the
highest Tor-relaying capacity among relays. FlashFlow is
designed to achieve accurate measurement given sufficient
network capacity, regardless of network latency.

The measurement team is coordinated by a BWAuth, who
determines the measurement schedule and aggregates the
results. A measurement schedule is created for each mea-
surement period, which divides time into constant-length in-
tervals. Multiple BWAuths, each with its own measurement
team, independently run FlashFlow. Each BWAuth separately
measures each relay during a period.

Trust and Diversity: As in Tor currently, each DirAuth
chooses to trust some BWAuth, and the DirAuths place the
median of their measurements in the consensus. Thus the

trust assumption in FlashFlow is that a majority of DirAuths
trust BWAuths (and their associated teams) that are honest. In
the simple case that each DirAuth trusts a different BWAuth,
FlashFlow requires an honest majority among the BWAuths
and their teams. Moreover, FlashFlow will be more accurate if
there is a diversity of network locations across measurement
teams that reflects the diversity of Tor clients and relays. Such
diversity will mitigate unrepresentative measurements result-
ing from unusually high or low network capacity between a
relay and a measurement team (e.g., due to existing in the
same data center).

4.1 Performing a Measurement

A BWAuth initiates a single measurement by creating an
authenticated connection to each measurer and to the target
relay. Authentication is performed using the public key of the
BWAuth, which we assume is distributed in the Tor network
consensus. The BWAuth sends the target the public keys of
each measurer involved in the measurement. While connected,
the measurers accept instructions from the BWAuth, and the
relay accepts authenticated measurement connections from
the measurers indicated by the BWAuth. The relay will only
accept connections from a given BWAuth and its team once
per measurement period.

The BWAuth will divide the total resources needed for
the measurement across its m measurers My, ...,M,,. The
BWAuth allocates a quantity a; of the measurement capacity
of M; to the measurement (see § 4.2 for choosing a;), where
a; = 0 is possible and indicates that M; does not participate
in the measurement. For each M;, a modified Tor process is
started on each CPU core without an existing measurement
process (and always at least one). The measurement-traffic
rate of the k; processes thus started is limited by setting the
BandwidthRate parameter of each modified Tor process on
the measurer to a;/k;. A constant total number of TCP sockets
s is used across all measurers (see Appendix E.1 for setting
s), and each M; uses an even share s/m of them, with each
measuring process at M; using s/ (mk;) of the sockets.

Each measuring process creates one TLS connection with
the target relay for each of its allocated sockets. Over each
such connection, a special measurement circuit is constructed
using a new type of circuit-creation cell. A key exchange is
performed, but the circuit will not be extended further. All
cells received on the circuit by the target relay will be de-
crypted and then returned to the measurer. The target relay
schedules cells on measurement circuits using a separate cell
scheduler to ensure high throughput even with fewer sockets
than typical for a Tor relay (the existing scheduler [22] is
designed for priority scheduling across many sockets [17]).
Moreover, the target relay enforces a maximum ratio r be-
tween cells sent by the normal scheduler and those overall,
and it attempts to send as much normal traffic subject to this
maximum. This design provides an accurate measurement
while ensuring that normal traffic continues to be relayed.

A relay is measured by a BWAuth during a measurement
slot. During this time, each measuring process sends measure-
ment cells filled with random bytes over the measurement
circuit. The process sends such cells as fast as possible. The
target relay decrypts those cells using the circuit key, and
then returns them on the circuit. Note that both the mea-
surer and the target perform TLS encryption and decryption,
but the target alone performs Tor’s cell decryption. This de-
sign minimizes the computational load of the measurer while
replicating the cryptographic operations that the target would
perform on normal traffic, which is needed to get an accurate
estimate of its forwarding capacity. To ensure that the target
is correctly decrypting and forwarding cells, the measurer
records the contents of each cell sent with probability p (e.g.,
p = 107) and checks that the returned content of such cells
is correct, reporting failure from the measurement if not.

A measurement slot lasts a constant number of seconds ¢
(see § 6). The BWAuth can end the measurement in this slot
early due to a failure reported by a measurer. During the mea-
surement slot, the BWAuth receives from the ith measuring
process the number of measurement bytes xi- that were relayed
by the target to the process in the jth second. The BWAuth
also receives from the target the number of normal traffic bytes
y; that the target relayed in the jth second. At the end of the
measurement, the BWAuth computes per-second sums of mea-
surement traffic: x; = Y7 | x’J It limits the per-second normal
traffic to the largest value that is consistent with the measure-
ment traffic and the traffic ratio r: y; = min (y;,x;r/(1 —r)).
The BWAuth computes a per-second estimate z; = x; +y; of
total bytes relayed by the target, and then it sets its capacity
estimate to the median: z = median(zy,..., 7). Incorporating
the normal traffic results in better capacity estimates, and en-
forcing the expected ratio limits how much a malicious relay
can increase its capacity estimate by reporting more normal
traffic than it actually relayed.

4.2 Measuring a Relay

Measuring a relay potentially involves a sequence of mea-
surements because the measurer capacity required for an accu-
rate measurement is unknown. Instead of using the maximum
amount of measurer capacity for each relay, we instead use
informed guesses about relays’ capacities and allocate only
the measurer capacity needed for those guesses. If the mea-
surement indicates that the allocated capacity was sufficient
for a given target, then we conclude the measurement process.
Otherwise, we perform another measurement of the target
with a higher guess and more measurer capacity. This pro-
cess reduces the total amount of measurer capacity used to
measure the entire network.

Measuring Measurers: To allocate measurer capacity, we
first need to estimate the network forwarding capacity of
the measurers. Measuring measurers is easier than measuring
relays because (i) we only need a lower bound on the measure-
ment capacity, as an underestimate will only affect the speed

of the measurement process and not its accuracy; and (ii) we
only need to measure the speed at which network traffic can
be simultaneously sent and received, as the measurer doesn’t
relay bytes through Tor. Therefore, to estimate the network
forwarding capacity of a measurer, the BWAuth instructs it
to use iPerf [2] to exchange bidirectional traffic with each
other measurer on the team concurrently. This measurement
uses UDP to eliminate the effects of TCP congestion control
that are unlikely to affect the measurement of all relays. This
measurement need only be performed when a new measurer
is added to the team or when the BWAuth expects the capacity
of a measurer to have changed. A 60-second measurement
is performed, and the capacity estimate is the median of the
per-second speeds reported by iPerf.

Measuring Old Relays: When measuring an old relay, that
is, one that has an existing capacity estimate zp, we simply
use 7o as a guess for its current capacity. The BWAuth needs
to allocate f - zp total capacity across the measurers, where
f is an excess allocation factor. Let ¢; denote the network
capacity of measurer M;. The BWAuth can allocate to this
measurement any amount a; of the capacity of M; subject to
0<a; <cjand Y ;a; = f-z0. We greedily allocate capacity
by repeatedly assigning the measurer with the most residual
capacity to use all its remaining capacity or as much as is
needed to reach f - zo.

The allocation factor f is defined so that the measurement
has a high probability of being accurate and conclusive. It
depends on a multiple m that is just large enough so that,
for error parameters €1,€; > 0, if a relay with true capacity
x is measured using at least mx measurer capacity, then the
capacity estimate z is almost certainly greater than (1 —g&)x
and less than (1 + €;)x. The value for m is determined exper-
imentally (see Appendix E.2). In addition to m, f includes
a factor (1+¢€,)/(1 —€) to ensure that z cannot result from
values x’ > x for which the measurement errors may be larger.
The excess allocation factor is thus f =m(1+¢€)/(1 —¢;).

Using the capacity allocations, the team performs a mea-
surement and obtains a capacity value z. This value is taken
as the new estimate if it is small enough relative to the to-
tal measuring capacity that it could only result from a true
relay capacity close to z. Specifically, z is the new capacity
estimate if z < Y;a;(1 —€;)/m. When this is true, the true
relay capacity x must be greater than z/(1+ €;) and less than
z/(1 —¢1), which implies that the estimate is accurate, i.e.,
that z € ((1 —€;1)x, (1 +¢€2)x). If the capacity estimate z is
not sufficiently small, then the relay must be measured again
using a higher total measurer capacity. In this case, we set
z0 = max (z,2zp), which ensures the allocated capacity will at
least double, and we repeat the measurement with the updated
capacity estimate zg.

Observe that if the original estimate zg is the true capacity,
then the measurement process will almost certainly conclude
after one measurement. This is true because the measuring
capacity was chosen to be large enough that z < (1 + &)z

with high probability, and when that is true the condition to
use the z as the new capacity estimate is satisfied:

z<z(l+8&) =z20f(1—&)/m=) ai(l—&1)/m.

1

Measuring New Relays: When measuring a new relay (i.e.,
one without a capacity estimate), we initially guess the capac-
ity based on the capacity distribution of existing relays. New
relays either have never been seen before or were last mea-
sured so long ago (e.g., a month) that their capacity measure-
ments are no longer considered reliable estimates. For such re-
lays, we use as a capacity estimate zo the 75th percentile mea-
sured capacity among Tor relays over the past month. When
this value is sufficiently smaller than the maximum capacity
measurable, this allows us to devote less measurer capacity
to the measurement. We then expect that one measurement
will be sufficient for 75% of new relays. Given this estimate,
the measurement proceeds the same as with old relays, where
again if the resulting measurement z is too high relative to the
allocated capacity, the relay is scheduled for another measure-
ment with an updated estimate zop = max (z,2zp).

4.3 Measuring the Network

To measure all relays in the network, the BWAuths peri-
odically determine the measurement schedule. The schedule
determines when and by whom a relay should be measured.
We assume that the BWAuths have sufficiently synchronized
clocks to facilitate coordinating their schedules. A measure-
ment schedule is created for each measurement period, the
length p of which determines how often a relay is measured.
We use a measurement period of p = 24 hours.

To help avoid active denial-of-service attacks on targeted
relays, the measurement schedule is randomized and known
only to the BWAuths. Before the next measurement period
starts, the BWAuths collectively generate a random seed (e.g.,
using Tor’s secure-randomness protocol [4]). Each BWAuth
can then locally determine the shared schedule using pseudo-
random bits extracted from that seed. The algorithm to create
the schedule considers each measurement period to be divided
into a sequence of #-second measurement slots. For each old
relay, slots for each BWAuth to measure it are selected uni-
formly at random without replacement from all slots in the
period that have sufficient unallocated measurement capacity
to accommodate the measurement. When a new relay appears,
it is measured separately by each BWAuth in the first slots
with sufficient unallocated capacity. Note that this design en-
sures that old relays will continue to be measured, with new
relays given secondary priority in the order they arrive.

5 Security Analysis

Properties: FlashFlow is designed to be secure against an
adversary that attempts to cause incorrect measurements. For

the specific application of load balancing, we are particularly
focused on preventing malicious relays from obtaining incor-
rectly large capacity estimates and honest relays from obtain-
ing incorrectly small estimates. The threat model includes an
adversary that runs malicious relays, malicious clients, some
malicious BWAuths, and some malicious DirAuths. Honest
BWAuths are assumed to use honest measurement teams. We
require that a majority of the DirAuths trusts honest BWAuths.

The FlashFlow design requires a target relay to demonstrate
its capacity in a way that cannot be falsified. Thus, rather than
depending on self-reports (as TorFlow does fundamentally),
FlashFlow has measurers actually send and receive the same
cells as normal Tor clients would. Moreover, the sent cell
contents are randomly generated and the received contents
checked at random to ensure that the target is properly receiv-
ing, decrypting, and returning the cells during the measure-
ment. A relay that forges responses (e.g., to skip decryption or
to send early before receiving) is detected with overwhelming
probability when a response cell is checked due to the ran-
dom contents, and a response cell is checked with probability
p. As aresult, a malicious relay that forges k responses has
approximately a (1 — p)~* chance of evading detection.

Relays are trusted to some extent to report the normal client
traffic that is forwarded during a measurement. However, that
client traffic is supposed to be limited to most a fraction » of
the total traffic, and during aggregation the BWAuth limits
the reported normal traffic to be at most r times the total. An
honest relay will enforce the ratio, and so the aggregated mea-
surement accurately takes into account both types of traffic.
A malicious relay could send no normal traffic but report the
full amount, and it could thereby inflate its capacity estimate
by a factor 1/(1 —r) above the truth.

Several features also prevent a relay from providing high
capacity only while it is being measured. Measurement by
any given BWAuth is performed at a randomly selected slot in
a measurement period, and the randomness is known only to
the BWAuths. Furthermore, the relay is measured by multiple
BWAuths at separate random times, and the median of the
estimates is used. For an adversary that does not control a
BWAuth, an attempt to provide high capacity only during a
fraction ¢ < 1/2 of measurement slots will fail with prob-
ability at least 0.5. More accurately, with n BWAuths the
probability is Y77, » Pr|B(n,1 — q) = k|, with B(n, p) bino-
mially distributed. Relays are notified of a measurement at
its beginning, but due to the shortness of the measurement
slot (e.g. t = 30 seconds), a malicious relay has little time to
adjust its capacity dynamically. The frequency with which
relays are measured also forces malicious relays to be able
to consistently support their measured capacities. A relay is
measured once every period, and so even after a relay has
been measured by a majority of BWAuths (which is expected
to take a majority of the period), it can only reduce its capac-
ity until the next period. The efficiency of FlashFlow allows
the measurement period to be relatively short (e.g. every 24

hours) and thus gives little time for a malicious relay to act at
a reduced capacity.

Another security benefit of a randomized measurement
schedule is that it limits the opportunity for malicious clients
to perform a targeted denial-of-service attack. An adversary
may try to do this in order to reduce the measured capacity of
certain honest relays, which would cause Tor’s load balanc-
ing to shift traffic away from them. However, assuming the
adversary controls no BWAuth, the adversary cannot predict
when an honest relay will be measured and must perform any
denial-of-service attack during most of the measurement slots
in order to expect to affect the median measurement.

Finally, we observe that it is difficult for an adversary to
prevent relays from being measured by flooding the network
with new relays (i.e., a Sybil attack). Old relays are guaranteed
to be measured during a measurement period because they
are scheduled first. New relays are given second priority, and
moreover they are served on a first-come, first-served basis,
and so benign new relays are eventually measured.
Limitations: In some cases malicious relays may be able
to cause FlashFlow to obtain larger capacity estimates than
the relays could sustain in Tor. We argue that these limita-
tions are shared by Tor’s existing system, TorFlow, and that
FlashFlow’s security and accuracy advantages make it a sig-
nificant improvement. Moreover, we suggest ways to improve
FlashFlow in the future to mitigate these issues.

One limitation is that an adversary that has access to mul-
tiple IP addresses on the same machine can surreptitiously
run multiple relays on the machine simultaneously. Tor only
accepts two relays at the same IP address (a restriction that
was instituted as a defense against falsely obtaining a large
total bandwidth weight [10]). FlashFlow is likely to measure
multiple relays on the same machine at separate times, and so
each relay would obtain a capacity estimate that is the capac-
ity of the shared machine. Tor considers this a Sybil attack,
and it currently requests that each relay operator identifies
all relays that they run with the MyFamily option [7]. More-
over, Tor has made use of systems designed to detect Sybils
on its network [38]. Pairs of MyFamily relays (or suspected
Sybils) can be measured simultaneously with FlashFlow to
determine if they share the same Tor capacity, and then the
measured capacity averaged over the members of a connected
set. The current TorFlow system shares this issue, as the speed
measurements are performed at different times, and an adver-
sary can detect when one of its relays is being measured and
reserve all capacity for the measurement circuit [25, 36].

Another limitation is that FlashFlow measurements are
so short that they might measure the burst speed of a host
rather than its sustainable Tor capacity. For some ISPs and
hosting providers, higher burst capacities are supported than
are consistently achievable. This can be true as a matter of
practice, as a network shared by many hosts may occasionally
be underutilized, or as a matter of policy, as providers may

Table 1: Summary of the hosts used in Internet experiments
‘ US-SW US-NW US-E IN NL

Virtual No Yes No Yes Yes

Network Type* D.C. D.C. Res. D.C. D.C.

BW (claimed) (Gbit/s) 1000 1000 1000 N/A N/A
BW (measured) (Gbit/s) 954 946 941 1076 1611

RTT to US-SW (ms) 0 40 62 210 137
CPU cores 8 8 12 2 2
RAM (GiB) 32 4 32 4 4

* Network type is datacenter (D.C.) or residential (Res.)

institute price-based limits on the speed of network traffic
from a host. In the former case, if the burst speed is due to
variable congestion of shared resources, then we expect the
median of the separate and randomly scheduled measurements
by different BWAuths to produce good estimates of average
performance. In the latter case, if such limits are applied faster
than half the length of our measurement slots (e.g., in less
than 15 seconds), then FlashFlow should obtain a sustainable
capacity estimate. Moreover, we again observe that this issue
currently affects TorFlow, which performs relatively short
downloads of files (none larger than 64 MiB).

We further note that FlashFlow is designed to measure Tor
capacity and not to detect if client traffic is actually relayed.
A malicious relay can send little to no real client traffic while
obtaining accurate capacity estimates from FlashFlow by only
sending traffic on measurement circuits. This is an additional
limitation shared with TorFlow, in which the measurement cir-
cuits are easily detected [36] and thus weights can be obtained
while denying all traffic except not used for measurement [25].
Such behavior seems highly observable, however, and so we
leave detecting such misbehavior as a future enhancement.

6 Network Experiments

We measure and evaluate FlashFlow’s performance and accu-
racy with a set of network experiments.

6.1 Preliminary Setup and Analysis

Internet Vantage Points: To perform realistic measurements
on the Internet, we obtain hosts from a set of geographically
diverse network locations. Table 1 summarizes the character-
istics of our hosts located in Fremont, CA (US-SW), Santa
Rosa, CA (US-NW), Washington, DC (US-E), Bangalore, In-
dia (IN), and Amsterdam, Netherlands (NL).

Because network bandwidth is an important factor that will
affect our experiments, and because the supported bandwidth
was not advertised for all hosts, we empirically estimate it
using iPerf [2] (a network performance measurement tool).
We perform a set of experiments where for each host we
instruct all other hosts to perform a UDP iPerf measurement
to it at the same time for 60 seconds. We sum together the
per-second results from each host and present the median of
the summed per-second results in the “BW (measured)” row

in Table 1. All three of the US hosts are clearly limited to
about 1 Gbit/s. IN and NL achieve higher throughput, despite
their hosting provider making no claims about their capacity.
We present additional pairwise TCP and UDP measurement
results in Appendix B.

Tor Processing Limits: We evaluate Tor’s processing limits
to estimate the throughput that a FlashFlow deployment must
support in order to measure the fastest Tor relays. We set up a
lab experiment that attempts to maximize throughput while
minimizing the effect of limiting factors including network
latency, congestion and flow control algorithms in TCP and in
Tor, the capacity of the underlying network, and the number
of Tor circuits and TCP sockets used during the measurement.
Over a 120-second measurement, we found that a Tor relay
was able to process traffic at a rate of 1.25 Gbit/s in the median
while using 20 TCP sockets. We confirmed that Tor reached
100% CPU utilization during this measurement, which is
expected because Tor runs all of its cell scheduling code in
a single thread. We conclude that the Tor software should
not prevent us from measuring even the fastest Tor relay, the
claimed capacity of which was 998 Mbit/s in July 2019 [8].

Because we will use our US-SW host to run target relays
in our Internet experiments, we also establish ground-truth
Tor capacity on it by running an experiment similar to the
one described above. We run a relay on US-SW, and use the
remaining machines to run Tor processes that support the
measurement of US-SW. The target relay on US-SW achieves
a maximum median throughput of 890 Mbit/s while consum-
ing 95-100% of a CPU core (again, due to Tor’s primarily
single-threaded nature). We conclude that this is the fastest
we can expect Tor to forward traffic on US-SW.

More details about the above experiments appear in Ap-

pendix C. We also provide results in Appendix D from addi-
tional experiments that further verify that we can fully mea-
sure Tor relay capacity.
FlashFlow Implementation and Setup: We implement
FlashFlow as a 1,200-line patch to Tor v(0.3.5.7 containing
measurer- and relay-side measurement support and a 1,300-
line C/Rust program that controls FlashFlow measurers. The
experimental setup for the remainder of this section is as
follows. US-SW runs a single target Tor relay. Some combi-
nation of the remaining hosts (US-NW, US-E, IN, and NL)
measure the target relay. We configure FlashFlow with the fol-
lowing settings, which were determined through a sequence
of experiments detailed in Appendix E: the number of mea-
surement sockets s = 160 (the s that maximizes throughput
on the slowest host); the multiplier m = 2.25 (the smallest
m that yields sufficient accuracy); the measurement duration
and strategy is to take the median throughput achieved in
t = 30 seconds (reasonable balance between time-to-result
and accuracy); and error bounds of €| = 0.20 and &, = 0.05.
We consider the effect of kernel tuning on s in Appendix D.

10

1.00

/xr V-—.— 10 Mbit/s
0.75 —A— 250 Mbit/s
W /‘ ‘ —r— 500 Mbit/s
8 0.50 750 Mbit/s
X f —s— unlimited
0.25 M &
0087 0.8 0.9 10 11

Tor throughput (fraction of capacity)
Figure 6: Evaluation of FlashFlow’s accuracy from 24 hours worth
of 30 second experiments with multiplier m = 2.25. CDFs are over
the median per-second throughput measured by each team.

6.2 Measurement Accuracy

We evaluate FlashFlow’s accuracy with and without client

background traffic.
Without Client Background Traffic: We conduct a set of In-
ternet experiments in which we configure a target relay on US-
SW and form measurement teams from all possible unique
subsets of the remaining machines from Table 1. We set
throughput limits of 10, 250, 500, 750, and unlimited Mbit/s
on the target; for each such limit we test how well all measure-
ment teams can measure it, where each measurer in each team
is limited to its share of the factor f of measurer capacity that
is necessary to measure the target using m = 2.25. Each such
measurement (a team measuring a throughput-limited relay)
runs for 30 seconds and is repeated 7 times over the course
of 24 hours. The result of each measurement is the median
per-second throughput over the 30 second period.

Figure 6 shows the accuracy of our measurements, catego-
rized by the Tor capacities at the target. Across all configured
capacities, all but one experiment (99.8%) produces results
within €; = 0.20 and €, = 0.05. FlashFlow measures within
11% error (0.89-1.11 times capacity) in 95% of experiments.
We provide additional results in Appendix F showing that
measurements remain accurate when multiple relays are mea-
sured concurrently, which would occur during a full-network
Tor measurement by FlashFlow.

With Client Background Traffic: To evaluate FlashFlow’s
ability to measure a relay with realistic client background
traffic, we run a Tor relay on US-SW and connect it to the real
Tor network.> We run the relay for 60 days before starting
any FlashFlow measurements so that it is measured by the
existing BWAuths, earns the Guard flag, and attracts a sig-
nificant amount of client traffic (50 Mbit/s on average). The
relay is configured to limit its Tor throughput to 250 Mbit/s,
and we measure it with one FlashFlow measurer running on
NL. Before, during, and after each experiment we record per-
second Tor throughput events from the relay that include the
total amount of traffic it is forwarding, while during the exper-
iment FlashFlow reports for each second both the amount of
measurement traffic that the relay is fowarding as well as the
amount of background traffic that it claims to have forwarded.

’In practice, we run the relay on a machine with hardware identical to
US-SW and in the same datacenter in order to parallelize our experiments.

2300 :
=

= 200F — an (Relay)

_é— B Background (FlashFlow) ‘

hgn 100+ Measur:ement (FlashFlow)

é \VL\,.NW\/..W_J\-«/‘
5 0 i H g

= —50 —25 0 25 50 75 700

Time since measurement start (s)

Figure 7: Tor throughput during measurements of a relay with client
background traffic as reported by the FlashFlow and by the relay.
The shaded regions are stacked, and FlashFlow reports their median
per-second sum as its result.

Recall from § 4.1 that a Tor relay enforces a maximum ratio
r between its regular background traffic and its measurement
traffic during a measurement: a higher r allows for more
regular traffic and minimizes the effect that the measurement
process has on the Tor clients, while a lower r minimizes
the advantage a malicious relay has when lying. We evaluate
FlashFlow’s accuracy under multiple r ratios; we present the
results from r = 0.1 while noting that the results from the
other tested values of r were similar.

Figure 7 confirms that the sum of the background and
measurement traffic reported by FlashFlow is equal to the
total traffic reported by the relay. Following the measurements,
the relay’s throughput immediately returns to the level it was
before, demonstrating that FlashFlow has no lingering effect
on background traffic levels. We also observe in Figure 7 that
background traffic is limited to 25 Mbit/s as is expected. Note
that the spike at the beginning of the measurement is due to
the Tor relay allowing a one second burst before limiting its
own throughput to 250 Mbit/s.

We observe that since our relay’s background traffic level
was 50 Mbit/s with a capacity limited to 250 Mbit/s, we
would need to configure r < 0.2 in order to cause the relay
to withhold background traffic during the FlashFlow mea-
surement. Because relatively high capacity relays with low
Tor throughput will not need to limit background traffic, we
believe that » = 0.25 provides a reasonable trade off for lim-
iting a malicious relay to only inflate their measurement by
1/(1—r)=1.33 (see § 5).

7 Simulation Experiments

Network Measurement Efficiency: We evaluate the effi-
ciency of FlashFlow in measuring the entire Tor network in
terms of its speed. To estimate these values, we simulate mea-
surement of the network by a single team. We use a greedy
scheduler to determine the fastest that we can measure the
entire network. Then we replay the appearance of new relays
in the consensus and determine how efficiently they can be
measured as well.

We determine the state of the Tor network over July 2019
using archived Tor consensuses and descriptors [8]. Similar

11

=== F|ashFlow
TorFlow

.I
0 25 50 75
Capacity Error (%) Per Relay

—2 -1 0
log10(Weight Error) Per Relay
(b) Relay Weight Error (Eq. 5)
Figure 8: Measurement error during concurrent relay measurement
in Shadow simulations. The corresponding network capacity er-
ror (Eq. 3) is 14% for FlashFlow, while the corresponding network
weight error (Eq. 6) is 4% for FlashFlow and 29% for TorFlow.

(a) Relay Capacity Error (Eq. 2)

to § 3, we estimate the capacity of relay r at time ¢ to be
the minimum of the rate limits set in the relay’s descriptor
at ¢t and the largest observed bandwidth for r in the period
June—August 2019. Among all relays, the largest capacity
thus determined for July 2019 is 998 Mbit/s.

We estimate how fast FlashFlow could measure the entire
network for each day in July 2019. For this estimate, we use
the first consensus in the day, and we assume that all of the
relays in the network have been measured before and thus
have capacity estimates. We greedily assign relays to each
slot in order, with each assignment choosing the largest relay
for which there is available capacity to measure. We use a
measurement team consisting of 3 measurers with 1 Gbit/s
capacity each. This team has capacity that is just larger than
the minimum required to accurately measure the largest relay
seen, which due to the excess factor f = 2.84 and maximum
capacity of 0.998 Gbps is 2.84 Gbit/s.

The result for the median day is that 5 hours (i.e. 599 30-
second slots) are needed to measure the entire network, with
a minimum of 4.9 and a maximum of 5.1. The schedule mea-
sures a median of 6,419 relays (min: 6,355, max: 6,528) with
a median total capacity of 608 Gbit/s (min: 592, max: 621).
This speed suggests that the entire network could be mea-
sured at least every 24 hours with significant spare capacity
to measure new relays as they join the network.

We next estimate how quickly new relays can be measured.
A relay is considered new if it has not been seen in the last
month. We consider each consensus in July 2019 and assume
relays in the first consensus are not new. During this time,
there is a median of 3 new relays in a consensus (min: 0, max:
98). We use as the new-relay capacity estimate the 75th per-
centile advertised bandwidth from descriptors in June 2019,
which is 51 Mbit/s. The simulation result is that the median
time to measure new relays in a consensus is 30 seconds (min:
0 minutes, max: 13 minutes). These results show that new
relays can be measured within minutes even while FlashFlow
re-measures the entire network every 24 hours.

Network Measurement Accuracy and Performance: We
evaluate FlashFlow in a full Tor network deployment using
Shadow [18], a discrete-event network simulator and a stan-
dard tool for conducting Tor performance experiments [33].
We configure a private Tor test network in Shadow that is 5%

Transfer Time (s)

P PO .
—~ o
X >
% [T BT
- =
i B 3 %
~ 3
Q154 FoR T N é
] [
i 3 %
5 107 o
% Pl T SO
c =
[. ~
A
= i) %
oL . 10 A e
T T 1 T T T T 1 T T T T T T

Sl §lo o sl sl o Sl §lo el o 15l o o slo aslo o o cslo
O Y SRR e e Y e e e e e Y
TTFB All TTLB 50KiB TTLB 1IMiB

(a) Benchmark Performance

slo lo Slo cSlo Slo lo
S0 a0 A o0 ad
3 N e e Ve Y

oo §lo ol ool Slo lo Slo o Sl Sl o gl
WO\ 0 70 0 1o OO0 0 0 70 0 T
TV Y Ve Ve Y T Ve Ve Ve Ve Y

o« Ve e
TTLB 5MiB All Benchmark Clients All Relays
(b) Benchmark Errors (¢) Tor Throughput

Figure 9: Performance results when using TorFlow (TF) and FlashFlow (FF) weights in Shadow simulations with normal (100%) and extra
(115%, 130%) traffic load. (a) Time to first and last byte of 50 KiB, 1 MiB, and 5 MiB transfers by performance benchmark clients. (b) Fraction
of benchmark client transfers that failed (timed out). (c) Tor network throughput (for every second, sum of relays’ Tor throughput). In the
boxplots, the horizontal line shows the median, the triangle shows the mean, the box shows the interquartile range, and the lower and upper

whiskers extend to the 5th and the 95th percentile, respectively.

of the size of the public network and contains: 3 DirAuths;
328 relays; 397 TGen clients that use Tor Markov models to
generate the traffic flows of 40k Tor users [23]; and 40 TGen
clients that mirror Tor’s performance benchmarking process
by repeatedly downloading 50 KiB, 1 MiB, and 5 MiB files
(timeouts are set to 15, 60, and 120 seconds, respectively).
The relays were sampled from Tor’s consensus files from
January 2019 [8] and placed in the closest city in Shadow’s
Internet map according to IP address and following best prac-
tices [20]. Each relay is configured with a capacity equal to
the maximum observed bandwidth of the corresponding relay
in the public Tor network during January 2019.

To measure accuracy, we first run a base FlashFlow simula-
tion (using our implementation and configuration from § 6) in
which FlashFlow uses 3 measurers with capacities of 1 Gbit/s
each to measure the Tor network and produce a bandwidth file
containing a capacity estimate and weight for each relay. We
repeat the simulation with TorFlow, which produces a band-
width file with weights only (see §2). We use the capacity
estimates, weights, and the ground truth throughput of each
relay to compute the relay and network measurement errors
as described in Equations 2, 3, 5, and 6.

Figure 8 shows the relay capacity and weight error as CDFs
over all relays. Although Figure 8a shows that both the me-
dian and inter-quartile range of capacity error across relays
is 16%, the corresponding network capacity error (weighted
by the magnitude of the absolute error) is only 14% in total.
Figure 8b compares the relay weight error for FlashFlow and
TorFlow, where x = 0 represents ideal relay weighting and
each unit on the x-axis represents a 10x increase in error. We
observe that more than 80% of relays are underweighted by
TorFlow compared to their ground truth capacity, following
our conclusions that were drawn from Figure 3 in §3. Flash-
Flow shows considerable improvement in relay weighting,
with a total of only 4% network weight error (Equation 6)
compared to 29% for TorFlow.

12

To measure performance, we use the bandwidth files pro-
duced by FlashFlow and TorFlow in the above simulations
to run 3 new simulations for each system; one simulation is
configured with normal (100%) traffic load, one with 15%
extra (115%) traffic load, and one with 30% extra (130%)
traffic load. In all simulations, Tor is configured to form a
consensus with the previously measured relay weights, and
therefore client load is balanced according to these weights.

Figure 9 shows considerable improvement in performance
when using the FlashFlow weights compared to TorFlow
across all metrics and benchmarks. Figure 9a shows that the
FlashFlow benchmark clients outperform the TorFlow bench-
mark clients across all transfer sizes: in the 100%-loaded
simulations, the median of 50 KiB, 1 MiB, and 5 MiB transfer
times decreases by 15%, 29%, and 37%, respectively. Flash-
Flow also yields more consistent client performance: in the
100%-loaded simulations, the standard deviation of 50 KiB,
1 MiB, and 5 MiB transfer times decreases by 55%, 61%, and
41%, respectively. We also observe that FlashFlow better sup-
ports network growth because the performance improvements
increase as the network becomes more loaded. For exam-
ple, relative to TorFlow, the median 1 MiB transfer time in
FlashFlow decreases by an additional 28% and 29% when the
network is 15% and 30% more loaded, respectively. Surpris-
ingly, performance in the 130%-loaded FlashFlow simulation
was still better than performance in the 100%-loaded TorFlow
simulation, across all transfer sizes. Figure 9b shows that the
median rate of transfer timeouts decreases by 100% in all
FlashFlow simulations, compared to median transfer failure
rates of 5%, 10%, and 23% for TorFlow in the 100%-, 115%-,
and 130%-loaded simulations, respectively. Finally, Figure 9¢
shows that the FlashFlow weights result in a more balanced
network that is more capable of handling additional traffic
load. Increasing client-traffic load by 15% and 30% resulted
in a 15% and 29% increase in the median Tor throughput
(summed over all relays) in FlashFlow as expected, but only a

12% and 18% increase in TorFlow, respectively. Overall, our
simulations demonstrate that FlashFlow is significantly more
capable of balancing load in Tor than is TorFlow.

8 Related Work

Load Balancing in Tor: Several systems for load balancing
in Tor have been proposed. Load-balancing systems produce
the relay weights that clients use to select paths, and in some
cases the relay capacities can also be determined. A compari-
son of these systems appears in Table 2. It shows the added
server bandwidth required, the demonstrated success factor
of a weight-inflation attack, if the system provides capacity
values in addition to weights for load-balancing, and how
long it takes to produce weights for the entire network. We
observe that for some increase in required server bandwidth,
FlashFlow provides increased security and speed, and it can
be used for capacity estimates as well as load balancing.

The Tor network currently uses TorFlow [30] to estimate
relays’ capacities and assign weights accordingly. We discuss
TorFlow in § 2 and its limited accuracy in § 3. TorFlow is
vulnerable to attacks [11, 25, 36], the most straightforward
of which is that a malicious relay can falsely report very
high bandwidth information in its descriptor [11], increasing
its final weight regardless of its performance measurements.
Such attacks have been demonstrated to increase the weight
of a Tor relay by 89 x [36] to 177 x [25]. Data from TorFlow’s
BWAuths [1, 32] indicate that a single 1 Gbps scanner takes
at least 2 days to measure the entire network.

SmarTor [9] decentralizes the operation of the BWAuths
using a blockchain and trusted execution environments. Sim-
ilar to TorFlow, it measures a relay’s capacity by download-
ing a file through the relay in a measurement circuit. It thus
remains vulnerable to bandwidth-inflation attacks demon-
strated against TorFlow. We do not include SmarTor in Ta-
ble 2 because its contributions over TorFlow are not to the
measurement technique itself. Consequently, its measurement
attributes can be assumed to be similar to that of TorFlow.

EigenSpeed [34] uses a peer-measurement approach in
which every relay records the average per-stream through-
put with every other relay and reports this vector to the Tor
DirAuths. The DirAuths combine the vectors into a matrix
and iteratively compute the eigenvector of that matrix as the
relay weights. For security, this computation must be initial-
ized with the weights from a certain number of trusted relays.
During and after the eigenvector computation, relays can be
marked as malicious due to atypical changes in or unusual
final values of their weights, and these marked relays are effec-
tively removed from the network. EigenSpeed observations
are per-flow throughputs rather than total relay capacity.

EigenSpeed is vulnerable to several attacks [25]. First, un-
evaluated relays receive weights of 1/n, given n total relays,
enabling a Sybil attack to yield disproportionate weights for

13

Table 2: Comparison of Tor load-balancing systems

Server Attack Capacity Speed

BW Advantage Values* pee
TorFlow’ 1 Gbit/s 177x © 2 days
EigenSpeed 0% 21.5%° @) 1 day
PeerFlow 0¥ 10x° © 14 days™
FlashFlow 3 Gbit/s 1.33x (] 5 hours

* Values provided (@), can be inferred (©), or unavailable (O).
T SmarTor can be assumed to have attributes similar to TorFlow.
¥ Relays measure each other using existing client traffic.

¢ With 20% trusted relays (by number or weight).

* Time to measure largest 96.8% of relays.

the malicious relays. Second, an increase framing attack al-
lows an adversary controlling just 2% of the network to frame
up to 20% of the honest relays as malicious and have them
removed from the network. Finally, an targeted liar attack
allows a set of malicious relays to inflate their total weight
to 7.4-28.1 times the weight they deserve, depending on the
number of trusted relays.

In PeerFlow [25], relays periodically report to the DirAuths
the total number of bytes they exchange with each other. The
DirAuths then securely aggregate the traffic data to produce
relay weights. In the process of determining weights, Peer-
Flow produces lower bounds on relay capacities that can be
used as capacity estimates. PeerFlow requires a fraction T
of relay weight that is trusted, and the adversary can obtain
weights for his relays inflated by a factor of 2/t. If 1 =0,
then a sufficiently large adversary (i.e. relative weight above
4%) can eventually get an arbitrarily large relative weight.
PeerFlow also limits how quickly a malicious relay’s weight
can increase from one measurement period to the next. Based
on the suggested parameters, a malicious relay can inflate its
claimed capacity by a factor of 4.5 (see Theorem 1 of [25]).

In comparison to these systems, FlashFlow has much better
protection against weight inflation both in the short term and
long term, as it has an inflation factor of 1.33 at all times. It
also allows the entire network to be measured in hours rather
than days. FlashFlow does require higher measurement-server
bandwidth than previous systems, but the requirement is still
not high (3 Gbit/s), especially compared to the capacity of the
Tor network itself (> 400 Gbit/s).

We note some additional systems superseded by later work
or that do not directly produce load-balancing weights. Snader
and Borisov [35] propose a simple form of EigenSpeed’s peer
measurement that takes the median of pairwise speed observa-
tions. It uses an unweighted median and is thus vulnerable to
a Sybil attack. TightRope [13], assumes that capacity weights
already exist for the relays and then considers how to choose
paths to optimally balance load. Using differential privacy, the
current load on all relays is shared with a server that computes
a distribution for clients to use when building new circuits.
Wang et al. [37] propose Tor clients use lightweight active
measurements that use latency as an indicator for congestion,
detect congested relays, and automatically avoid using them.

Other Related Work: Speed tests such as Ookla [5] are
primarily intended for home users to test the throughput
of their devices, wireless router, or their ISP’s connection.
iPerf [2] can achieve high throughput at the transport layer
over both UDP and TCP. Prasad et al. [31] describe bandwidth-
estimation techniques, focusing on efficient techniques such
as packet pairs and trains. Feamster and Livingood discuss the
challenges of Internet throughput measurement even when
allowing the measurement to fully utilize bandwidth [16].

9 Conclusion

Tor’s load-balancing system utilizes self-reported capacity
estimates from Tor relays, a process that is vulnerable to ma-
licious reporting. We furthermore show through an analysis
of Tor metrics data that these estimates are significantly in-
accurate and result in suboptimal load balancing. We then
present FlashFlow, a system to actively measure Tor relays
with limited effect on normal client traffic. We implement
FlashFlow, conduct extensive experiments, and show it accu-
rately, securely, and quickly measures the capacities of Tor
network relays. Moreover, we show through simulation that
these capacities improve the load-balancing of Tor.

Our results show that FlashFlow could be used today to im-
prove Tor’s performance and resource estimates. Furthermore,
FlashFlow could be used as a secure basis for incorporating
additional dynamic performance measurements. Such mea-
surements, such as per-relay network and CPU utilization,
could provide information about available (rather than total)
capacity that may further improve Tor’s load balancing. The
FlashFlow measurements would be used as a starting weight,
and then the weights would only be reduced, depending on
the dynamic measurements. FlashFlow would thus securely
limit the weight of any relay while allowing for improved
performance via adjustments based on insecure dynamic mea-
surements, such as self-measurements.

Acknowledgments

This work was supported by the Office of Naval Research.

References

[1] Consensus Health: Bandwidth Scanner Status. https:
//consensus-health.torproject.org/#bwauthstatus, November
2018.

[2] iPerf - The ultimate speed test tool for TCP, UDP, and SCTP.
https://iperf.fr/, December 2018.

[3] netem. https://wiki.linuxfoundation.org/networking/netem,
September 2018.

[4] Tor Shared Random Subsystem Specification. https://github.
com/torproject/torspec/blob/master/srv-spec.txt, July 2018.

14

[5] Speedtest by Ookla - The Global Broadband Speed Test. https:
/Iwww.speedtest.net/, September 2019.

(6]

Tor directory protocol, version 3. https://gitweb.torproject.org/
torspec.git/tree/dir-spec.txt, September 2019.

[7] Tor Project: manual. https://2019.www.torproject.org/docs/tor-

manual.html.en, August 2019.
[8]
[91

Tor Metrics Portal. https://metrics.torproject.org, August 2019.

G. Andre, D. Alexandra, and K. Samuel. Smartor: Smarter tor
with smart contracts: Improving resilience of topology distri-
bution in the tor network. In Proceedings of the 34th Annual
Computer Security Applications Conference, 2018.

[10] K. Bauer and D. McCoy. No more than one server per IP

address. Tor Proposal 109, 2007.

[11] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker.
Low-resource Routing Attacks Against Tor. In Workshop on

Privacy in the Electronic Society (WPES), 2007.

[12] A. Biryukov, I. Pustogarov, and R.-P. Weinmann. Trawling for
tor hidden services: Detection, measurement, deanonymization.
In Proceedings of the 2013 IEEE Symposium on Security and

Privacy, May 2013.

[13] H. Darir, H. Sibai, N. Borisov, G. Dullerud, and S. Mitra.
TightRope: Towards Optimal Load-balancing of Paths in
Anonymous Networks. In Workshop on Privacy in the Elec-

tronic Society (WPES), 2018.

[14] R. Dingledine and N. Mathewson. Tor Protocol Specifica-
tion. https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt,

November 2018.

[15] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
Second-Generation Onion Router. In USENIX Security Sym-

posium, 2004.

[16] N. Feamster and J. Livingood. Internet Speed Measurement:
Current Challenges and Future Recommendations. https://

arxiv.org/abs/1905.02334, September 2019.

[17] D. Goulet. kist: Poor performance with a small amount of
sockets. Tor Trac Ticket 29427, 2018. https://trac.torproject.

org/projects/tor/ticket/29427.

[18] R. Jansen and N. Hopper. Shadow: Running Tor in a Box
for Accurate and Efficient Experimentation. In Network and

Distributed System Security Symposium (NDSS), 2012.

[19] R. Jansen, N. Hopper, and Y. Kim. Recruiting new Tor re-
lays with BRAIDS. In ACM Conference on Computer and

Communications Security (CCS), 2010.

[20] R. Jansen, K. S. Bauer, N. Hopper, and R. Dingledine. Me-
thodically Modeling the Tor Network. In Workshop on Cyber

Security Experimentation and Test (CSET), 2012.

[21] R.Jansen, A. Johnson, and P. Syverson. LIRA: Lightweight
incentivized routing for anonymity. In Network and Distributed

System Security Symposium (NDSS), 2013.

https://consensus-health.torproject.org/#bwauthstatus
https://consensus-health.torproject.org/#bwauthstatus
https://iperf.fr/
https://wiki.linuxfoundation.org/networking/netem
https://github.com/torproject/torspec/blob/master/srv-spec.txt
https://github.com/torproject/torspec/blob/master/srv-spec.txt
https://www.speedtest.net/
https://www.speedtest.net/
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://2019.www.torproject.org/docs/tor-manual.html.en
https://2019.www.torproject.org/docs/tor-manual.html.en
https://metrics.torproject.org
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://arxiv.org/abs/1905.02334
https://arxiv.org/abs/1905.02334
https://trac.torproject.org/projects/tor/ticket/29427
https://trac.torproject.org/projects/tor/ticket/29427

[22] R. Jansen, M. Traudt, J. Geddes, C. Wacek, M. Sherr, and
P. Syverson. KIST: Kernel-Informed Socket Transport for Tor.
ACM Transactions on Privacy and Security (TOPS), 22(1):
3:1-3:37, December 2018.

[23] R. Jansen, M. Traudt, and N. Hopper. Privacy-Preserving
Dynamic Learning of Tor Network Traffic. In Conference on
Computer and Communications Security (CCS), 2018. See

also https://tmodel-ccs2018.github.io.

[24] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson.
Users get routed: Traffic correlation on tor by realistic adver-
saries. In Proceedings of the 20th ACM conference on Com-
puter and Communications Security (CCS 2013), November

2013.

[25] A. Johnson, R. Jansen, N. Hopper, A. Segal, and P. Syverson.
PeerFlow: Secure Load Balancing in Tor. Proceedings on Pri-

vacy Enhancing Technologies (PoPETs), 2017(2), April 2017.

[26] A. Mani, T. W. Brown, R. Jansen, A. Johnson, and M. Sherr.
Understanding Tor Usage with Privacy-Preserving Measure-

ment. In Internet Measurement Conference (IMC), 2018.

[27] W. B. Moore, C. Wacek, and M. Sherr. Exploring the potential
benefits of expanded rate limiting in Tor: Slow and steady
wins the race with tortoise. In Annual Computer Security

Applications Conference (ACSAC), ACSAC 11, 2011.

[28] M. Nasr, A. Bahramali, and A. Houmansadr. DeepCorr: Strong
Flow Correlation Attacks on Tor Using Deep Learning. In
Conference on Computer and Communications Security (CCS),

2018.

[29] T.-W.J. Ngan, R. Dingledine, and D. S. Wallach. Building
incentives into Tor. In Financial Cryptography and Data

Security (FC), 2010.

[30] M. Perry. TorFlow: Tor Network Analysis. In Workshop on Hot

Topics in Privacy Enhancing Technologies (HotPETs), 2009.

[31] R. Prasad, C. Dovrolis, M. Murray, and K. Claffy. Bandwidth
estimation: metrics, measurement techniques, and tools. IEEE

network, 17(6), 2003.

[32] T. Ritter. The longer a bwauth runs, the slower it goes . Tor
Trac Ticket 17482, 2015. https://trac.torproject.org/projects/

tor/ticket/17482.

[33] F. Shirazi, M. Goehring, and C. Diaz. Tor Experimentation
Tools. In International Workshop on Privacy Engineering

(IWPE), 2015.

[34] R. Snader and N. Borisov. EigenSpeed: Secure Peer-to-Peer
Bandwidth Evaluation. In International Workshop on Peer-to-

Peer Systems (IPTPS), 2009.

[35] R. Snader and N. Borisov. Improving security and perfor-
mance in the tor network through tunable path selection. /EEE

Transactions on Dependable and Secure Computing, 7 2011.

[36] F. Thill. Hidden Service Tracking Detection and Bandwidth
Cheating in Tor Anonymity Network. Master’s thesis, Univ.

Luxembourg, 2014.

15

[37] T. Wang, K. Bauer, C. Forero, and I. Goldberg. Congestion-
Aware Path Selection for Tor. In A. D. Keromytis, editor,
Financial Cryptography and Data Security, 2012.

[38] P. Winter, R. Ensafi, K. Loesing, and N. Feamster. Identifying
and characterizing sybils in the tor network. In 25th USENIX
Security Symposium (USENIX Security 16), 2016.

A Relay Capacity and Weight Variation

We extend the TorFlow analysis from § 3 to better understand
how relay capacity estimates and relay weights vary across
relays and over time.

Relay Capacity Variation: A relay with a perfect capacity
estimation algorithm would consistently report the same ad-
vertised bandwidth. Variation in advertised bandwidths thus
indicates inaccurate capacity estimation, which further leads
to poor load balancing. Moreover, the resulting variable load
leads to unpredictable and frustrating client performance. We
use the relative standard deviation (RSD) as a measure of
the variability in relays’ advertised bandwidths over time. We
compute the RSD over a sequence of values V as

RSD(V) = stdev(V)/mean(V), (7)

where stdev() and mean() compute the standard deviation and
mean, respectively.

Recall from § 3 that A(r,7) is the advertised bandwidth of
relay r at time ¢, and that A(r, ¢, p) is the multiset of advertised
bandwidths published during the period of length p preceding
time 7. Varying the length of time p allows us to examine
variability over different timescales. We summarize this vari-
ability for relay r by computing the mean of RSD(A(r,7, p))
over the times ¢ that are on the hours between 2009-08-01 and
2019-07-31 (we start on 2009-08-01 to provide up to a year of
data for periods ending then). The distribution of these means
over all relays r appears in Figure 10a for periods p of 1 day,
1 week, 1 month, and 1 year.

Figure 10a shows that the advertised bandwidths reported
by relays exhibit significant variation. For the median relay r,
RSD(r, p) is 32% when computed for a period length p of a
day, and it is 55%, 62%, and 65% when computed for a period
length p of a week, month, and year, respectively. Within
a given day, there will only be 2-3 descriptors published
because they are published every 18 hours. There is thus a
surprising amount of variation over a day, which is almost
certainly in error due to the very short time interval. For a
week, where we also would not expect much change in true
capacity, the RSD is 27% or greater for 75% of the relays, and
82% or greater for 25% of relays. The maximum RSD over a
year is 7,937%. Advertised bandwidth thus frequently varies
a non-trivial amount, and most of this variation is unlikely to
be from genuine changes in relay capacity.

Relay Weight Variation: Recall that the probability that a re-
lay is selected in a circuit is roughly its normalized consensus

https://tmodel-ccs2018.github.io
https://trac.torproject.org/projects/tor/ticket/17482
https://trac.torproject.org/projects/tor/ticket/17482

S —
I Max==7937
i
g —Day
=i Week
o
S ===+ Month -
g == Year
| :

0 50 100 150 200

Mean Relative Standard Deviation Per Relay (%)
(a) Relay Capacity Varation CDF

5 1.00 /k l‘_",_._.._g;-—r —
s} .".‘)‘ =
. e g Max==1207
- e

o =D
2 0.50 Fed
ﬁ 7 Week
_E‘ 0.25 4 «+=+ Month -
= j.jo === Year
O 0.00 ;

0 50 100 150 200

Mean Relative Standard Deviation Per Relay (%)
(b) Relay Weight Varation CDF

Figure 10: Variation relay capacities and weights over time, computed using 11 years of archived Tor metrics data [8].

weight, that is, its fraction of the total weight assigned to all
relays. Recall also that W (r,¢) represents this value for relay
r at time 7, and that W (r,¢, p) is the multiset of these values
over the consensuses during the period of length p preceding
time ¢. To measure the variability of normalized consensus
weights, we again use the RSD. We compute RSD(W (1,2, p)),
following Equation 7, and summarize the results over time
by computing its mean over all times ¢ on the hours starting
from ¢ = 2009-08-01.

Figure 10b shows the mean RSD per relay for various
periods p. We observe similar trends as we observed for ad-
vertised bandwidths: variation increases as we include more
consensus weights in the RSD computation. The RSD for the
median relay is 14%, 31%, 43%, and 50% when computed
using weights from the preceding day, week, month, and year,
respectively. We also find that the RSD for 25% of relays is
greater than 23% when using weights from the preceding day,
and greater than 73% when using weights from the preced-
ing year. These results indicate that there is also significant
variation in normalized consensus weights. Note that while
changes in relays’ advertised bandwidths will affect their nor-
malized consensus weights, relays joining and leaving the net-
work (i.e., churn) may also affect the weights to some extent.

B Capacity of Internet Hosts

We measure the network performance of our Internet hosts
(first described in § 6) with particular focus on the links be-
tween them and US-SW. Over the course of a day we run 24
bidirectional iPerf [2] TCP and UDP measurements for 60
seconds between each host and US-SW and record iPerf’s
per-second send and receive throughput statistics. To summa-
rize the results, at each second we take the minimum of the
amount of sent and received data, take the median of these 60
per-second data points, and list the range of each host’s 24
medians in the first two columns of Table 3.

In all cases the maximum UDP iPerf throughput is higher
than the TCP iPerf throughput, which is expected because
UDP doesn’t hold itself back during perceived packetloss and
it has fewer headers (thus less overhead). The range of TCP
iPerf throughput for all hosts except US-NW includes 800

16

Table 3: Throughput estimation of Internet hosts using iPerf

\ TCP (Mbit/s)* UDP (Mbit/s)* UDP (many)’
US-SW - - 954
US-NW 176-787 740-945 946
US-E 874-919 943-944 941
IN 677-819 925-955 1076
NL 827-880 952-956 1611

* Range of 60-second median iPerf throughput measured by US-SW.
 60-second median iPerf throughput when saturated by all other hosts.

Mbit/s. US-NW’s TCP iPerf throughput is highly varied, and
upon inspection of the results, we determine the variability is
only in its receive direction; when only considering the send
direction, these results show US-NW is capable of sending
TCP iPerf traffic at 926-934 Mbit/s.

As these are measurements between a pair of hosts, ei-
ther host could be a bottleneck. Thus we perform a set of
experiments where for each host we instruct all other hosts to
perform a UDP iPerf measurement to it at the same time for
60 seconds. We sum together the per-second results from each
host and present the median of the summed per-second results
in the last column of Table 3. All three of the US hosts are
clearly limited to about 1 Gbit/s. IN and NL achieve higher
throughputs, and while their hosting provider makes no claim
about their capacity, they must have faster than 1 Gbit/s NICs.

C Tor Processing Limits

In this section, we provide additional details on the experi-
ments we ran in § 6.1 to determine Tor’s processing limitation
and its effect on the throughout a relay can achieve.

C.1 Setup

To test Tor, we set up a small test Tor network in a lab
environment. On the target machine we run the core Tor
network, which including one relay that we choose to be the
target of our tests. On the client machine we run 100 Tor
clients, 100 Tor exit relays, a varied number of curl clients,
and an nginx webserver. Both machines have 2 Xeon E5-
2697V3 CPUs with a maximum frequency of 3.60 GHz, a
total of 56 threads, and 256 GiB of RAM. A 10 Gbit/s fiber
cable connects them directly. The RTT between the machines

= :

,? —&— Sockets
\%1000 B TV St AP —A— Circuits
El

=

2 500

o

<

5 i i i i

=0 20 10 60 80 100

Number of sockets or circuits

Figure 11: Tor throughput at the target relay, varying the number
of sockets or circuits. The solid lines are the median per-second
throughputs from each 120-second experiment, and the small shaded
regions surrounding the lines are the interquartile ranges.

s 0.13 ms.

Because Tor’s KIST scheduler is incapable of fully utilizing
a high capacity link when it has a a small number of active
sockets [17], we investigate the relationship between a relay’s
number of active sockets and its observed throughput. For 100
socket experiments, we instruct n € [1, 100] Tor clients to each
build a two hop circuit beginning at the target relay and with
the ith client’s circuit ending at the ith Tor exit. We proxy curl
processes that download a large file from the webserver over
these Tor clients’ circuits, and use three curls per circuit (Tor’s
circuit level flow control prevents too much in flight traffic
on a circuit at once, but by running at least two application
streams, one will max out the circuit’s flow control limit).
Note each client opens its own socket to the target relay, thus
the target has n busy open sockets to clients.

Regardless of the number of sockets, more circuits should
prevent Tor’s flow control from inducing a limit, so we also
investigate increasing the number of active circuits on a single
socket. For 100 circuit experiments we instruct a single Tor
client to build n € [1,100] circuits beginning at the target relay
and with the ith circuit ending at the ith Tor exit for i € [1,n].
We again proxy three curls over each circuit to fully utilize
each circuit’s flow control. Note there is one client, thus the
target always has a single busy open socket to a client.

C.2 Results

Figure 11 shows our results from these two sets of tests.
For each number of sockets or circuits, we collect per-second
Tor throughput at the target using Tor’s BW events for 120
seconds. The median per-second throughputs are plotted to-
gether as a solid line. The interquartile ranges nearly im-
perceptible and plotted as shaded regions above and below
each experiment’s solid line. While we expected increasing
the number of circuits in the circuits experiments would in-
crease the throughput at the target, we suspect KIST’s single
socket throughput limitation prevents additional circuits from
increasing throughput.

With 20 sockets in the sockets experiments we see the max-
imum median per-second throughput of 1,248 Mbit/s at the
target relay. Tor first consumes 100% usage of a CPU core

17

with 13 sockets, and continues to do so at all higher numbers
of sockets. Due to Tor’s primarily single-threaded nature, we
take this as the ground truth of a relay on this hardware. In the
real Tor network, the relay with the highest observed through-
put in July 2019 claimed to have forwarded 998 Mbit/s [8].
This may not be a good estimate of the relay’s actual capacity
(e.g. because it never receives enough client load to reach its
capacity), but it establishes a lower bound. With the likely
differences in hardware and the limitations of relying on real
Tor client throughput demands in mind, 1,248 Mbit/s is a
likely approximation of the maximum Tor capacity today.
CPUs with faster clock speeds allow for higher Tor capacities,
and Tor adding support for multithreaded scheduling would
drastically change relays’ capacities.

D TCP Socket Tuning

We investigate tuning the Linux kernel’s TCP socket parame-
ters to better support high capacity and high RTT links. With a
tuned kernel, theoretically FlashFlow can use fewer measure-
ment sockets across its measurers (its s parameter from Ap-
pendix E.1), and fewer sockets would result in less bookkeep-
ing overhead. We first determine the single-socket throughput
improvements of a tuned kernel in the lab. Then on the Inter-
net we investigate the effect a tuned kernel has as compared
to a default kernel as the number of sockets increases.

D.1 Single-socket throughput

Notice Figure 11 shows in the sockets experiments that
opening additional sockets after the maximum Tor through-
put is reached lowers the achievable throughput. Figure 14
confirms the same behavior in a different experiment on the
Internet. We expect a similar trend affects software in gen-
eral as the cost of managing many sockets decreases the time
available to forward traffic over them and as an increasing
number of TCP sockets increasingly interfere with each other
for a share of the available link capacity. Regardless, Flash-
Flow is partially implemented in Tor and is subject to this
observed behavior. We are thus motivated to maximize the
throughput of a single FlashFlow measurement socket to keep
the necessary number of measurement sockets low.

A major limiting factor on a single socket’s throughput is
the amount of kernel socket buffer memory it is allowed to
consume and whether that adequately supports the Bandwidth
Delay Product (BDP) of the link. A link’s BDP is its network
capacity multiplied by its RTT. Despite the high 10 Gbit/s
capacity of the link in our lab, its very short 0.13 ms RTT
keeps its BDP small at 0.155 MiB. 1 Gbit/s links are increas-
ingly common on the Internet, and a 5th percentile RTT of
27.4 ms [23, §6.1.1] on such a link has a BDP of 3.26 MiB,
and a median RTT of 118 ms on a 1 Gibt/s link has a BDP
of 14.1 MiB. Higher BDP values for a link mean the hosts
on either end must be willing to buffer more “in flight” data

28ms default |
+28ms tuned
120ms default
120ms tuned .|
340ms default

- 340ms tuned |

80 1000 1200

600
Tor throughput (Mbit/s)

1400

Figure 12: Tor throughput at target relay, presented as CDFs of each
measurement’s 240 per-second throughput data points as measured
by FlashFlow with a single measurer socket, with either the default or
tuned kernel, and with varied RTT between the target and measurer.

to keep the link throughput near capacity and to wait for ac-
knowledgments. Linux picks default socket buffer parameters
on boot based on the host’s available system memory; on all
our hosts in the lab and on the Internet Linux chooses 4 MiB
and 6 MiB for the read and write buffers’ maximum sizes
respectively. For the experiments in this section, we consider
this the default kernel parameters, and we consider a second
set of tuned kernel parameters with a 64 MiB maximum size
for both reading and writing.

We run tests with these two configurations on the same
pair of lab hosts as described in Appendix C, but add latency
between them using netem [3] and vary the amount added
to cover the 5th through 95th percentile in the Internet RTT
dataset [23, §6.1.1]. On the target host we run a Tor relay,
and on the client host we run FlashFlow with a single mea-
surement socket and configured to measure the target for 240
seconds. Figure 12 presents the results as CDFs over each
measurement’s 240 per-second data points.

As expected, at all RTTs the tuned kernel measurements
achieve higher throughput than their corresponding de-
fault kernel measurements. Also notice how—for both ker-
nel configurations—as RTT (and thus BDP) increases, the
throughput for that kernel decreases as expected. FlashFlow
impressively achieves a maximum median throughput of
1,269 Mbit/s, which is consistent with what we find as Tor’s
capacity in Appendix C.

This shows FlashFlow can achieve extremely high 1 Gbit/s
throughput with a single socket and a tuned kernel on Internet
links with the Internet dataset’s median of 118 ms RTT or less;
however, both machines in this setup need to tune their kernels,
and we cannot expect Tor relay operators to do this. One can
indirectly increase the amount of buffer space available in the
kernel by using multiple sockets instead of just one, which
we now explore.

D.2 Multi-socket throughput

Having established a tuned kernel improves single-socket
throughput in the lab, we now move to the Internet to inves-
tigate how much tuning the kernel helps as the number of

18

=
o

.. —e— US-NW
—h— USE
—— IN

NL

10 100
Number of sockets

<
3

Ratio of default/tuned
median Tor throughputs

=3
(=}
—

Figure 13: Comparison of default kernel and tuned kernel results,
presented as ratios. A ratio less than 1 means the tuned kernel helped
relative to the same experiment with the default kernel. Tuning
the kernel has less of an effect as sockets are added, thus the ratio
approaches 1. The x-axis is log scale.

measurement sockets increases. At each measurement host
individually we use FlashFlow to measure US-SW for 60
seconds, and we consider the case where each uses its default
kernel and when each uses its tuned kernel. For presentation
we divide each default measurement’s result by the corre-
sponding tuned result and plot these ratios in Figure 13.

In all cases, for a small number of sockets a tuned kernel
results in a higher median throughput than the default kernel,
as indicated by ratios less than 1. As the number of sockets
used increases, however, tuning the kernel has less of an ben-
efit, and the plots trend towards 1. This is because the amount
of memory the kernel allocates to buffer traffic for the in-
creased number of sockets is—in aggregate—able to support
the full BDP of the link, nullifying the benefit of allowing
larger buffers per socket in the tuned measurements.

E Deriving Values for FlashFlow Parameters

Before beginning to measure with FlashFlow we run a se-
quence of experiments to determine appropriate values for its
various parameters. First we determine the number of sockets
s the measurement hosts should open to measure the target
relay, then we explore which multiplier m FlashFlow should
use when reserving measurer capacity, we evaluate various
measurement durations ¢ and their accuracies, and finally we
choose error bounds € and €,.

E.1 Number of measurement sockets

We now determine a number of sockets s that, in aggre-
gate, FlashFlow measurers should open to the target. We use
FlashFlow to measure US-SW for 60 seconds with each mea-
surement host pair wise, varying the number of sockets. We
do this until the slowest measurement host stops increasing
its throughput.

Figure 14 shows our results. While each host peaks at a
different number of sockets, IN is the slowest one to peak,

__ 1000

=

5 800

=3

£ 6007,

Q.

=

% 400

e —&— US-E

k= —r— IN

? o
50 100 150 200 250 300

Number of sockets

Figure 14: Tor throughput at target relay on US-SW as measured
by the other machines, varying the number of sockets. Solid lines
are median per-second throughput, and the shaded regions are the
interquartile range. Default kernel parameters are used.

ik
82 llaage [HTYY 36853

1.0

0.8

Tor throughput (fraction of capacity

S S S O AN
NSO

500 Mbit/s 750 Mbit/s

© R 0,0
NI

10 Mbit/s

© R 9,0
NI

250 Mbit/s

© 0 9,0
NI

unlimited

Figure 15: Relative Tor throughput as measured by FlashFlow at
varied configured limits and with a varied multiplier, presented as
a fraction of ground-truth Tor capacity. Boxplots contain all 60
second medians from all subsets with the given multiplier and target
capacity.

and does so at 160 sockets. Thus for all future FlashFlow
measurements we set the number of sockets s to use across
all measurers to 160.

We also observe the relative performance of our hosts in
Table 1. We suspect IN produces the slowest measurements
because of its high RTT to US-SW, which generally correlates
with packet loss and therefore lower throughput, as well
as its shared virtual hosting environment in which we do
not know and cannot control how many other virtual hosts
share its physical host and compete for its CPU and network
resources. We suspect the drop in measured throughput
after a host’s peak is additional CPU overhead of managing
multiple sockets. US-E is the only non-virtual host, and it
performed better than the others.

E.2 Multiplier

As FlashFlow runs measurements in parallel, it needs to al-
locate some amount of Tor capacity at its measurers for each
measurement. Recall from § 4.2 that FlashFlow allocates
some factor of measurer capacity greater than the relay’s ex-
isting capacity estimate. This factor depends on a multiplier
m for which we now experimentally determine the smallest
value that provides sufficient accuracy.

19

1.00

—e— 10s med}an
0.75F —A— 20s median
—r— 30s median
é 0.50F 60s median F
o
a
0.25 o
1 oy et
’ %.7 0.8 0.9 1.0 1.1

Tor throughput (fraction of capacity)

Figure 16: Comparison of accuracy of different measurement
lengths.

In these experiments we approximate relays of varied ca-
pacities by setting Tor’s RelayBandwidthRate and RelayBand-
widthBurst options to 10, 250, 500, and 750 Mbit/s. Many
relay operators use these options limit throughput, and this
also simulates relays with such limits at the network layer.

To establish the ground-truth Tor capacity of these
throughput-limited relay configurations on US-SW, we re-
run the two-hop Tor circuit experiment setup described in
Appendix C and § 6.1. At a Tor throughput limit of 10 Mbit/s,
we determine a ground-truth Tor capacity of 9.58 Mbit/s, at
250 Mbit/s ground truth is 239 Mbit/s, at 500 Mbit/s ground
truth is 494 Mbit/s, and at 750 Mbit/s ground truth is 741
Mbit/s. Recall the ground truth of an unlimited relay on US-
SW is 890 Mbit/s.

Having established ground truth, we now consider multi-
pliers of 1.5, 1.75, 2.0, 2.25, and 2.5. For each multiplier and
at all capacities, we determine all subsets of measurers with
enough measurer capacity to measure the relay, and then we
divide that capacity assignment evenly across the measurers in
the subset. As an example of a subset, to measure a 500 Mbit/s
relay with a multiplier of 1.5 with US-E and IN, we would
configure both to limit their throughput to % Mbit/s.
Limiting throughput of FlashFlow measurers is accomplished
using the BandwidthRate and BandwidthBurst Tor options.

We present the distribution of results at each target relay
throughput limit and each multiplier in Figure 15, normaliz-
ing the results as a fraction of their ground-truth Tor capaci-
ties. The lowest multiplier that avoids outliers below 80% of
ground truth is 2.25. While it has the widest range of results
in 10 Mbit/s measurements, the absolute size of this spread is
only about 0.8 Mbit/s, which is still quite accurate in absolute
terms. For these reasons we choose a multiplier of 2.25 and
use it in all future experiments.

E.3 Measurement duration

Having FlashFlow measure for a shorter time would not
only allow it to measure the entire Tor network faster but
also prevent it from degrading Tor users’ experience for too
long when they have a circuit going through a relay being
measured. We have been running FlashFlow for 60 seconds
in the preceeding sections. We are thus motivated to find a
faster strategy that maintains acceptably accurate results.

We consider shorter measurement times using the 2.25
multiplier experiments from the previous section. Each ex-
periment ran for 60 seconds, but we can suppose it ran for a
shorter time and take the median. We emulate 10, 20, 30, and
60 second median strategies in this way and present the accu-
racy of the results in Figure 16. The range of results generally
gets larger as measurement times decreases. Interestingly the
30 second median strategy has the smallest range with all
results falling between 0.84 and 1.01 times their ground-truth
Tor capacity. For this reason and because it is a reasonable
balance between time-to-result and accuracy, we choose a
measurement length of 30 seconds. See Appendix E.4 for a
description of more complex measure strategies we consid-
ered but that performed worse.

E.4 Measurement Strategies

In § E.3 we chose a 30 second measurement duration, after
which FlashFlow would take the median per-second through-
put as the result of a measurement. We now consider two
other strategies.

Median with ignored lead time: In this strategy FlashFlow
collects per-second throughput for a set duration d as before,
but FlashFlow ignores the first i seconds such that it takes the
median of the last d — i seconds of data. The motivation is to
avoid an initial slow period due to TCP slow start, but because
FlashFlow uses many sockets, it generally achieves its maxi-
mum throughput immediately (e.g. Figure 7). Consequently, a
measurement of duration d with this strategy performs about
as well as a simple median strategy of duration d — i.
Dynamic Duration: We also consider strategies with a dy-
namic measurement duration. As per-second throughput re-
sults are gathered, the data points obtained thus far are viewed
in a series of windows. When the median throughput between
each window changes less than some factor, the measurement
is stopped and the last window’s median throughput is the re-
sult. This strategy has similar motivations as the previous one,
but generally produces worse results than simple medians.

E.5 Error bounds

All parameters are now determined, but error bounds on
what is considered an accurate result are yet to be specified.
Recall from § 4.2 that FlashFlow assigns some factor of mea-
surer capacity f =m(1+€;)/(1 —¢€;) times the existing ca-
pacity estimate for a relay, where m is the base multipler and
€1 and &, are the error bounds. Given the chosen measurement

20

Table 4: FlashFlow estimates during concurrent

measurement®
Limit Capacity Relays Absolute Relative
(Mbit/s) (Mbit/s) #) (Mbit/s) (%)
100 94.2 8 [87.6,98.9] [93,105]
200 191 4 [162, 185] [85,97]
400 393 2 [307,393] [78, 100]

* Relays were run on US-SW, and measurers were run US-E
and NL

duration, 30 seconds, and its minimum/maximum fraction
of ground-truth Tor capacity of 0.84/1.01 in Figure 16, we
choose error bounds of €, = 0.20 and &, = 0.05 to leave a
little room for additional variation when we evaluate Flash-
Flow’s accuracy in § 6.2 and Appendix F.

F Concurrent Internet Measurements

A FlashFlow deployment measures multiple relays at once
in order to speed up the rate at which it can measure the
entire network, as described in § 4.3. To evaluate Flash-
Flow accuracy when measuring relays concurrently, we first
establish ground-truth Tor capacity of relays limited with
RelayBandwidthRate to 100, 200, and 400 Mbit/s with the
same method as in § 6.1: we find ground truth to be 94.2
Mbit/s, 191 Mbit/s, and 393 Mbit/s, respectively. We then
run experiments with three sets of throughput-limited re-
lays on US-SW: eight 100 Mbit/s relays, four 200 Mbit/s
relays, and two 400 Mbit/s relays. To perform the mea-
surements we choose the measurers US-E and NL as to-
gether they have the smallest combined measurer capacity
(941 4+ 1611 = 2552 Mbit/s, see Table 1) greater than the
capacity necessary to measure 800 Mbit/s of relay capac-
ity at once (800-2.25[1 4 0.05]/[1 — 0.20] = 2362.5 Mbit/s,
see § 4.2). US-E and NL measure eight, four, or two relays
at once for 30 seconds; the result is the median per-second
throughput.

The experiments and concurrent measurement results are
summarized in Table 4. We observe that FlashFlow can mea-
sure accurately (within €; = 0.20 and €, = 0.05) in all but one
case: one 400 Mbit/s relay measurement fell below £, = 0.20
by a relative factor of 0.02. The remaining estimates are
consistent with our accuracy results from measuring sin-
gle 250 Mbit/s relays at the m = 2.25 multiplier (Figures 6
and 15). Therefore, we conclude that measuring relays con-
currently does not negatively effect FlashFlow’s accuracy.

	1 Introduction
	2 Background
	3 TorFlow Analysis
	3.1 Capacity Estimation Analysis
	3.2 Load Balancing Analysis
	3.3 Conclusions and Observations
	3.4 Relay Speed Test Experiment

	4 FlashFlow Design
	4.1 Performing a Measurement
	4.2 Measuring a Relay
	4.3 Measuring the Network

	5 Security Analysis
	6 Network Experiments
	6.1 Preliminary Setup and Analysis
	6.2 Measurement Accuracy

	7 Simulation Experiments
	8 Related Work
	9 Conclusion
	A Relay Capacity and Weight Variation
	B Capacity of Internet Hosts
	C Tor Processing Limits
	C.1 Setup
	C.2 Results

	D TCP Socket Tuning
	D.1 Single-socket throughput
	D.2 Multi-socket throughput

	E Deriving Values for FlashFlow Parameters
	E.1 Number of measurement sockets
	E.2 Multiplier
	E.3 Measurement duration
	E.4 Measurement Strategies
	E.5 Error bounds

	F Concurrent Internet Measurements

