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Abstract

We present two distributed algorithms for the Byzantine counting problem, which is con-
cerned with estimating the size of a network in the presence of a large number of Byzantine
nodes.

In an n-node network (n is unknown), our first algorithm, which is deterministic, finishes
in O(log n) rounds and is time-optimal. This algorithm can tolerate up to O(n1−γ) arbitrarily
(adversarially) placed Byzantine nodes for any arbitrarily small (but fixed) positive constant
γ. It outputs a (fixed) constant factor estimate of log n that would be known to all but o(1)
fraction of the good nodes. This algorithm works for any bounded degree expander network.
However, this algorithms assumes that good nodes can send arbitrarily large-sized messages in
a round.

Our second algorithm is randomized and most good nodes send only small-sized messages.1

This algorithm works in almost all d-regular graphs. It tolerates up to B(n) = n
1
2−ξ (note

that n and B(n) are unknown to the algorithm) arbitrarily (adversarially) placed Byzantine
nodes, where ξ is any arbitrarily small (but fixed) positive constant. This algorithm takes
O(B(n) log2 n) rounds and outputs a (fixed) constant factor estimate of log n with probability
at least 1 − o(1). The said estimate is known to most nodes, i.e., > (1 − β)n nodes for any
arbitrarily small (but fixed) positive constant β.

To complement our algorithms, we also present an impossibility result that shows that it is
impossible to estimate the network size with any reasonable approximation with any non-trivial
probability of success if the network does not have sufficient vertex expansion.

Both algorithms are the first such algorithms that solve Byzantine counting in sparse,
bounded degree networks under very general assumptions. Both algorithms are fully local and
need no global knowledge. Our algorithms can be used for the design of efficient distributed
algorithms resilient against Byzantine failures, where the knowledge of the network size — a
global parameter — may not be known a priori.

Keywords: Byzantine counting, expander graphs, Byzantine faults, randomization, network
size estimation.

1Throughout this paper, a small-sized message is defined to be one that contains O(logn) bits in addition to at
most a constant number of node IDs.
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1 Introduction

The recent surge in the popularity of decentralized peer-to-peer protocols has renewed the interest
in achieving Byzantine fault-tolerance in sparse networks of untrusted participants. In this work,
we study the fundamental problem of Byzantine counting where the goal is to estimate the number
of nodes in a network in the presence of a large number of Byzantine nodes. We say that a node u
is good or honest if u is not a Byzantine node. We assume that the Byzantine nodes are arbitrarily
distributed in the network and that when a Byzantine node sends a message over an edge, it
cannot fake its ID. We note that both of these assumptions are quite typical in the literature
[18, 46, 32, 7, 3, 4]. Please refer to Section 2 for more details on the distributed computing model.

We focus on the Byzantine counting problem in the context of sparse networks because of the
following reasons.

1. Peer-to-peer networks and most other large-scale, real-world networks happen to be sparse.

2. In a d-regular network, if the degree d is a non-constant function of n, e.g., if d = Θ(log n),
then it might become trivial for a node to estimate n from its knowledge of its own degree d.

Essentially all known algorithms studied in the literature for solving problems like Byzantine
consensus and Byzantine leader election in sparse networks require an underlying expander graph:
the expansion property is needed in tolerating a large number of Byzantine nodes. The vertex
expansion of a graph G = (V,E) on n nodes is defined as

h(G) = min
0<|S|6n

2

|Out(S)|
|S|

,

where S is any subset of V of size at most n
2 and Out(S) is the set of neighbors of S in V \ S. In

particular, the seminal paper of Dwork et al. [18], which introduced and studied the problem of
almost-everywhere Byzantine agreement in bounded degree graphs showed that such an agreement
is achievable in almost all d-regular graphs (i.e., all but a vanishingly small fraction of such graphs).
We exploit the following fact in our current work: almost all d-regular graphs possess good expansion
properties.

However, these algorithms assume knowledge of at least an estimate of the size of the network
(in many cases, an estimate of the logarithm of the network size suffices) and related parameters
such as the network diameter or the mixing time. In fact, the result of Dwork et al. assumes that all
nodes know the global network topology. This suggests that it is non-trivial to design algorithms
that work without knowledge of these global network parameters in bounded-degree (or d-regular)
expander networks. In such networks, nodes have a limited local view that is highly symmetric,
and this enables Byzantine nodes to fake the presence (or absence) of parts of the network.

The goal of our algorithms is to guarantee that most of the honest (i.e., non-Byzantine) nodes
obtain a good estimate of the network size. We note that obtaining “almost-everywhere” knowledge
is the best one can hope for in such networks [18]. Byzantine counting is related to, yet different
from, other fundamental problems in distributed computing, namely, Byzantine agreement and
Byzantine leader election. Similar to the latter two problems, it involves solving a global problem
under the presence of Byzantine nodes. However, it is a different problem, since protocols for
Byzantine agreement or leader election do not necessarily yield a protocol for Byzantine counting.
In fact, many existing algorithms for these two problems (discussed below and in Section 1.1)
assume knowledge of n, the number of nodes in the network. In sparse networks, they require at
least a reasonably good estimate of n, typically a constant factor estimate of log n is needed and
usually sufficient (as explained in Section 1.1). Indeed, one of the main motivations for this paper is
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to design distributed protocols in sparse networks that can work with little or no global knowledge,
including the network size. An efficient protocol for the Byzantine counting problem can serve as a
preprocessing step for protocols for Byzantine agreement, leader election, and other problems that
either require or assume knowledge of an estimate of log n [5] (cf. Section 1.1).

Byzantine agreement and leader election have been studied extensively for several decades.
Dwork et al. [18], Upfal [46], and King et al. [32] studied the Byzantine agreement problem in
sparse (bounded-degree) expander networks under the condition of almost-everywhere agreement,
where almost all (honest) processors need to reach agreement as opposed to all nodes agreeing as
required in the standard Byzantine agreement problem. Dwork et. al. [18] showed how one can
achieve almost-everywhere agreement under up to Θ( n

logn) of Byzantine nodes in a bounded-degree
expander network (n is the network size). Subsequently, Upfal [46] gave an improved protocol
that can tolerate up to a linear number of faults in a bounded degree expander of sufficiently
large spectral gap. These algorithms required polynomial number of rounds in the CONGEST
model (where honest nodes send only small-sized messages) and required O(log n) rounds in the
LOCAL model (where there is no restriction on the message sizes) and polynomial (in n) number
of messages. (For a comparison, similarly, our Local algorithm takes O(log n) rounds and our
Congest algorithm takes polynomial number of rounds.) Moreover, for Upfal’s algorithm the local
computation required by each processor is exponential. The work of King et al.[32] was the first
to study scalable (polylogarithmic communication and number of rounds, and polylogarithmic
computation per processor) algorithms for Byzantine leader election and agreement. All of the
above algorithms require knowledge of the network topology (including the knowledge of n) —
nodes need to have this information hardcoded from the very start.

The works of [7], [3], and [4] studied stable agreement, Byzantine agreement, and Byzantine
leader election (respectively) in dynamic networks (see also [5]), where in addition to Byzantine
nodes there is also adversarial churn. All these works assume that there is an underlying bounded-
degree regular expander graph (in fact, Dwork et al. among others assume d-regular random graphs
which are expanders with high probability) and all nodes are assumed to have knowledge of n. It
was not clear how to estimate n without additional information under presence of Byzantine nodes
in such (essentially, regular and constant degree expander) networks. In fact, the works of [5, 4]
raised the question of designing protocols in expander networks that work when the network size is
not known and may even change over time, with the goal of obtaining a protocol that works when
nodes have strictly local knowledge. This requires devising a distributed protocol that can measure
global network parameters such as size, diameter, average degree, etc. in the presence of Byzantine
nodes in sparse networks, especially in sparse expander networks.

Motivated by the above considerations, the work of Chatterjee et al. [14] studied the Byzantine
counting problem in a “small-world” expander network under the assumption that the Byzantine
nodes are randomly distributed (cf. Section 1.2 for more details). They present a distributed
algorithm running in polylogarithmic (in n) rounds in the CONGEST model that can output a
constant factor estimate of log n, where n is the (unknown) network size under the presence of
O(n1−γ) Byzantine nodes, where γ > 0 can be be any arbitrarily small (but fixed) constant. While
this presents the first known Byzantine counting algorithm under this setting, it has two major
drawbacks.

First, it does not work when Byzantine nodes are arbitrarily distributed — it crucially needs
that they be randomly distributed.

Second, it does not work for (just) expander networks; it needs additional structure, namely a
small-world network, i.e., a network that has a large clustering coefficient.2 The work of Chatterjee

2i.e., a Watts-Strogatz type network similar to [48, 9].

2



et al. crucially relies on the small-world property in its estimation of the network size. Hence the
algorithm and techniques used in that paper [14] are not directly applicable to the present paper.
Indeed, this paper uses a different approach compared to that of [14] (cf. Section 1.2). While
prior works on Byzantine agreement and leader election required only (sparse) expander networks
[18, 46, 32] under an arbitrary distribution of Byzantine nodes, Chatterjee et al. remark that:

“... for the Byzantine counting problem, which seems harder, however, expansion by
itself does not seem to be sufficient.”

In this paper, we show that Byzantine counting can indeed be solved in expander networks
and almost all d-regular graphs under arbitrarily (adversarially) placed Byzantine nodes. This is
the setting that is typically assumed in prior works on Byzantine agreement and leader election
problems (e.g., [18, 46, 32, 7, 3, 4]).

Throughout this paper, we use the following terminology.

1. We use the terms sparse network and bounded-degree network synonymously — each describ-
ing a network where the maximum degree of a node is bounded by a constant, and hence the
number of edges is linear in the number of vertices.

2. A small-sized message is defined to be one that contains O(log n) bits in addition to at most
a constant number of node IDs.

3. We use the term most nodes or most good nodes to indicate > (1 − β)n nodes, where n is
the total number of nodes in the network (and is an unknown quantity in the context of this
paper) and β is any arbitrarily small (but fixed) positive constant.

4. By efficient algorithms we mean algorithms that use small-sized messages and run in polylog (n)
time.

1.1 Our Contributions

We present two distributed algorithms for the Byzantine counting problem, which is concerned
with estimating the size (more specifically, the logarithm of the size, as considered here) of a sparse
network in the presence of a large number of Byzantine nodes.

Let the network be denoted by G = (V,E); let n = |V | denote the (unknown) network size.
Our first algorithm is deterministic and finishes in O(log n) rounds in the LOCAL model and is
time-optimal. This algorithm can tolerate up to O(n1−γ) adversarially placed Byzantine nodes for
any arbitrarily small (but fixed) positive constant γ. It outputs a constant factor estimate of log n
that is known to all but o(1) fraction of the good nodes. This algorithm works for any bounded
degree expander network.

Our second algorithm is randomized. This algorithm works in almost all d-regular graphs (i.e.,
all but a vanishingly small fraction of such graphs). We note that this is the same model used in
the seminal work of Dwork et al.[18]. Our algorithm works in the CONGEST model, where honest
nodes use only small-sized messages (unlike the first algorithm). See Section 2 for more details

about the network model. It tolerates up to B(n) = n
1
2
−ξ adversarially placed Byzantine nodes,

where ξ is any arbitrarily small (but) fixed positive constant. This algorithm takes O(B(n) log2 n)

rounds (hence o(
√
n) rounds for B(n) = n

1
2
−ξ) and outputs a constant factor estimate of log n

with probability at least 1 − o(1). The said estimate is known to at least (1 − β)n nodes for any
arbitrarily small positive constant β.
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We note that similar to our result, many prior Byzantine protocols [18, 10, 11, 46] in bounded-
degree networks take a polynomial number of rounds in the Congest model (where honest nodes
are limited to small-sized messages). However, all these protocols assume knowledge of n, and in
certain cases, even the entire network topology. A notable exception is the protocol of King et
al. [32] that takes a polylogarithmic number of rounds in the Congest model, but this protocol
also requires knowledge of the entire network topology (including the value of n). On the other
hand, these protocols tolerate a substantially larger number of Byzantine nodes, even up to Θ(n)
Byzantine nodes. It is unknown whether one can achieve the same level of fault-tolerance for
Byzantine counting.

To complement our algorithms, we also present an impossibility result that shows that it is
impossible to estimate the network size (or the logarithm of it) with any reasonable approxima-
tion and with any non-trivial probability of success if the network does not have sufficient vertex
expansion. This shows that the assumption of the expansion property of the network is necessary
for solving Byzantine counting.

Both our algorithms are the first such algorithms that solve Byzantine counting in sparse,
bounded degree networks under very general assumptions: they are fully local and need no global
knowledge. Our algorithms can serve as a building block for implementing other non-trivial dis-
tributed computational tasks in Byzantine networks such as agreement and leader election where
the network size (or its estimate) is not known a priori.

Applying our counting protocols. To illustrate, we consider the Byzantine agreement protocol
of [3] that applies to sparse bounded-degree expander networks. It applies even when the network
is dynamic with adversarial churn, but the network size is assumed to be stable. This protocol
uses two main ideas to solve binary agreement, where the requirement is that most good nodes
should decide on a common value (0 or 1) which should be an input value of a good node: (1)
random walks to sample nodes uniformly at random from the network and (2) a majority protocol
to converge to the correct value. Both ideas require knowledge of log n, in particular, a constant
factor upper bound of log n. For random walks, O(log n) is the mixing time, which is needed for
walks to converge to the stationary distribution in a bounded degree expander; nodes need to know
an upper bound on the mixing time to ensure that only sufficiently “mixed” random walks are used
for sampling. The majority protocol uses the following simple idea: In one iteration, each node
samples two random nodes and updates its value to the majority value among the three values: its
own value and the two other values. It is shown that O(log n) iterations are needed to converge to
the almost-everywhere agreement with high probability, provided the number of Byzantine nodes
is bounded by O(

√
n).

It is important to note that the above protocol assumes knowledge of c log n, for some constant
c > 1. However, using the Byzantine counting protocol of this paper as a preprocessing step, the
above assumption can be removed. The counting protocol ensures that most honest nodes have
a constant factor estimate of log n (this constant is fixed in the analysis). Although the counting
protocol does not guarantee that all (or most) honest nodes have the same estimate of log n, it is
easy to ensure that most honest nodes have an estimate that is some constant factor larger than
log n. This estimate suffices to run the Byzantine agreement protocol of [3].

1.2 Technical Challenges and Drawbacks of Previous Approaches

The main challenge is designing and analyzing distributed algorithms in the presence of Byzantine
nodes in networks where the honest nodes have only local knowledge, i.e., knowledge of their
immediate neighborhood. For example, in a constant degree regular network, a node’s local view
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does not yield any information on the network size. It is possible to solve the counting problem
exactly in networks without Byzantine nodes by simply building a spanning tree and converge-
casting the nodes’ counts to the root, which in turn can compute the total number of nodes in the
network. A more robust and alternate way that works also in the case of anonymous networks is
the technique of support estimation [7, 5] which uses exponential distribution. Alternatively, one
can use a geometric distribution (see e.g., [33, 40, 39]) to accurately estimate the network size.

Consider the following simple protocol for estimating the network size that uses the geometric
distribution. Each node u flips an unbiased coin until the outcome is heads; let Xu denote the
random variable that denotes the number of times that u needs to flip its coin. Then, nodes
exchange their respective values of Xu whereas each node only forwards the highest value of Xu

(once) that it has seen so far. We observe that Xu is geometrically distributed and denote its global
maximum by X̄; it can be shown that X̄ = Θ(log n) with high probability and hence can be used
to estimate log n.

The geometric distribution protocol fails when even just one Byzantine node is present. Byzan-
tine nodes can fake the maximum value or can stop the correct maximum value from spreading
and hence can violate any desired approximation guarantee. The work of [14] successfully adapts
the geometric distribution to work for their purpose. However, their work [14] assumes additional
structural properties of the network — they assume “small-world” networks, i.e., networks with
constant expansion and large clustering coefficient. The latter property implies that for every node,
many of its neighbors are well-connected among themselves. The protocol of [14] exploits this fact
to detect fake values sent by Byzantine nodes. This protocol does not work for graphs that only
have the expander property (which as we show in the impossibility result is needed to estimate the
network size within a non-trivial factor). Hence a new approach is needed as shown in this paper.

The work of [14] also assumes that the Byzantine nodes are randomly distributed in the network.
This assumption coupled with the fact that their number is only O(n1−γ) (where γ is any arbitrarily
small, but fixed, positive constant), results in (with high probability) every honest node having a
significant number of honest neighbors (the number of neighbors depends on γ). The algorithm of
[14] fails to work for expander networks with arbitrary or adversarial Byzantine node distribution,
which is typically assumed in previous works on Byzantine protocols [18, 46, 32, 7, 3, 4].

Prior localized techniques that have been used successfully for solving other problems such
as Byzantine agreement and leader election such as random walks and majority agreement (e.g.,
[3, 4]) do not imply efficient algorithms for Byzantine counting. For instance, random walk-based
techniques crucially exploit a uniform sampling of tokens (generated by nodes) after Θ(mixing time)
number of steps. However, the main difficulty in this approach is that the mixing time is unknown
(since the network size is unknown) — and hence it is unclear a priori how many random walk
steps the tokens should take. Similar approaches based on the return time of random walks fail
due to long random walks having a high chance of encountering a Byzantine node.

One can also use “birthday paradox” ideas to try to estimate n, e.g., as in the work of [21] in
a non-Byzantine setting. However it fails too in the Byzantine case.

We note that one can possibly solve Byzantine counting if one can solve Byzantine leader elec-
tion, as observed in [14], however, all known algorithms for Byzantine leader election (or agreement)
assume a priori knowledge (or at least a good estimate) of the network size. Hence we require a
new protocol that solves Byzantine counting from “scratch”. In our network model, where most
nodes, with high probability, see (essentially) the same local topological structure (and constant
degree) even for a reasonably large neighborhood radius (see Lemma 2), it is difficult for nodes to
break symmetry or gain a priori knowledge of n.

We point out that with constant probability, in our network model, due to the property of the
d-regular random graph, an expected constant number of nodes might have multi-edges — this can
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potentially be used to break ties; however, this approach fails with constant probability.
Another approach is to try to estimate the diameter of the network, which, being Θ(log n) for

sparse expanders, can be used to deduce an approximation of the network size. Assuming that
there exists a leader in the network, one way to do this is for the leader to initiate the flooding
of a message and it can be shown that a large fraction of nodes (say a (1 − ε)-fraction, for some
small ε > 0) can estimate the diameter by recording the time when they see the first token, since
we assume a synchronous network. However, this method fails since it is not clear, how to break
symmetry initially by choosing a leader — this by itself appears to be a hard problem in the
Byzantine setting without knowledge of n (or an estimate of log n).

1.3 A High-level Description of Our Protocols

We now give a high-level intuition behind our protocols. Our first protocol works for any expander
network as long as the nodes have knowledge of some lower bound on the expansion. The main
idea is to show that honest nodes that have a sufficiently large distance from any of the Byzantine
nodes will be able to detect any deviations in the network structure caused by Byzantine nodes.
The honest nodes can accomplish that by checking the expansion of their i-hop neighborhood, for
some i = Ω(log n). This algorithm is time-optimal and runs in time proportional to the network
diameter. However, it is designed for the Local model, as the expansion check requires nodes to
send messages of polynomial size.

The second algorithm achieves Byzantine counting by ensuring that most good nodes will send
only small-sized messages. The main idea here is the following. The algorithm proceeds in phases.
In phase i, i is the current estimate of log(n). In each i-hop neighborhood of some node consisting
only of good nodes, there are likely to be Θ(i) nodes that are generating beacon messages, which
are propagated for at least i rounds through the network.

Upon receiving a beacon message, a node assumes that the value of i is not yet too large and
hence proceeds without deciding. On the other hand, the probability of any good node generating
a beacon message becomes 1

poly (n) once i = Ω(log n), and hence good nodes that do not observe a

beacon message within O(i) rounds of phase i, decide on i as their estimate.
To avoid the scenario where Byzantine nodes simply keep generating new beacon messages (to

falsely induce a larger network size), the algorithm implements a blacklisting mechanism that uses
properties of random regular graphs to prevent nodes from generating multiple beacon messages
within the same phase. This ensures that the Byzantine nodes will be blacklisted if they attempt
to generate fake beacon messages.

1.4 Other Related Work

There have been several works on estimating the size of the network, see e.g., the works of [21, 27,
36, 45, 44], but all these works do not work under the presence of Byzantine adversaries. There
have been some work on using network coding for designing byzantine protocols (see e.g., [28]);
but these protocols have polynomial message sizes and are highly inefficient for problems such as
counting, where the output size is small. There are also some works on topology discovery problems
under Byzantine setting (e.g., [38]), but these do not solve the counting problem.

Several recent works deal with Byzantine agreement, Byzantine leader election, and fault-
tolerant protocols in dynamic networks. We refer to [24, 7, 3, 2, 4] and the references therein
for details on these works. These works crucially assume the knowledge of the network size (or at
least an estimate of it) and don’t work if the network size is not known.
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There has been significant work in designing peer-to-peer networks that are provably robust to
a large number of Byzantine faults [19, 26, 37, 43]. These focus only on (robustly) enabling storing
and retrieving data items. The works of [32, 30, 31] address the Byzantine agreement problem,
and the work of [24] presents a solution for maintaining a clustering of the network. In particular,
[30] use a spectral technique to “blacklist” malicious nodes leading to faster and more efficient
Byzantine agreement. All these works assume a sufficiently good estimate of the network size; in
particular, none of them solves the Byzantine counting problem in sparse networks.

The work of [13] shows how to implement uniform sampling in a peer-to-peer system under the
presence of Byzantine nodes where each node maintains a local “view” of the active nodes. We point
out that the choice of the view size and the sample list size of Θ(n

1
3 ) necessary for withstanding

adversarial attacks requires the nodes to have a priori knowledge of a polynomial estimate of the
network size. [27] considers a dynamically changing network without Byzantine nodes where nodes
can join and leave over time and provides a local distributed protocol that achieves a polynomial
estimate of the network size.

In [47], the authors present a gossip-based algorithm for computing aggregate values in large
dynamic networks (but without the presence of Byzantine failures), which can be used to obtain
an estimate of the network size. The work of [16] focuses on the consensus problem under crash
failures and assumes knowledge of log n, where n is the network size. Lenzen et al. [35] study the
synchronous counting problem under Byzantine nodes which is a different problem: the goal here
is to synchronize pulses among correct nodes. They study the problem in a complete network, and
hence the network size is trivially known.

Byzantine fault detection in the context of asynchronous distributed systems. There
have also been several works on Byzantine fault detection — see, e.g., [1], [29], [25], and [23]. Alvisi
et al. [1] consider the problem of fault detection in Byzantine quorum systems and design statistical
methods to compute the current number of failures at any point of time. Their model assumes the
knowledge of n, the total number of servers, whereas their goal is also clearly different. There have
also been works on Byzantine fault detectors [29, 25], but these assume the complete graph where
the knowledge of n becomes trivial.

Kihlstrom et al. [29] propose and analyze new classes of Byzantine fault detectors to solve the
consensus problem in an asynchronous distributed system of n processes, in which the number of
(Byzantine-) faulty processors is strictly less than n

3 . Haeberlen et al. [25] proposes a new idea
for Byzantine fault detection by achieving eventual strong completeness where every faulty node is
eventually blacklisted by every correct node. The underlying communication graph is a complete
graph in both the network models of [29] and [25], thus the knowledge of n becomes immediate and
trivial.

Greve et al. [23] design and analyze a powerful Byzantine failure detector that works in dynamic
distributed systems, where both the number of processors and the topology of the communication
graph can change from round to round. Their work does not assume any knowledge of n; however,
their work does not solve the Byzantine counting problem either — no estimate about the global
network size can be made during the execution of their algorithm.

2 Computing Model and Problem Definition

The distributed computing model. We consider a synchronous network represented by a
graph G whose nodes execute a distributed algorithm and whose edges represent connectivity in
the network. The computation proceeds in synchronous rounds, i.e., we assume that nodes run

7



at the same processing speed (and have access to a synchronized clock) and any message that is
sent by some node u to its neighbors in some round r > 1 will be received by the end of round r.
We consider the Local model, where there is no restriction on the size of the messages that can be
transmitted per edge per round, [40, 42]; but we point out that our second algorithm ensures that
most good nodes send only small-sized messages.

As is usual [40, 42], we assume local computation (within a node) is free and instantaneous.

Byzantine nodes. Among the n nodes (n or its estimate is not known to the nodes initially),
up to B(n) can be Byzantine. The Byzantine nodes have unbounded computational power and can
deviate arbitrarily from the protocol. This setting is commonly referred to as the full information
model.

We say that a node u is good or honest if u is not a Byzantine node. Byzantine nodes are
adaptive — they have complete knowledge of the entire states of all nodes at the beginning of every
round (including random choices made by all the nodes), and thus can take the current state of the
computation into account when determining their next action. The Byzantine nodes also know the
future random choices of the honest nodes, i.e., the Byzantine nodes are omniscient. We assume
that the Byzantine nodes are arbitrarily distributed in the network and that when a Byzantine
node sends a message over an edge, it cannot fake its id. We note that both of these assumptions
are quite typical in the literature [18, 46, 32, 7, 3, 4].

Distinct IDs. We assume that all nodes (including the Byzantine nodes) have distinct IDs,
chosen from an arbitrarily large set whose size is unknown a priori. In other words, the node IDs
can be viewed as comparable black boxes that do not leak any information about the network size.
We point out that this precludes most nodes from estimating logn by looking at the length of their
IDs.

Network topology for the first (deterministic) algorithm. Let G = (V,E) be the graph
representing the network. We assume G to be a bounded-degree expander network. For the sake
of a self-contained exposition, we recall the definition of vertex expansion below.

Definition 1 (Vertex expansion of a graph). The vertex expansion of a graph G = (V,E) on n
nodes is defined as

h(G) = min
0<|S|6n

2

|Out(S)|
|S|

,

where S is any subset of V of size at most n
2 and Out(S) is the set of neighbors of S in V \ S.

We assume that the network graph G has a constant vertex expansion α > 0, where α is a fixed
positive constant.

Network topology for the second (randomized) algorithm. Here we assume G to be a
random d-regular graph model (d is a constant) that is constructed by the union of d

2 (assume
d > 8 is an even constant) random Hamiltonian cycles of n nodes. We call this random graph
model the H(n, d) random graph model, also called the permutation model (please refer to [15] for a
detailed exposition of the H(n, d) random graph model and its various properties). It is known that
such a random graph is an expander (in fact a Ramanujan expander [20, 34]) with high probability.
The H(n, d) model is a well-studied and popular random graph model (see e.g., [49]), and has been
used as a model for peer-to-peer networks and self-healing networks [34, 41].
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We note that the usual d-regular random graph model is the model where a graph is selected
with uniform probability among all (simple) d-regular graphs [49]. Thus if one can show a result
that holds with high probability in a d-regular random graph, then it holds for almost all d-regular
graphs (as in Dwork et al[18]). Since it is hard to work directly with the above model, one usually
works with the so-called configuration (or pairing) model [12] that can be used to generate a d-
regular random graph. The advantage of the configuration model is that if one can show a high
probability bound on the configuration model, then this implies a similar bound for d-regular (d
is a constant) random graphs [18]. The configuration model is closely related to the H(n, d) (i.e.,
permutation) model, which is sometimes easier to work with compared to the configuration model.
It was shown by Greenhill et al. [22] that an event that holds with probability at least 1− o(1) in
the configuration model also holds with probability 1 − o(1) in the H(n, d) model and vice versa.
Thus, the results that we show for the H(n, d) model also hold for the configuration model with
probability at least 1− o(1). Therefore they also hold for d-regular random graphs with the same
probability. Hence they hold for almost all d-regular graphs.

Problem definition. Since we assume a sparse (constant bounded degree) network and a large
number of Byzantine nodes, it is difficult to ensure that every honest node eventually knows an
exact estimate of n. This motivates us to consider the following “approximate, almost everywhere”
variant of counting:

Definition 2 (Byzantine counting). Suppose that there are B(n) Byzantine nodes in the network
and let ε be an arbitrarily small (but fixed) positive constant. We say that an algorithm solves
Byzantine Counting in T rounds if the following properties hold in all runs:

1. Every honest node u (irrevocably) decides on an estimate of log n, denoted by Lu, within T
rounds.

2. There is a set S of at least (1− ε)n−B(n) honest nodes such that each u ∈ S has a constant
factor estimate of log n; i.e., there are fixed constants c1, c2 > 0, such that

c1 log n 6 Lu 6 c2 log n.

Some terminology. We recall the following terminology that are used throughout this paper.

1. We use the terms sparse network and bounded-degree network synonymously — each describ-
ing a network where the maximum degree of a node is bounded by a constant, and hence the
number of edges is linear in the number of vertices.

2. A small-sized message is defined to be one that contains O(log n) bits in addition to at most
a constant number of node IDs.

3. We use the term most nodes or most good nodes to indicate > (1 − β)n nodes, where n is
the total number of nodes in the network (and is an unknown quantity in the context of this
paper) and β is any arbitrarily small (but fixed) positive constant.

4. By efficient algorithms we mean algorithms that use small-sized messages and run in polylog (n)
time.
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3 Preliminaries

We use the notation BG(u, i) to refer to the inclusive i-hop neighborhood of node u in graph G
and we omit G when it is clear from the context. For a set of nodes S, we define BG(S, i) =⋃
u∈S BG(u, i).

Both of our algorithms make use of a structural result that shows that Byzantine nodes have a
somewhat limited impact on most good nodes in expander graphs.

Lemma 1. Consider an n-node graph G = (V,E) with maximum degree ∆ = O(1) and vertex
expansion α > 0. Let Byz, an arbitrary subset of V , denote the set of Byzantine nodes with the
restriction that |Byz| 6 n1−γ, where γ is any arbitrarily small (but fixed) positive constant. Then,
for any o(n)-sized F ⊂ V , there exists a set Good ⊆ V \ F of good nodes such that

|Good| > n− 2|F | − o(n). (1)

Moreover, for each u ∈ Good, the following hold:

1. B(u, bγ2 log∆ nc) does not contain any Byzantine nodes.

2. Let H be the subgraph induced by nodes in Good. Then, for any constant c > 0 such that
|BH(u, c log n)| 6 |Good|

2 , it holds that every vertex subset S ⊆ BH(u, c log n) has a vertex
expansion of > α′ in graph H, for any fixed constant α′ < α.

Proof. Consider the set Byz of Byzantine nodes. We first instantiate Lemma 13 by removing the
set V (G) \ (Byz ∪ F ) from G, and thus obtain a connected subgraph H of size > n − o(n). By
Lemma 13, H contains at least

n− (|F |+ |Byz|)
(

1 + 1
φ(1−c′)

)
= n− |F |

(
1 + 1

φ(1−c′)

)
− o(n)

good nodes. Also, every one of its subsets of size > |H|
2 has a vertex expansion of at least α′, for

any constants α′ < α and c′ < 1. Choosing c′ = 1 − 1
φ , implies that H contains n − 2|F | − o(n)

nodes, as required. Assuming a maximum degree of ∆, we get |B(Byz, j)| 6 |Byz|∆j , for any j > 0.
We observe that ∣∣B(Byz, bγ2 log∆ nc)

∣∣ 6 |Byz| ·∆(γ/2) log∆ n = n1−γ/2.

It follows that the set Good = V (H) \ B(Byz, γ2 log∆ n) satisfies (1) and (2).

3.1 The “locally tree-like” property of an H(n, d) random graph

We refer to [15] for a detailed exposition of the H(n, d) random graph model and its various
properties. For the sake of completeness, we merely state the main definitions and lemmas needed
here. The “locally tree-like” property of an H(n, d) random graph says that for most nodes w, the
subgraph induced by B(w, r) up to a certain radius r looks like a tree. More specifically, let G be
an H(n, d) random graph and w be any node in G. Consider the subgraph induced by B(w, r) for
r = logn

10 log d . Let u be any node in Bd(w, j), 1 6 j < r. u is said to be typical if u has only one
neighbor in Bd(w, j − 1) and (d− 1)-neighbors in Bd(w, j + 1); otherwise it is called atypical.

Definition 3 (Locally Tree-Like Property). We call a node w locally tree-like if no node in B(w, r)
is atypical. In other words, w is locally tree-like if the subgraph induced by B(w, r) is a (d− 1)-ary
tree.
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Using the properties of the H(n, d) random graph model and standard concentration bounds,
it can be shown that most nodes in G are locally tree-like:

Lemma 2. In an H(n, d) random graph, with high probability, at least n−O(n0.8) nodes are locally
tree-like.

The proof of this lemma as well as a more detailed discussion of the H(n, d) random graph
model can be found in the appendix of [15].

4 A Time-Optimal Deterministic Algorithm

In this section, we present and analyze a simple algorithm that solves the Byzantine counting
problem in the Local model — see Algorithm 1 for the pseudocode.

Our goal here is to show that a set called Good consisting of > n − o(n) good nodes achieve
a constant factor approximation of log n when executing our algorithm. Lemma 1 formalizes the
criteria for a good node to be in Good: in particular, a good node needs to have a distance of
Ω(log n) from all Byzantine nodes and the graph induced by Good must have nearly the same
vertex expansion as the original network.

4.1 Description of the algorithm

Throughout the algorithm, each node u locally builds an approximation of its i-hop neighborhood
for rounds i = 1, 2, 3, . . ., which we denote by B̂(u, i). To this end, we instruct nodes to simply
forward the content of their current B̂(u, i) at the start of round i. Considering that we assume
(at most) n1−γ Byzantine nodes, node u needs to be careful when integrating any newly received
knowledge.

There are two possibilities for triggering a decision of node u. Firstly, u immediately decides if it
notices some structural inconsistencies in the received topology information, such as a degree larger
than ∆, or the addition of spurious edges to vertices that it had already learned about previously
(cf. Line 6).

Furthermore, after obtaining B̂(u, i+ 1) by adding the received topology information in round
r into B̂(u, i), node u also decides if any of the subsets of B̂(u, i) do not have sufficient vertex
expansion with respect to B̂(u, i + 1). Intuitively speaking, this second condition ensures that
Byzantine nodes cannot trick u into continuing forever. The algorithm’s correctness crucially rests
on the original network having constant expansion — a point that is further emphasized by our
impossibility result in Theorem 3.

Remark 1. We observe that, for o(n) nodes in G \ Good, the adversary essentially controls the
termination time. This is not simply a drawback of our algorithm, but, instead, unavoidable when
assuming a worst-case placement of Byzantine nodes in the network: For instance, consider a
d-regular expander and a set of bn1−γ/dc good nodes U that are surrounded by roughly n1−γ

Byzantine nodes, i.e., none of the edges emanating from U to G \ U are connected to good nodes.
Then, the Byzantine nodes could simply send information corresponding to a large fake network of
some arbitrary size n′ with sufficiently high expansion to the nodes in U . It is easy to see that no
algorithm can distinguish this case from U being indeed part of a network of size n′.

We state below the main result of this section. The rest of this section is devoted to proving it.

Theorem 1. Let γ ∈ (0, 1) and ∆ > 0 be arbitrary fixed constants. Consider an n-node network
with a maximum node degree bounded by ∆ and a constant vertex expansion α. There exists a
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deterministic LOCAL algorithm such that n− o(n) good nodes decide on a
(

γ
2 log ∆

)
-approximation

of log n in O(log n) rounds in the presence of up to n1−γ arbitrarily (adversarially) placed Byzantine
nodes.

Algorithm 1 An O(log n) time algorithm in the Local model. Code for node u.

1: Let B̂(u, 1) be the set of nodes in the inclusive neighborhood of u.
2: for round i = 1, 2, . . . do
3: Broadcast B̂(u, i) to all neighbors.
4: Let I be the information received in the current round.
5: if inconsistent(B̂(u, i), I) or (some neighbor is mute) then
6: Decide on i and terminate.
7: end if
8: Create B̂(u, i+ 1) by incorporating I into B̂(u, i).
9: for each vertex subset S ⊆ V (B̂(u, i)) do

10: Let α′ > 0 be the constant given by Lemma 1.
11: if S does not have vertex expansion > α′ in graph B̂(u, i+ 1) then
12: Decide on i; terminate.
13: end if
14: end for
15: end for

16: predicate inconsistent(B̂(u, i), I) returns true iff
17: I contains a node with degree > ∆, or
18: I contains a set of incident edges for some node v, but already v ∈ B̂(u, j) for some j 6 i−1.

4.2 Analysis of the algorithm

Lemma 3. All nodes in Good decide on a value of at least
⌊γ

2 log∆ n
⌋
.

Proof. We will proceed by induction over the number of rounds. Consider the graph H given by
Lemma 1 and recall that u ∈ V (H) by definition. Since H has a vertex expansion > α′, it follows
that u’s neighborhood (in H) has size at least 1+α′, which guarantees that u passes the expansion-
check in Line 11 in Round 1. Moreover, u has a distance of at least bγ2 log∆ nc from any Byzantine
node, and hence it does not receive any inconsistent information during the first bγ2 log∆ nc rounds.
This ensures u will not decide in Line 6 Round 1, which completes the inductive base.

Now, consider the inductive step 1 < i < bγ2 log∆ nc, and suppose that u has not decided at the
end of round i− 1. Similarly as in the case i = 1, it holds that u does not decide due to receiving
inconsistent information. Moreover, note that

|B(u, i)| 6 ∆i+1 6 nγ/2 < |H|
2 ,

since |H| > n − o(n) by Lemma 1. Hence every subset of B̂(u, i) is guaranteed to have a vertex
expansion of at least α′, which ensures that u continues to round i+ 1 without deciding.

The next lemma tells us that, if a good node u that has not yet decided, then its local i-
neighborhood approximation B̂(u, i) does not contain inconsistent information concerning the nodes
in Good. We will make use of this property in Lemma 5 below.
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Lemma 4. Suppose that u ∈ Good has not decided by the end of round i, and consider graph H
given by Lemma 1. Then, for each v ∈ BH(u, i) and any node w, it holds that e = {v, w} ∈ B̂(u, i)
if and only if e ∈ E(G).

Proof. By the definition of H, it follows that, for each v ∈ BH(u, i), there exists a shortest path
p = (v = p1, p2, . . . , pj = u) consisting of j 6 i good nodes connecting u and v. Moreover, it is easy
to see that node pk (1 6 k < j) on path p must have broadcast its topology information in round
i − j + k, since otherwise its neighbor pk+1 would have terminated at the end of round i − j + k,
because of having noticed that pk was mute. This in turn would have cause pk+1 to terminate at
the end of round i− j + k+ 1 and hence would have propagated to u by round i, contradicting the
premise of the lemma.

Since each of the good nodes in p forwards the received topology information towards u, it
follows that node u receives a message from some good neighbor, which contains the exact set Ev
of edges incident to v in G. Suppose that, in some round during round i, node u also receives a
message containing a set of edges E′v 6= Ev of v, possibly injected by Byzantine nodes. However,
Line 6 ensures that u decides instantly in round i, since it has added inconsistent information to
B̂(u, i). This results in a contradiction.

Lemma 5. Every node in Good decides on a value of at most diam(G) + 1.

Proof. Assume toward a contradiction that there is a node u ∈ Good that decides on a value strictly
greater than diam(G) + 1. By the description, of the algorithm, this means that u did not decide
when executing round i, where i = diam(G) + 1. Consider the content of B̂(u, i) after receiving
all messages for round i. Note that it is possible that B̂(u, i) also contains information that was
injected by Byzantine nodes.

Let F denote the Byzantine part of B̂(u, i), i.e.,

F
def
= B̂(u, i) \ Good

and call

R
def
= B̂(u, i) ∩ Good

its honest part.
We can assume that Byzantine nodes do not send any inconsistent information regarding the

graph induced by R, as otherwise u will decide in round i and we are done. Similarly, we can rule
out that any node in R has already decided: For if some w decided and remained mute, this would
cause its good neighbors to decide in the next round (cf. Line 6), which in turn would propagate
(through good nodes) to u, causing it to decide. Consequently, Lemma 4 tells us that all edges
emanating from nodes in R \Byz in graph B̂(u, i) also exist in G. In particular, there are no edges
between R\Byz and F . Since every node in G has distance at most diam(G) = i−1 to u, it follows
that R ⊆ B̂(u, i − 1) and thus u will check R’s vertex expansion with respect to graph B̂(u, i) at
the end of round i+ 1.

To complete the proof, we analyze the expansion-check in Line 11 for the set R. Observe that
R contains all nodes within distance diam(G) from u in graph H (see Lemma 1). Given that
diam(H) 6 diam(G) and the fact that nodes in Good are connected in H, we know that

|R| > |Good| = n− o(n).

Recall that there are at most n1−γ Byzantine nodes in R ∩ B̂(u, i). Since we assumed that
Byzantine nodes did not send inconsistent information, each Byzantine node has at most ∆ neigh-
bors in F (cf. Line 17). It follows that there is a set S′ of at most ∆n1−γ = o(n) fake vertices in
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the set (B̂(u, i) \ R) ⊆ F that have an edge to R. To satisfy the expansion-check (see Line 11),
the number of neighbors of vertices in R would need to be |R|(1 + α′) = Ω(n), far exceeding
the o(n) fake vertices in S′. Hence the expansion-check fails for set R, causing u to decide on
i = diam(G) + 1.

Combining Lemmas 3 and 5 shows the claimed bound on the approximation achieved by the
n− o(n) nodes in set Good. From Lemma 5, it follows that the round complexity until all but o(n)
nodes have decided is O(diam(G)) = O(log n). This completes the proof of Theorem 1.

5 Byzantine Counting with Small Messages

We now describe an algorithm that guarantees most good nodes will achieve a constant factor
approximation of log(n) while sending only messages of small size (proportional to the number of
bits of any node’s ID). We give the detailed correctness proof in Section 5.1. As mentioned in
Section 2, our algorithm works in the H(n, d) d-regular random graph model with high probability,
i.e., with probability at least 1 − n−c, for some constant c > 1. As discussed in Section 2, this
implies that the algorithm works in almost all d-regular graphs with probability at least 1− o(1).

In Algorithm 2, each node keeps track of its current estimate in a variable i that is initialized
to a fixed constant. A node increases i whenever it enters a new phase, where the goal of a phase
is to determine whether i is already a sufficiently good approximation of log(n). On the other
hand, once a node concludes that its current value of i is sufficiently large, it decides on i and stops
participating in future phases. Each phase i consists of roughly e(1−γ)i + 1 iterations, and each
iteration of phase i takes 2i+ 5 rounds: During the first i+ 2 rounds, nodes disseminate so called
“beacon messages” (described next) whereas, during the following (i+ 3)-rounds, all yet-undecided
nodes ensure that everyone in their (i+ 3)-neighborhood knows that they have not yet decided by
sending a “continue” message.

Beacon Messages and Path Fields. At the start of an iteration, a good node u chooses to
become active with probability Θ

(
i
di

)
, where d is u’s degree. The intuition behind this probability

is that this ensures that on the average there are approximately O(i) nodes that are active in a ball
of radius i — note that the tree-like property of expander graphs (see Section 3.1) ensures that the
number of nodes in a ball is Θ(di).

If u becomes active, it broadcasts a beacon message to its neighbors, which is then forwarded
for i+2 rounds. Intuitively speaking, these beacon messages signal to other nodes that they should
not yet decide on their current estimate.

In more detail, a beacon message 〈beacon, u, P 〉 has an origin id u, and a path field P , which is
the path of nodes that the message has visited so far. That is, whenever the message is sent from
a node w to a node v, we append v to the path field before forwarding the message. Of course,
it is entirely possible that these fields contain bogus information if the message passed through a
Byzantine node.

Blacklisting. Whenever a node v receives a beacon message, it inspects the attached path field
P = (u1, u2, . . . , uk) by performing a series of checks.

First, v checks whether the neighbor from which it received the message does indeed have id
uk. If v finds that the sender has an id different from uk, it simply discards that message. Node v
also maintains a blacklist set BL, which is reset at the start of each phase and is gradually filled
throughout a phase’s iterations.
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In more detail, let us suppose that the above mentioned beacon message was the first one
received by v in iteration 1 of phase i, from some neighbor w. Then, v adds all nodes except the
ones in the b(1− ε)ci-suffix of P to its blacklist BL, where this suffix consists of the last b(1− ε)ci
nodes on the path to the destination v. The intuition behind this rule is that u blindly trusts all
nodes that are close to it, but won’t accept another beacon message in the future if it has traversed
the same (far away) nodes twice in this iteration.

In addition, v sets its variable shortestPath ← P , which indicates the (supposedly) shortest
path over which v received a beacon message in this iteration. (If v receives two or more beacon
messages simultaneously, it discards all but one.) Note that v resets shortestPath at the end of
each iteration. Then, assuming that we are still in the first i+ 1 rounds of the iteration upon the
reception of this beacon message, v broadcasts the message 〈beacon, P ′〉 with the modified path
field P ′ to its neighbors where P ′ is obtained by appending v to P .

As mentioned, blacklisting ensures that v does not accept a beacon message if the message took
a path leading through the same nodes from which it has already seen a beacon message in this
phase. Blacklisting is implemented as follows: If v receives a beacon message m′ in some iteration
` > 1 of phase i and the node IDs contained in the path field that are at least b(1− ε)ic away from
v intersect with the nodes already added to BL during the previous iterations, then v will not use
m′ to update its shortestPath variable. However, it is important to keep in mind that, even in this
case, v still broadcasts the message with the updated path field to its neighbors, assuming we are
still in the first (i+ 1)-rounds of the iteration.

Consequently, if (i + 2) rounds have passed and node v did not set shortestPath in this itera-
tion either because it did not receive any beacon messages or all received beacons carried already
blacklisted node IDs, then v decides on its current value of i.

Introducing blacklisting avoids the scenario where Byzantine nodes keep generating new beacon
messages that trigger good nodes to continue progressing to the next phase, possibly significantly
overshooting the actual value of log(n) before deciding. The blacklisting mechanism kicks in once
i = Ω(log n) since the algorithm ensures that (see Lemma 11):

1. there is no iteration in which a good node still generates a new beacon message (whp);

2. the number of iterations performed in phase i exceeds the number of Byzantine nodes.

For instance, suppose that a Byzantine node b generates a beacon message with a fake path
field in iteration 1. Even though b can trick all good nodes into accepting this beacon message in
this iteration, it will fail to convince a set U of good nodes that have a distance of at least b(1−ε)ic
from b into accepting such a message in any future iteration of this phase.

To see why this is the case, observe that when a node u ∈ U receives a message where b was
involved in faking the path field, b will be added to u’s blacklist because its ID will not be in the
b(1− ε)ic suffix of the path field by the time the message reaches u (cf. Line 32), assuming that the
message did not pass through other Byzantine nodes that are closer to u. (Recall that i is large
enough such that good nodes have ceased from generating beacon messages and hence every beacon
message that is still in transit must have been injected by Byzantine nodes.) The upshot is that a
good node u that has all the Byzantine nodes at a distance of at least b(1 − ε)ic will blacklist at
least 1 Byzantine node b in each iteration if b generates a beacon message. Hence, u will encounter
an iteration in which its shortestPath variable is not set, thus causing it to decide on i.

Technical challenges. There are several technical difficulties that we need to handle in our
correctness proof. For instance, we need to choose the probability of generating beacon messages
in a way such that i does not become too large before most nodes have reached a decision, as we
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might end up with a value of i where almost all good nodes are within distance b(1− ε)ic of some
Byzantine node, thus disarming the blacklisting mechanism.

On the other hand, the blacklisting process itself reduces the number of nodes that a good node
considers for beacon messages, which may cause too many nodes to decide early due to not seeing
a beacon message in each iteration. We use two techniques to avoid this second problem:

1. We use the tree-like property of the regular expander graphs (see Section 3.1). This shows
that the remaining nodes provide sufficient expansion even if a large number of paths have
been invalidated due to at least one of their nodes being blacklisted.

2. We instruct undecided nodes to send out continue messages that are forwarded for (i + 3)
rounds in phase i. Upon reception of such a message, a node that has possibly already
decided and stopped increasing its phase counter, will become active again and generate
beacon messages with the appropriate probability.

We state below the main result of this section. The rest of this section is devoted to proving it.

Theorem 2. Let ξ and β be any arbitrarily small (but fixed) positive constants. Let B(n) = n
1
2
−ξ

denote the number of Byzantine nodes in the network. Consider the H(n, d) random regular graph
G of n nodes with constant vertex expansion, where d is a sufficiently large constant. Then there
exists an algorithm such that, with high probability, at least (1 − β)n nodes send messages of at
most O(log n) bits and decide on a constant factor approximation of log n in time O(B(n) · log2 n)
in the presence of up to B(n) arbitrarily (adversarially) placed Byzantine nodes.

5.1 Analysis of Algorithm 2

For the analysis, we assume at most n1−γ Byzantine nodes, where γ needs to satisfy

γ >
1

2− δ
+ η, (2)

for any fixed constants 0 < δ 6 1
2 and η > 0. Note that the smaller δ is, the smaller γ is. Therefore

maximum Byzantine tolerance is achieved when δ is very close to (but slightly greater than) zero
and γ is very close to (but slightly greater than) 1

2 . In that case, the maximum Byzantine tolerance,

i.e., the maximum number of Byzantine nodes that our algorithm can tolerate, boils down to n
1
2
−ξ,

as stated in Theorem 2.
The parameter ε that we use to determine the distance outside of which the blacklisting becomes

effective in our algorithm, is fixed as

ε = 1− (1− δ)
log d

γ. (3)

Let GoodTL = Good ∩ TreeLike be the set of nodes that have a sufficiently large distance to all
Byzantine nodes due to being in set Good, and that also have the property of d-ary trees up to
some radius of length logd n

10 (see Section 3.1).
We will first study the progress of the algorithm at nodes in GoodTL, for the phases up to radius

ρ, where

ρ =

⌊
min

(
(1− δ)γ logd n,

1

10
logd n

)⌋
− 2, (4)

since, in phase i, we require the tree-like property to hold up until radius (i + 2). We also recall
that c1 is any large constant, as defined in Line 5 of the pseudocode of Algorithm 2.
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Algorithm 2 A Byzantine-Resilient Counting algorithm using messages of size O(log n) (at most
nodes), assuming O(n1−γ) Byzantine nodes. Nodes do not have any other global knowledge apart
from γ.

1: for phase i = c, c+ 1, . . . do // c > 2 log 2
(2−δ)η is a sufficiently large constant, see (2)

2: Each node initializes its phase i blacklist BL = ∅.
3: for iteration j = 1, . . . , be(1−γ)ic+ 1 of phase i do // each iteration takes (2i+ 5) rounds.
4: Each node u initializes shortestPath← none.
5: u becomes active with probability c1·i

di , for a sufficiently large constant c1.
6: if u is active then
7: u updates shortestPath← (u).
8: u broadcasts message m = 〈beacon, u, P 〉, u’s own id denotes the origin,
9: and P is the path of nodes visited previously by m; i.e., P = none.

10: Message m is forwarded by correct nodes for exactly (i+ 2) rounds (see below).
11: end if

12: // During the first i+ 2 rounds of the iteration:
13: if node u receives a set of beacon messages from its neighbors then
14: u discards all but one arbitrarily chosen message.
15: Let m = 〈beacon, v,Q〉 be this message; assume that it was received from neighbor w.
16: u appends w’s id to path Q yielding Q′.
17: if we are still within the first i rounds of the iteration then
18: u broadcasts 〈beacon, v,Q′〉.
19: end if
20: Let S be the set of all except the last b(1− ε) ic nodes in Q′, where ε is defined in (3).
21: if S ∩BL = ∅ then
22: if shortestPath = none then
23: u updates shortestPath← Q′.
24: end if
25: end if
26: end if

27: // After the first i+ 2 rounds of iteration j:
28: if shortestPath = none at node u and u has not yet decided then
29: u decides on i.
30: end if
31: Let S be the set of all except the last b(1− ε)ic nodes in shortestPath.
32: u adds all nodes in S to blacklist BL.
33: end for// End of the jth iteration of phase i

34: if u has not decided then
35: u broadcasts a 〈continue〉 message, which is forwarded for i+ 3 rounds by other nodes.
36: end if
37: When receiving multiple 〈continue〉 messages simultaneously, all but one are discarded.
38: if v has decided and v did not receive 〈continue〉 in i+ 3 rounds then
39: v exits the for-loop.
40: end if
41: // Iteration j ends after the continue messages have been in transit for i+ 3 rounds.
42: end for// End of phase i

43: if v has decided (possibly in some earlier phase and v receives a 〈continue〉 message then
44: v reenters the for-loop and updates its value of i to the current phase value. (It can do so by keeping

track of the number of rounds since starting.)
45: end if
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5.1.1 Analysis of the early phases of the algorithm: when i < ρ

We first show that, during the early phases of the algorithm, nodes in GoodTL do not add corrupted
information to their shortestPath variable (see Lemma 6).

Lemma 6. Consider any phase i < ρ, some iteration j, and some u ∈ GoodTL. At the end of
iteration j, it holds that either shortestPath = none or shortestPath corresponds to a shortest path
in G starting at some node v that generated a beacon message and ending at u.

Proof. Since u ∈ GoodTL and i < ρ, all Byzantine node are at a distance of at least i + 2 from u,
and hence no information injected by a Byzantine node can reach u until it stops waiting for beacon
messages in iteration j. It follows that any information that was added to shortestPath corresponds
to a path in G.

In Lemma 7 we show an upper bound on the number of nodes that are all located at the closest
possible distance to u ∈ GoodTL such that u will blacklist them if they generate beacon messages.
We note that some of or even all of such nodes may be good nodes, but that does not cause any
conflicts with our argument here. We will use this lemma together with the tree-like property
in to argue that the remaining non-blacklisted nodes (and their expanded neighbors) provide a
sufficiently large set (see Lemma 8) for making it likely that some node generates a beacon message
(see Lemma 9 and Lemma 10).

Lemma 7. Consider any phase i < ρ and some good node u ∈ GoodTL that has not yet decided at
the start of i. For each iteration j, node u blacklists at most one node in its d(1 − ε)ie-boundary
D(u, d(1− ε)ie) (and none of the nodes that are at a lesser distance).

Proof. Assume towards a contradiction that, in some iteration j, node u adds at least two nodes
w1, w2 ∈ D(u, d(1− ε)ie) to its blacklist. By the code of the algorithm, it follows that the ids of w1

and w2 must both be in shortestPath at the end of iteration j. Without loss of generality, suppose
that shortestPath = (v, . . . , w1, . . . , w2, . . . , u), i.e., v is the origin of the beacon message that caused
the update to shortestPath in iteration j. Since w1, w2 ∈ D(u, d(1− ε)ie) it follows that there exists
a path P1 = (w1, . . . , u) of length d(1− ε)ie between w1 and u that does not contain w2.

However, this means that u must have received a beacon message containing a path field that
contains the concatenation of paths Q′ = (v, . . . , w1) and P1, where |Q′| < |shortestPath|. This
contradicts the assumption that both w1 and w2 are in shortestPath, and completes the proof.

Lemma 8. Let BL∗u denote the set of nodes added to u’s blacklist during phase i < ρ and let A∗u
be the set of nodes in B(u, i+ 2) \BL∗u having a shortest path to u that does not traverse nodes in
BL∗u. Then, it holds that |A∗u| > di.

Proof. Lemma 7 tells us that during phase i, the number of nodes in D(u, d(1−ε)ie) that are added
to BLu is at most

e(1−γ)i + 1 6 2e(1−γ)i

6 e(1−γ)i+log 2. (5)

On the other hand,

|D(u, d(1− ε)ie)| > d(1−ε)i

= e(1−ε)i log d

= e(1−δ)γi. (by (3))
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This implies that

|D(u, d(1− ε)ie)|
2

> e(1−δ)γi−log 2, (6)

To show that at most half of the nodes in the d(1− ε)ie-boundary of u are blacklisted, it suffices
if the right-hand side of (5) is upper bounded by (6). This is true if

(1− γ)i+ log 2 6 (1− δ)γi− log 2,

which holds if

γ >
1

2− δ
+

2 log 2

(2− δ)i
. (7)

By the code of the algorithm, we know that i > 2 log 2
(2−δ)η (see Line 1) and hence (7) is guaranteed

by the assumed bound on γ stated in (2).
So far, we have shown that there is a set S′ of at least half of the nodes in the d(1−ε)ie-boundary

of u that are not in the phase i blacklist BL∗u of u, i.e.,

|S′| > D(u, d(1− ε)ie)
2

> d(1−ε)i−log 2. (8)

Since i < ρ and u ∈ GoodTL, it follows that each node in S′ is the root of a d-ary subtree of
depth at least bεic+ 2. By the tree-like property of u, we know that the sets of nodes in these trees
are pairwise disjoint. Let T be the set of nodes that are in these trees. By the above,

|A∗u| > |T | >
D(u, d(1− ε)ie)

2
· dbεic+2

> dd(1−ε)ie−logd(2)+bεic+2 (by (6))

and, assuming logd(2) 6 1, we get

|A∗u| > dd(1−ε)ie+bεic+1

> di.

In the remainder of the proof, we argue that none of the nodes in T is blacklisted by u.
Consider any node w ∈ T . The only way that w can be added to BL∗u is that w ∈ shortestPath

during some iteration j. However, by the tree-like property, we know that any shortest path from
w to u must pass through some node w′ ∈ S′ and hence, by Lemma 7, shortestPath must contain
w′. This contradicts the assumption that the nodes in S′ are never blacklisted, and thus it follows
that none of the nodes in T end up in u’s phase i blacklist BL∗u.

We now show that a large fraction of the nodes in GoodTL do not decide in the first o(log n)
phases.

Lemma 9. For any u ∈ GoodTL, Pr[u decides in phase i] 6 exp(− c1i
2 ).

Proof. Consider some u ∈ GoodTL that has not yet decided at the start of phase i. By Lemma 8,
we know there is a set A∗u of at least di nodes such that a beacon message generated by a node in
A∗u is guaranteed to reach u within (i + 2) rounds. By assumption, u has not yet decided at the
start of phase i, and hence it must have sent out a 〈continue〉 message at the end of the previous
phase (i− 1), which was forwarded for (i− 1) + 3 = i+ 2 rounds. Given that A∗u ⊆ B(u, i+ 2), it
follows that this beacon message must have reached all nodes in A∗u. Hence, any node in A∗u that
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has already decided (possibly during a much earlier phase), will nevertheless execute the for-loop
and try to generate beacon messages in the current phase i. It follows that u does not decide if at
least one node in A∗u generates a beacon message.

The probability that none of the nodes in A∗u becomes active during an iteration of phase i is

at most
(
1− c1 i

di

)di
6 e−c1i. By taking a union bound over the e(1−γ)i + 1 iterations of phase i, it

follows that

Pr[u decides in phase i] 6
(
e(1−γ)i + 1

)
e−c1i

= e(1−γ−c1)i + e−c1i

6 2e−(c1−1)i (since 1− γ 6 1)

6 e−(c1/2)i.

Lemma 9 promises us that any individual node has a small probability of error when i < ρ.
So the expected number of nodes to make an error is also small. We, however, want to show
a high probability bound on the number of nodes that make a mistake. In order to show that,
we proceed along the usual way of formulating an indicator random variable and then computing
the expectation of the sum of the individual indicator random variables by using the principle of
linearity of expectation. We show the high probability bound by using the method of bounded
differences (Azuma’s Inequality, more specifically).

Now to the formal description. Let Y v
i be an indicator random variable which is 1 if and only

if v decides i to be a correct estimate of log n. Lemma 9 shows that Pr[Y v
i = 1] < exp(− c1i

2 ). Now
let

Yi =
∑
v∈V

Y v
i .

That is, Yi denotes the number of nodes that decide wrongly in the ith phase. We recall once again
that here we are interested only in the case where i < ρ. Then Yi cannot be too large, i.e., not too
many nodes can decide wrongly in one phase.

Lemma 10. Pr[Yi > 2n · exp(− c1i
2 )] < exp(−

√
n

2 ) if i < ρ.

Proof.

E[Yi] = E[
∑
v∈V

Y v
i ] =

∑
v∈V

E[Y v
i ] (by linearity of expectation)

=
∑
v∈V

Pr[Y v
i = 1] (since Y v

i is an indicator random variable)

<
∑
v∈V

exp(−c1i

2
) (from Lemma 9)

= n · exp(−c1i

2
). (9)

Two vertices v and w are independent if their (i+ 3)-distance neighborhoods do not intersect,
i.e., if the distance between them is > 2i+7. In other words, v going defective can affect only those
vertices that are within a distance of (2i+6) to v. In a (d+1)-regular graph, the number of vertices
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that are within a (2i+ 6)-distance of v is at most d(2i+7). By the Azuma-Hoeffding Inequality [17,
Theorem 5.1],

Pr[Yi − E[Yi] > n · exp(−c1i

2
)]

6 exp(−
(n · exp(− c1i

2 ))
2

2n · d2(2i+7)
)

= exp(−n · exp(−c1i)

2d4i+14
)

= exp(− n

2 · exp(c1i) · d4i+14
)

= exp(− n

2ek
), (10)

say, where
k

def
= (4i+ 14) ln d+ c1i. (11)

But we have from Equation 4 that

i < ρ <
1
2 lnn− 14 ln d− 1

4 ln d+ c1

=⇒ 4i ln d+ c1i <
1

2
lnn− 14 ln d

or, (4i+ 14) ln d+ c1i <
1

2
lnn

or, k <
1

2
lnn (follows from the definition of k in Equation 11)

Substituting the value of k in Equation 10, we get that

Pr[Yi − E[Yi] > n · exp(−c1i

2
)]

< exp(− n

2 exp(1
2 lnn)

)

= exp(− n

2
√
n

) = exp(−
√
n

2
). (12)

Equation 12 combined with Equation 9 yields the result.

As an immediate consequence of Lemma 10, we can take a union bound over the phases up to
i = c, c+ 1, c+ 2, . . . , ρ to obtain that, whp, the total number of nodes in GoodTL that decide early
is at most

ρ∑
i=1

2n

e(c1/2)i
6

2n

ec1/2 − 1
. (13)

5.1.2 Analysis of the later phases of the algorithm: when i = dlog ne

Once a node u ∈ GoodTL proceeds beyond phase ρ, it has obtained a sufficiently good estimate of
log n, and hence our goal is to show that it is likely to decide. For this part of the analysis, we need
to deal with the possibility that conflicting information originating at Byzantine nodes reaches u
during an iteration. However, in the following analysis, we show that u is unlikely to increase its
phase counter above dlog ne.
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Lemma 11. Consider phase i = dlog ne. The following hold with probability at least 1−O( 1
n):

1. No good node becomes active.

2. Every node in GoodTL decides at the end of phase i = dlog ne.

Proof. Let Active(u, j) be the event that a good node u becomes active in iteration j of phase i.
For any u ∈ GoodTL and any iteration j, it holds that

Pr[Active(u, j)] =
c1 · i
di

6
c1 log n

nlog d
.

By taking a union bound over all good nodes and over all e(1−γ)i + 1 iterations, we get

Pr[∃u : Active(u, j)] 6
c1 log n

nlog(d)−1
;

Pr[∃j ∃u : Active(u, j)] 6
(
elog(n)(1−γ) + 1

) c1 log n

nlog(d)−1

6 2n1−γ c1 log n

nlog(d)−1

6
2c1 log n

nlog d−2
.

This completes the proof of Part (1), assuming log d > 4.

To show Part (2), we condition on Part (1) being true, and assume towards a contradiction
that there is an undecided node u ∈ GoodTL that does not decide in phase i. We will argue that u
blacklists at least one Byzantine node in each iteration j of phase i.

By the code of the algorithm, u has set shortestPath← (v1, v2, . . . , vk), for some k 6 i+1, which
is the path information of the first beacon message that it received in iteration j.

Note that we cannot be sure that v1 is the id of a Byzantine node, as it could have happened
that some other Byzantine node v` (` ∈ [2, k]) tampered with the prefix (v1, . . . , v`−1) before that
message reached u. However, by Lemma 1, we know any Byzantine node is at least b(1− δ)γ logd nc
hops away from u. In particular, this guarantees that the path suffix P ′, which consists of the last
b(1− δ)γ logd nc nodes in path P , contains only ids of good nodes. Hence at least one Byzantine
node’s id must be in the path prefix prefix Q (where we obtain Q by removing P ′ from P ), as we
have assumed that only Byzantine nodes generate beacon messages at this point.

We will now argue that all nodes in Q are blacklisted by u. By the description of the algorithm,
u blacklists only nodes that have a distance of at least b(1− ε)ic from u. We observe that

b(1− ε)ic 6 (1− ε)i = (1− δ)γ logd n. (by (3))

It follows that the entire prefix Q will be blacklisted. Thus, we have shown that u does not
accept a beacon message that visits any of the nodes in Q in a future iteration of this phase.

By the above reasoning, we know that u blacklists at least 1 Byzantine node in each iteration.
Recall that u executes e(1−γ)i + 1 > n1−γ + 1 iterations in phase i. Given that there are only n1−γ

Byzantine nodes in the network, it follows that there exists an iteration in which u does not set its
variable shortestPath to a value different from none since all Byzantine nodes are already blacklisted
at that point. We conclude that u decides in Line 29, yielding a contradiction.

Lemma 12. At least (1− β)n nodes decide within O(n1−γ log2 n) rounds of the algorithm.
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Proof. Lemma 11(b) tells us that every node in GoodTL decides by phase i = dlog ne with high
probability. By the description of the algorithm, each phase i consists of 2i+ 3 rounds and hence
the total number of rounds executed until that point is O(log2 n).

We now combine the previous lemmas to complete the proof of Theorem 2.

Proof of Theorem 2. We focus on nodes in GoodTL. From Lemma 10 we know that Ω(n) nodes
in GoodTL will proceed to at least phase ρ = Ω(log n) before deciding and thus we can set the
parameter β of the theorem statement accordingly. On the other hand, Lemma 11 guarantees that
all of these nodes decide by the end of phase dlog ne with high probability.

The claim on the running time follows immediately from Lemma 12.

Remark 2. The approximation factor mentioned in Theorem 2 is not universal. It may be different
for different nodes, but in all cases it is bounded by the quantity d logn

ρ e, where ρ is as defined in
Equation (4). Also, while the estimates may vary by a constant factor, it holds with high probability
that all the nodes in GoodTL have estimates that are upper-bounded by dlog ne, i.e., the estimates
of log n are upper-bounded by an additive constant term (which is 1 basically).

Remark 3. We point out that a node in GoodTL may reenter the for-loop and participate in sending
out beacons even after it has already decided (see Line 44). However, in Corollary 1 below, we
show that in the benign case where there are no Byzantine nodes in the network, the algorithm
computes log(n) exactly and all nodes terminate.

Corollary 1. Suppose that all nodes are good. Then the algorithm terminates in O(log(n)) rounds,
and whp, Ω(n) nodes decide on dlog(n)e and stop sending messages.

Proof. Lemmas 10 and 11 tell us that Ω(n) nodes will proceed to phase i = dlog(n)e. Moreover,
none of the good nodes will generate a beacon message with high probability at that point. Thus
no node will send a continue message and all nodes will exit the for-loop.

6 Impossibility result

We have seen that both of our algorithms crucially rely on the expansion properties of the underlying
network. In Theorem 3, we show that having sufficient expansion is necessary for obtaining any
approximation of log(n). In the proof, we make use of the fact that a single Byzantine node can trick
the honest nodes into believing that there may be some large number of nodes hidden “behind” the
Byzantine node, and the honest nodes have no way of verifying whether this bottleneck actually
exists.

Theorem 3. There is no randomized algorithm that ensures that more than dn2 e nodes output an
approximation of log n in the presence of one Byzantine node with probability at least (1 − ε), if
there are no restrictions on the network topology of the given n-node network, for any constant
0 < ε < 1.

Proof. For the sake of a contradiction, suppose that there is an algorithm A that solves the counting
problem and let Cn be an arbitrary graph of size n. Fix any approximation factor c = c(n) > 0,
which includes c being a constant as a special case. Suppose that an execution γ of algorithm A
results in a set S of more than dn2 e nodes, where every ui ∈ S outputs an estimate ˆ̀

i such that
`
c 6

ˆ̀
i 6 c`, for some `. Then we say that A decides on a common estimate of ` in execution γ.

For a given n, let t > n be the smallest integer such that the probability of A deciding on
a common estimate of log (nt) when executing on network Cn is at most 1−ε

t , where ε > 0 is

23



the assumed constant error probability of the algorithm A. Since we assume that decisions are
irrevocable (see Def. 2), we know that A can decide at most one common estimate in a single
execution, the event of producing common estimate `1 and the event of producing common estimate
`2, where c `1 <

`2
c , are mutually exclusive. If t does not exist, then the algorithm has probability

> 1−ε
k to output log (nk) as the common estimate, for all k > n. However, by summing up the

probabilities of these (mutually exclusive) events we get
∑∞

k=n
1−ε
k > 1, i.e., the probabilities of

outputting the common estimates do not form a valid probability distribution. It follows that t
exists.

Now consider a graph H of t copies of Cn where the Byzantine node b is part of each copy,
i.e., node b has degree t · deg(b) where deg(b) is the degree of b in Cn. For each copy Cn, node b
outputs the same set of messages and local state transitions, as are required by an execution of
algorithm A in the network Cn for some given random coin flips when b is an honest node. For
the algorithm to output a common estimate of log(nt) when executing on H, at least > nt

2 nodes
need to output a common estimate of log (nt), which involves at least n

2 nodes in at least t
2 copies

of Cn. Since the nodes in any given copy of Cn cannot distinguish the execution in Cn from the
execution on H and nodes in each individual Cn have probability at most 1−ε

t of outputting the
required approximation of log(nt), we can take a union bound over the t

2 copies of Cn. Thus, for
the probability of the algorithm to produce a common estimate in H, we obtain 1−ε

t
t
2 6 1−ε

2 , a
contradiction to the assumed probability of success being > (1− ε).

7 Conclusion and Open Problems

In this paper we take a step towards designing localized, secure, robust, and scalable distributed
algorithms for large-scale networks. We presented two distributed protocols for the fundamental
Byzantine counting problem. Our work leaves many questions open. While our deterministic
algorithm runs in optimalO(log n) rounds, the randomized algorithm takes rounds that is essentially
proportional to the number of Byzantine nodes in the network. Thus a main open problem would
be to show a polylogarithmic round algorithm for Byzantine counting using small messages or to
prove that this is not possible. Another open problem is to show a algorithm that can tolerate a
significantly larger number of Byzantine nodes, e.g., Θ(n) Byzantine nodes.
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A Expander Subgraph Lemma

For completeness, we restate the following lemma; the original proof is in [6].

Lemma 13 (cf. Lemma 3 in [6]). Let G be a n-node graph with expansion φ and constant node
degree d and suppose that all nodes in a set F are removed from G, where |F | = o(n). Then, for
any positive constant c < 1, there exists a subgraph H of G such that

1. H has expansion cφ, and

2. |H| > n− |F |
(

1 + 1
φ(1−c)

)
.

Proof. We adapt the proof of Theorem 2.1 in [8]. Let GF be the graph yielded by removing the set
F from G. Perform the following iterative procedure (cf. Algorithm Prune in [8]):

1. Initialize G0 = GF .

2. In iteration i > 0, let Si be any set of up to |V (Gi)|/2 nodes with expansion smaller than cφ.

3. If Si exists, prune Si from Gi, i.e., Gi+1 = Gi \ Si.

4. Let H be graph that we get after the final iteration; note that H has expansion > cφ.

We now lower bound the size of H. Suppose that the pruning procedure stops after m iterations.
For the sake of a contradiction, suppose that

|F |
φ(1− c)

<

∣∣∣∣∣
m⋃
i=0

Si

∣∣∣∣∣ .
Define the set S =

⋃`
i=0 Si where ` is the smallest index such that exactly one of the following two

cases holds:
First, assume that |S| 6 n/2. Let NGi(Sj) denote the neighbors in Gi \ Sj of nodes in set Sj .

We make use of the following result whose proof follows analogously to Lemma 2.6 of [8]:

Lemma 14 (cf. Lemma 2.6 in [8]). Suppose that we execute procedure Prune(c). For all j with

0 6 j < m, it holds that |NGF

(⋃j
i=0 Si

)
| 6 cφ|

⋃j
i=0 Si|.

Since G has expansion of φ, it holds that |NG(S)| > φ|S|. On the other hand, Lemma 14 implies

that |NGF
(S)| 6 cφ|S|. Thus we get |F | > φ|S| − cφ|S| = φ(1 − c)|S| and hence |S| 6 |F |

φ(1−c) ,
yielding a contradiction.

Now, consider the case where |S| > n/2. Then, it follows that∣∣∣∣∣
`−1⋃
i=0

Si

∣∣∣∣∣ 6 |F |
φ(1− c)

, (14)

but |S`| > n/2 − |F |
φ(1−c) . (Note that if S` 6

n
2 −

|F |
φ(1−c) , then |S| 6 n

2 and the first case applies.)

Recalling that F = o(n), it follows that S` ∈ Θ(n). Since S` was removed when executing Prune(c),
we know that |NG`

(S`)| 6 cφ|S`| and, by the expansion of G, we have |NG(S`)| > φ|S`| as S` 6 n/2.
Thus

|NG(S`)| − |NG`
(S`)| > φ(1− c)|S`| = Θ(n)
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We observe that the size of the neighborhood of S` must have been reduced by Θ(n) either due to
the removal of nodes in F or because of the pruning of the sets S0, . . . , S`−1. This, however, yields
a contradiction, since

|F |+
`−1⋃
i=0

Si = O(|F |) = o(n).

Thus we have shown that ∣∣∣∣∣
m⋃
i=0

Si

∣∣∣∣∣ 6 |F |
φ(1− c)

,

and hence

|H| > |G| − |F |(1 +
1

φ(1− c)
),

which completes the proof.
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