
RAPTEE: Leveraging trusted execution environments
for Byzantine-tolerant peer sampling services

Matthieu Pigaglio∗, Joachim Bruneau-Queyreix†, David Bromberg‡,
Davide Frey‡, Etienne Rivière∗, Laurent Réveillère†

∗ ICTEAM, UCLouvain, Belgium
† Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR5800, F-33400 Talence, France

‡ Univ Rennes, CNRS, Inria, IRISA, Rennes, France

Abstract—Peer sampling is a first-class abstraction used in
distributed systems for overlay management and information
dissemination. The goal of peer sampling is to continuously build
and refresh a partial and local view of the full membership of a
dynamic, large-scale distributed system. Malicious nodes under
the control of an adversary may aim at being over-represented in
the views of correct nodes, increasing their impact on the proper
operation of protocols built over peer sampling. State-of-the-art
Byzantine resilient peer sampling protocols reduce this bias as
long as Byzantines are not overly present. This paper studies the
benefits brought to the resilience of peer sampling services when
considering that a small portion of trusted nodes can run code
whose authenticity and integrity can be assessed within a trusted
execution environment, and specifically Intel’s software guard
extensions technology (SGX). We present RAPTEE, a protocol
that builds and leverages trusted gossip-based communications
to hamper an adversary’s ability to increase its system-wide
representation in the views of all nodes. We apply RAPTEE
to BRAHMS, the most resilient peer sampling protocol to date.
Experiments with 10,000 nodes show that with only 1% of
SGX-capable devices, RAPTEE can reduce the proportion of
Byzantine IDs in the view of honest nodes by up to 17% when the
system contains 10% of Byzantine nodes. In addition, the security
guarantees of RAPTEE hold even in the presence of a powerful
attacker attempting to identify trusted nodes and injecting view-
poisoned trusted nodes.

I. INTRO

Peer sampling represents a first-class abstraction for the con-
struction of large-scale distributed systems. It is notably em-
ployed in distributed unstructured overlay management [14],
[22] and information dissemination [11], [17]. Typically, nodes
possess partial knowledge (also referred to as their view) of the
global and dynamic system membership. The goal of the peer-
sampling distributed service is to bootstrap and continuously
refresh this local view so that it corresponds as much as
possible to a uniform sample of alive nodes in the system.
The implementation of the peer-sampling service is typically
based on gossip protocols leveraging simple, periodic peer-
wise exchanges of information. A plethora of protocols have
been published and studied [3], [15], [21] under considerations
of crash faults, churns, performance, ergodicity, and desirable
structural properties such as balanced in-degree, low diameter,
and ability to quickly remove departed nodes from the views
of alive ones.

The resilience of peer-sampling protocols to Byzantine
faults is crucial for the security of applications relying upon
it. Indeed, malicious nodes that succeed in becoming over-
represented in the views of honest nodes can gain control
of the upper-layer protocols. For example, the peer-sampling
protocol of Bitcoin was discovered to be exposed to eclipse at-
tacks [12], opening the door to multiple types of selfish mining
and double-spending attacks at the consensus level. In state-
of-the-art Byzantine-resilient peer-sampling protocols [3], [6],
the views of honest nodes can swiftly be poisoned with
Byzantine identifiers as the proportion of malicious nodes in
the system grows. With BRAHMS [6], the most Byzantine
resilient protocol, the views of honest nodes contain 81% of
Byzantine identifiers (IDs) when 18% of the nodes in the
system are malicious.

The advent of trusted execution environments (TEEs) has
exposed many desirable properties for distributed systems,
notably remote attestation, authentication, integrity, and con-
fidentiality of the execution environment. This paper shows
how the resilience of peer-sampling protocols to Byzantine
behaviors can be improved with these TEE properties. In
this paper, we consider Intel’s Software Guard Extensions
(SGX) [9] released in 2015, but any TEE technology providing
similar code integrity validation properties would be a fit for
our approach, e.g., ARM’s TrustZone [18].

We present RAPTEE, a novel protocol that integrates trusted
communications in the peer-sampling-service operation and
interoperates them with BRAHMS. We consider a system com-
posed of honest and Byzantine nodes, along with a small pro-
portion of trusted nodes (i.e., SGX-capable devices). Because
trusted nodes cannot act maliciously, RAPTEE accelerates the
dissemination of knowledge they possess while slowing down
the action of Byzantine nodes and preventing the identification
of trusted nodes by an adversary.

In RAPTEE, all nodes execute a modified version of
BRAHMS. However, trusted nodes are not bound to strictly
execute BRAHMS when interacting with other trusted nodes,
even though they can possess Byzantine IDs in their views.
Contrarily, when communicating with untrusted nodes, ad-
ditional Byzantine-fault countermeasures are required. They
consist of adaptively ignoring part of the IDs sent by untrusted
nodes. This voluntary loss of information enables higher

ar
X

iv
:2

20
3.

04
25

8v
1 

 [
cs

.D
C

] 
 8

 M
ar

 2
02

2



resilience. Indeed, it reduces the ability of an attacker to
pollute the views of trusted nodes by sending them bulks of
malicious IDs, which makes trusted nodes act as sources of
less biased identifiers than untrusted nodes.

Because trusted nodes can improve the system’s Byzantine
resilience, they are of utmost interest for malicious nodes
in performing targeted attacks and eclipsing them from the
system. It becomes clear that they cannot advertise themselves
as trustworthy actors and should remain hidden in the mass.
Accordingly, RAPTEE leverages the ability of trusted nodes
to learn their mutual trusted capacity without revealing it
to others. Ignoring IDs also hampers the dissemination of
correct IDs transmitted by honest nodes, which could have a
significant impact on system convergence in the time it takes to
discover a majority of nodes. To address this problem, RAPTEE
makes trusted nodes exchange information in a dissemination-
efficient way using gossip-based peer-sampling interactions
following the framework of Jelasity et al. [15].

Our experiments with 10,000 nodes on the Grid 5000 [5]
testbed show that with no more than 1% of SGX-capable
devices, RAPTEE can reduce the proportion of Byzantine IDs
in the views of honest nodes by up to 17% when the ratio
of Byzantine nodes in the system is 10%. This resilience
gain comes at the expense of a limited overhead of 10%
in terms of the required number of rounds to view stability
and 12% for system discovery. We assess the security risks of
RAPTEE against two types of attack: trusted-node identifica-
tion and view-poisoned trusted node injection. We show that
the identification attack is particularly inefficient before the
system converges and is impossible once this point is reached.
Considering injecting trusted nodes with polluted views, we
show that it has little to no impact on the system’s resilience
and that trusted nodes can self-heal with RAPTEE.
Outline. First, we provide some requisite background knowl-
edge on BRAHMS and on the general gossip-based peer-
sampling framework in Section II. Then, we provide a high-
level overview of RAPTEE with its models and objectives in
Section III. We describe RAPTEE and detail how it comple-
ments BRAHMS with trusted communications in Section IV.
Section V exposes the experimental methodology used to
evaluate the performance and resilience of RAPTEE under
different configurations and discusses the results. We provide a
security assessment of RAPTEE to trusted-node-identification
and corrupted-trusted-node-injection attacks in Section VI. We
summarize our findings in Section VII and review the state of
the art in Section VIII before concluding in Section IX.

II. BACKGROUND

We start by presenting background on gossip-based peer
sampling and on the BRAHMS protocol [6].
Gossip-based peer sampling: Gossip is a mode of operation
for large-scale distributed systems based on repeated, periodic
peer-to-peer interactions between pairs of peers [19]. Despite
the general simplicity of these local interactions, Gossip
protocols exhibit very good global robustness properties (i.e.,
the ability to resist high levels of churn or survive network

partitions) thanks to their self-organizing nature [4], [14].
These properties often depend, however, on the quality of the
random process that determines the participants in these peer-
wise interactions. This selection of communication partners at
each period should be as close as possible to a uniform random
draw amongst all participating nodes, including newly joined
ones and excluding departed or failed ones. The peer-sampling
service plays a fundamental role in ensuring this property.

Interestingly, the most efficient way to implement a peer-
sampling service for use by other protocols, gossip-based or
not, is to design it as a gossip-based protocol itself. The goal
of such a protocol is to equip each node of the system with a
view, e.g., a sample of other nodes in the system. The graph
formed by the who-knows-whom relations with these views
should be as close as possible to a random graph of fixed out
degree. As such, it should have balanced in-degrees (to prevent
nodes from being under or over-represented in the views of
other nodes), a low diameter, and a low clustering coefficient.
In addition, these properties must be enforced while quickly
including newly joined peers in the views of other nodes (so
as to match their in-degree, and therefore the probability of
being selected as a gossip partner, to that of existing nodes)
and quickly removing departed or failed nodes. Addressing
these different requirements simultaneously is, unfortunately,
impossible and gossip-based peer-sampling protocols are the
result of a compromise between them.

Jelasity et al. [14] proposed a universal framework for the
design of gossip-based protocols that encompasses previous
designs with emphasis on a specific property (e.g., balanced in
degree and low clustering for Cyclon [21] or efficient dynamic
membership for Newscast [20]). This framework defines two
parameters, H (for Heal) and S (for Shuffling), that drive the
exchange of (partial) views of size c between peers, in addition
to other parameters such as the policy for partner selection or
the policy for the link deprecation in individual nodes’ views.
On the basis of the recommendations of Jelasity et al. [14],
we apply this framework with the following criteria. (1) Peers
initiate an exchange with the peer that has been for the longest
time in their view, on the basis of an age parameter associated
with its entries. This effectively enables a round robin probing
of view neighbors. (2) They exchange half of their view, and
the initiator peer inserts a link to itself in the view sent to the
gossip partner. (3) The exchange favors the shuffling of the
links, i.e., a link sent from the initiator will be kept only by
the partner, and vice-versa.
BRAHMS: This protocol presented by Bortnikov et al. [6] is
designed for large and dynamic systems prone to Byzantine
failures and sybil attacks. With high probability, BRAHMS
prevents an attacker from creating a partition between correct
nodes, and allows each node’s view to converge to a uniform
random draw of all participating nodes over time. The main
ideas behind Brahms are to use push-pull gossip-based mem-
bership with some additional defense mechanisms to prevent
local views from being exclusively composed of Byzantine IDs
and correct biased views due to attacks. We briefly describe the
two components of BRAHMS employed by each node before

2



detailing its defense mechanisms.
BRAHMS has two components. The first is a gossip compo-

nent. Each node spreads locally known IDs across the system
and maintains a dynamic view V of l1 entries. The second
is a local sampling component that enables each node to
maintain a sample list S of l2 entries uniformly sampled
from the received IDs. Uniformity is obtained by a min-wise
independent permutation [8] technique.

Initially, each node possesses a list containing node IDs
and addresses obtained from a bootstrap node. Periodically, a
BRAHMS node, through the gossip component, selects from
its dynamic view V both, α × l1 nodes to send them push
messages containing its own ID, and β × l1 nodes to send
them pull-request messages in order to retrieve their views.
At the end of each round, the sample list S is updated via the
sampling component, while the dynamic view V is renewed
by randomly selecting: (i) α × l1 IDs received from push
messages, (ii) β × l1 IDs from pull answers, and (iii) γ × l1
IDs from the sample list (referred to as the history sample),
with α+ β + γ = 1, as shown in Figure 1.

⍺l1 𝛾l1𝛽l1 l2

Pushed IDs

Pulled IDs
Sampling

Sample list SDynamic View V

History sample

Fig. 1: BRAHMS view computation

As depicted in Figure 2, the sampling component consists
of l2 samplers. It takes as input a stream of identifiers
received from push or pull messages and produces a sample
list of size l2. At initialization, each sampler chooses a hash
function at random. A sampler takes an identifier as input and
computes its hash. If the calculated hash is smaller than the
one corresponding to a previously stored identifier, the sampler
produces the new identifier and stores it in its local memory.
Otherwise, the sampler outputs the stored ID.

Sampler1 Sampler2 Samplerk...

ID stream

ID1 ID2 ... IDkSample list

Fig. 2: BRAHMS sampling component

The four defense mechanisms that prevent partitioning and
allow convergence to uniform sampling are the following:
(i) limited pushes, (ii) attack detection and blocking, (iii) con-
trolling the contribution of pulls versus pushes, and (iv) history
sampling. We detail these mechanisms in the following. (i) An
adversary could forge identities or flood the system with push
requests, leaving correct IDs propagated mainly through pulls

and diminishing their representation exponentially. BRAHMS
assumes a mechanism that limits the message sending rate
of nodes, for example, via computational challenges like
Merkle’s puzzles, virtual currency, etc. (ii) Limiting push
messages prevents a simultaneous attack on all correct nodes
but does not protect against flooding a targeted node. To do
so, BRAHMS blocks dynamic view updates if more than the
expected α× l1 pushes are received. This policy slows down
progress but its expected impact in the absence of attacks
is bounded, and thanks to limited pushes, some nodes make
progress even under attack. (iii) Node views are threatened
by pulls from neighbors more than by adversarial pushes.
Pushes from correct nodes are correct, but pull answers from
correct nodes may contain some identifiers of Byzantine nodes.
Hence, the contribution of pushes and pulls to V must be
balanced. Brahms updates V with randomly chosen α × l1
pushed IDs to protect targeted nodes, and β × l1 pulled IDs
to protect the rest. (iv) The attack detection and blocking
technique slows down a targeted attack but cannot prevent
it completely. A node victim of targeted pushes will pull
more IDs from Byzantine nodes, send fewer pushes to correct
ones, causing its systemwide representation to decrease hence
receiving fewer correct pushes. Brahms overcomes such an
attack using a self-healing mechanism by incorporating, in the
view, an unbiased historical sample of γ × l1 IDs from the
sample list S. Once some correct ID becomes the permanent
sample of the node under attack (or the node’s ID becomes
a permanent sample of another correct node), the threat of
isolation is eliminated.

Results on Figure 3 show resilience (percentage of Byzan-
tine IDs in the views of correct nodes), time to discovery
(number of rounds required for all nodes to discover at least
75% of non-Byzantine IDs) and time to view stability (number
of rounds necessary for all non-Byzantine node views to be
polluted within 10% of the average proportion of Byzantine
IDs in the views non-Byzantine nodes) of BRAHMS under
different shares of Byzantine nodes in the system. The Brahms
parameters are set as recommended in the original paper [6],
namely α = β = 0.4 and γ = 0.2.

10 12 14 16 18 20 22 24 26 28 300
25
50
75

100

By
za

nt
in

e 
ID

s (
%

)

Resilience

10 12 14 16 18 20 22 24 26 28 30
Byzantine proportion (%)

0

50

100

150

Ro
un

ds

Discovery
Stability

Fig. 3: BRAHMS resilience, time to discovery and to stability
under Byzantine faults

3



III. MODELS AND OBJECTIVES

We present our system model and objectives, followed by
our trust and adversarial models.

A. System, operating models and RAPTEE’s objectives

We consider a system of N nodes composed of a fraction f
of Byzantine nodes that can deviate from the protocol in any
possible way, a fraction t of trusted nodes, and a fraction h =
1− f − t of honest (or correct) nodes that execute BRAHMS.
Each node is identified by a unique ID, chosen when the node
becomes active for the first time. Figures 4 gives an overview
of RAPTEE and depicts the interactions between the different
types of nodes.

Mutual authentication
Filtered pulls

View exchanges

Trusted nodes Byzantine nodes Correct nodes

Pulls

Pushes

Tru
ste

d plan

Untru
ste

d plan

Fig. 4: Overview of the RAPTEE protocol

Honest nodes aim to get a uniform sample of the global
system membership. They execute a modified version of
BRAHMS to exchange identifiers. RAPTEE relies on both the
push-pull gossip and sampling components of BRAHMS as
detailed in Section II, as well as its defense mechanisms. Push
messages include only the sender’s identifier, while responses
to pull requests contain the full view held by the requested
node.

Interactions between different types of nodes are designed to
slow down the discovery of IDs possessed by untrusted nodes
and accelerate the dissemination of IDs possessed by trusted
nodes. To do so, trusted nodes filter out pull answers from
untrusted ones by evicting part of the received IDs. During
trusted communications, trusted nodes exchange view parts
following the instantiation of the Gossip-based Peer Sampling
framework [15] and as detailed in the previous section. To
decide on the types of node interactions (e.g., trusted to
untrusted, trusted to trusted, etc.), RAPTEE includes a mutual
authentication protocol that precedes all pull requests.

B. Trust and adversarial models

We consider an adversary controlling all Byzantine nodes
with two objectives: successfully over-representing the system-

wide fraction of Byzantine IDs in the partial membership
knowledge of all nodes and identifying trusted nodes to
evict them from the system. The adversary has access to the
system’s global membership, including Byzantine and correct
nodes, but is unaware of the location or amount of SGX-
capable devices. In the original BRAHMS paper [6], the authors
prove that a balanced attack, which spreads faulty pushes
evenly among correct nodes, maximizes the expected system-
wide fraction of faulty IDs. Additionally, thanks to its history
sample mechanism, BRAHMS sustains targeted attacks where
the adversary tries to partition the network by targeting a
subset of nodes and sending more pushes than in a balanced
attack. Because RAPTEE is built on top of BRAHMS and
inherits its properties, our adversary exclusively advertises
Byzantine IDs to honest ones via answers to pull requests and
evenly balanced push messages. We identify two additional
attack vectors stemming from the addition of trusted nodes into
the system. The first one consists of identifying trusted nodes
to isolate them from non-Byzantine nodes, launching targeted
attacks on them to pollute their views, and inserting them
back into the system. The second one exploits the possibility
of purchasing SGX-capable devices and bootstrapping their
lifecycle by surrounding them with Byzantine nodes to almost
fill their views with Byzantine IDs.

We rule out Sybil attacks [10] by relying on the Sybil
resilience of BRAHMS that limits the message sending rate of
nodes via computational challenges like Merkle’s puzzles, vir-
tual currency, etc. We assume that trusted nodes can only crash
fault. They cannot act maliciously even though Byzantine IDs
can bias their view. Our implementation uses specifically Intel
SGX [9]. We trust Intel for the certification of genuine SGX-
enabled CPUs, and we assume that the code running inside en-
claves is properly attested before being provided with secrets.
We assume Byzantine nodes can neither break cryptographic
primitives nor read data available in the trusted environment
of SGX-capable devices. Communications between any two
nodes, including trusted ones, are cyphered with symmetric
encryption to protect against an eavesdropping adversary.
We consider that an adversary cannot listen anywhere in
the network and draw conclusions based on communication
patterns such as message frequency or size.

IV. INTEROPERATING TRUSTED COMMUNICATIONS WITH
BYZANTINE RESILIENT PEER SAMPLING

We detail in this section the main components of RAPTEE:
mutual authentication, which allows trusted nodes to be recog-
nized in the mass, trusted communication, which accelerates
the dissemination of knowledge between trusted nodes, and
Byzantine eviction, which slows down view poisoning.

A. Mutual authentication

To enable trusted nodes to know whether they are commu-
nicating with other trusted nodes, we design a secure mutual
authentication protocol that is executed by all nodes before
issuing a pull request to a selected neighbor in the dynamic
node view. We assume that all nodes have one symmetric

4



secret key. Each untrusted node generates a random secret
key during the initialization phase. Conversely, trusted nodes
share a common secret key that is provisioned during the
remote-attestation phase. The mutual authentication protocol
between two nodes A and B operates as follows. First, A
generates a pseudo-random number rA and sends it to B
as a cryptographic challenge. In turn, B generates another
pseudo-random number rB , it computes the hash of the
concatenation of rA and rB , H(rA · rB) and encrypts it with
its own secret key obtaining [H(rA · rB)]KB

. Then it sends
rB and [H(rA · rB)]KB

to A. Upon receiving this response,
A computes H(rA · rB) and deciphers [H(rA · rB)]KB

using
its own secret key KA. If the two values are identical (i.e., A
and B share the same secret key), A can identify B as trusted.
Then, A sends [H(rB ·rA)]KA

to B. Like A, B deciphers this
encrypted hash using its own secret key KB and compares it
with H(rB · rA). If the two are equal, B can also identify A
as trusted.

B. Trusted communications

In RAPTEE, we aim to accelerate the dissemination of
identifiers among trusted nodes to spread this knowledge to
untrusted nodes. When two trusted nodes authenticate each
other in a round, they can trust the remote node not to deviate
from the protocol other than through failures. For this reason,
trusted nodes perform a trusted peer-sampling phase during the
current round, in which they exchange and sample identifiers
in a manner different from that described for BRAHMS. During
the trusted communication phase, each node follows the two
following measures. First, it swaps half of its view with half
of the remote node’s view. Then, it transmits the received IDs
to the list of pulled IDs in the BRAHMS protocol. The first
measure allows trusted nodes to gossip more of the IDs they
receive from other trusted nodes during the round (via pull
messages). The second takes into account the IDs transmitted
by other trusted nodes to update the sample list, and renews
the dynamic view during the random selection of β× l1 pulled
IDs.

C. Byzantine eviction

Since pull answers from Byzantine nodes contain exclu-
sively Byzantine IDs, one could think that if trusted nodes did
not send any pull requests, they could prevent the poisoning
of their views. However, this simple approach would open the
door for an attacker to identify trusted nodes and eclipse them
from the system. Indeed, they would behave differently from
untrusted nodes, and monitoring their messages would make
them easily identifiable. For this reason, trusted nodes send
pull requests in the same way as untrusted nodes and remain
hidden from the sight of an eavesdropping adversary.

Nonetheless, they can integrate an additional defense mech-
anism to protect their views from view-poisoning attacks
without revealing themselves to the adversary. At the end
of each round, they can ignore part of the pulled IDs from
untrusted nodes by not passing them to the BRAHMS sampling

component and by ignoring them during the renewal of the
pulled β × l1 entries of the node’s dynamic view V .

We refer to the proportion of ignored pulled IDs as the
eviction rate. It can be a fixed value (between 0 and 100%)
for the entire system. A 100% eviction rate allows the peer
sampling service to construct views as if the trusted nodes
were not issuing any pull requests. The eviction rate can also
be adaptive and local for each trusted node. That is, its value
is set according to the proportion of trusted nodes with which
the trusted node has exchanged identifiers during the current
round. The intuition behind adapting the eviction rate value is
that the greater the share of trusted nodes contacted during
the current round, the greater the number of IDs received
from trusted nodes, and the fewer the attempts to poison their
views from pull responses from Byzantine nodes. If a trusted
node exchange messages with many other trusted nodes in
a round, then it will evict a smaller share of IDs received
from untrusted nodes compared to when it contacts a few, if
any, trusted nodes. We establish the following adaptive rule to
determine the value of the eviction rate. First, we limit its value
between 20%, when the proportion of trusted communications
is above 80%, and 80%, when it is below 20%. A linear
function governs the value of the eviction rate within these
two limits.

Although evicting IDs from pull responses leads to fewer
poisoned views of trusted nodes compared to non-Byzantine
untrusted ones, it also helps an attacker identify trusted nodes.
Indeed, Byzantine nodes can compare the composition of
pull responses from the nodes they contact and isolate the
responses that contain the fewest Byzantine IDs. We assess
this identification risk in section VI.

V. EXPERIMENTAL EVALUATION

Our evaluation aims to answer the following research ques-
tions: (1) By how much does RAPTEE increase resilience to
Byzantine faults compared to BRAHMS? (2) How much does
RAPTEE impact the performance of BRAHMS in terms of
convergence time to system discovery and view stability?

The implementation of RAPTEE used for our experiments
consists of 1,200 lines of shared C++ code, between trusted
and untrusted nodes. The code that runs inside trusted nodes
uses the Intel SGX SDK1 and amounts to about 800 addi-
tional lines of C++ code. Cryptographic operations use Intel’s
OpenSSL SGX port2, using RSA for asymmetric encryption
and the AES-CTR mode for symmetric encryption. The code
that runs inside untrusted nodes has about 300 additional lines
of C++ code. Since we do not have access to a large in-
frastructure supporting SGX-capable devices, we first perform
a micro-benchmark to evaluate the overhead of running the
code of RAPTEE’s trusted node in a real SGX environment
compared to an emulated SGX environment. It enables us
next to calibrate our emulated SGX environment to conduct a
representative large-scale experiment involving 10,000 nodes
using the Grid 5000 testbed.

1Intel SGX SDK. https://software.intel.com/en-us/sgx/sdk.
2Intel SGX SSL. https://github.com/intel/intel-sgx-ssl.

5



A. Overhead of using SGX nodes

Our first set of experiments are performed on a cluster of
40 physical machines. Each machine is an Intel Next Unit
of Computing (NUC) Kit with a 2-core 3.50 GHz Intel i7
processor and 32 GB of RAM3. We consider a testbed of
200 nodes, with five nodes per machine. We instrumented the
RAPTEE’s code that runs inside the trusted nodes to measure
the CPU-cycle consumption of each of the following functions:
pull requests, push messages, trusted communication, sample
list computation, dynamic view computation. We also imple-
mented a modified version of the trusted code that emulates
SGX and runs on non-capable SGX devices. We then compare
the execution time of these functions on both capable and non-
capable SGX devices.

We run two sets of experiments. In the first set, we deploy
100 untrusted nodes and 100 trusted nodes whose code actu-
ally uses SGX capabilities. In the second set, the 100 trusted
nodes use the emulated version of the code instead. To start the
experiment, each node initiates RAPTEE with a view composed
of a uniform random sample of the global membership. A
single experiment lasts for 200 rounds of 2.5 seconds each.
We empirically set the number of rounds to 200 to reach
the convergence of the protocol. We repeat each experiment
100 times and collect measurements at each iteration. We then
compare the running time of operations on the emulated SGX
nodes and on the real SGX ones, and compute the associated
overhead. Table I shows these running times together with
the mean and standard deviation of the CPU-cycle overhead
for the functions under consideration. We use this overhead
to calibrate our emulated implementation in the rest of our
experiments.

TABLE I: SGX performance overhead (in CPU cycles)

Peer sampling function Standard SGX Mean
overhead

Standard
deviation

Pull request 15,623 18,593 2,970 3 %
Push message 7,521 9,182 1,661 3 %
Trusted communications 9,845 11,516 1,671 3 %
Sample list comput. 13,024 15,364 2,340 4 %
Dynamic view comput. 12,457 15,076 2,619 2 %

B. Large-scale experimental setup

We emulate the behavior of SGX-capable nodes in a larger
testbed hosted on Grid 5000. We increase the latency of each
function that needs to be executed in SGX by adding a random
delay that depends on the mean CPU-cycle overhead and
follows its standard deviation, based on the data in Table I.
Our emulated testbed consists of 10,000 nodes, running on 20
machines. Each machine has 2 CPUs with 16 cores each and
192 GB of memory.

We evaluate the resilience of RAPTEE and compare it to
the nominal value of BRAHMS (see Section II). Resilience
improvement is defined as the percentage drop in the number

3One of the models recommended by Intel for experimenting with SGX.

of Byzantine identifiers in the views of correct nodes. We also
evaluate the performance of RAPTEE compared to BRAHMS
on two other indicators: system-discovery time and view-
stability time. As in the case of BRAHMS (Section II), system-
discovery time is defined as the number of rounds required for
all nodes to discover at least 75% of non-Byzantine IDs. View-
stability time is defined as the number of rounds necessary
for all non-Byzantine node views to be polluted within 10%
of the average proportion of Byzantine IDs in the views of
non-Byzantine nodes. We measure the performance overhead
in terms of a percentage of additional rounds.

Each node runs an experiment for 200 rounds of 2.5-seconds
each, during which it records the composition of its view in
terms of Byzantine and honest IDs. We repeat each experiment
10 times to consolidate the results. An experimental setup
consists of selected proportions of Byzantine nodes, f , and
trusted nodes, t, and a fixed Byzantine eviction rate. We
vary f from 10% to 30% with a step of 2%, t from 1%
to 50%, and the eviction rate from 0% to 100%. We also
consider the adaptive eviction rate mechanism which does not
require setting a specific value. While honest nodes follow the
protocol, Byzantine nodes push faulty IDs to correct nodes
and always return faulty IDs to pull requests. We set the view
size to 200 entries.

Figures 5 to 8 show the results of our experiments for
different configurations of the Byzantine eviction rate. Their
corresponding subfigures a, b, and c represent resilience
improvements, system-discovery overhead, and view-stability
overhead as a function of the proportions of Byzantine and
trusted nodes, respectively. Finally, Figure 9 shows the benefits
of relying on our adaptive eviction rate mechanism.

C. Resilience improvements

As shown in Figures 5a, 6a, and 7a, a minimum of 1%
of trusted nodes (t = 1%) allows RAPTEE to decrease the
proportion of Byzantine IDs in the views of honest nodes
by 4% under a 0% eviction rate and by 7% under a 60%
eviction rate The incremental increase in t up to 50% provides
further improvements in resilience, although sublinearly, up to
15%. Furthermore, the proportion f of Byzantine nodes has
no impact on resilience improvements.

Considering an eviction rate of 100% might be a good
idea at first glance. Indeed, for as few as 10% of Byzantine
nodes, Figure 8a shows that this configuration outperforms
the previous ones, providing resilience improvements ranging
from 11% to 21%. However, as soon as f increases, the
improvements drop, reaching between 0 and 5% percent with
a Byzantine ratio of 30%, highlighting the questionable aspect
of increasing the eviction rate to such an extent. A 100%
eviction rate delays the process by which trusted nodes learn
about other trusted nodes since only pushed IDs from the
BRAHMS protocol can enter their views. This slowdown favors
Byzantine nodes because they can pollute the views of honest
nodes faster than trusted nodes could meet.

As shown in Figure 9a, the curves of the adaptive eviction
rate have a similar shape to the 100%-eviction-rate case.

6



10 12 14 16 18 20 22 24 26 28 30
Byzantine proportion - f (%)

0
5

10
15
20
25
30

Re
sil

ie
nc

e 
im

pr
ov

em
en

t (
%

)
t=1%
t=5%
t=10%

t=20%
t=30%
t=50%

(a) Byzantine resilience gain

10 12 14 16 18 20 22 24 26 28 30
Byzantine proportion - f (%)

20

0

20

40

60

80

Ad
di

tio
na

l r
ou

nd
s (

%
)

(b) Round overhead for system discovery (%)

10 12 14 16 18 20 22 24 26 28 30
Byzantine proportion - f (%)

20

0

20

40

60

80

Ad
di

tio
na

l r
ou

nd
s (

%
)

(c) Round overhead to reach view stability (%)

Fig. 5: Resilience improvement and performance overhead under a 0% eviction rate

10 12 14 16 18 20 22 24 26 28 30
Byzantine proportion - f (%)

0
5

10
15
20
25
30

Re
sil

ie
nc

e 
im

pr
ov

em
en

t (
%

)

t=1%
t=5%
t=10%

t=20%
t=30%
t=50%

(a) Byzantine resilience gain

10 12 14 16 18 20 22 24 26 28 30
Byzantine proportion - f (%)

20

0

20

40

60

80

Ad
di

tio
na

l r
ou

nd
s (

%
)

(b) Round overhead for system discovery (%)

10 12 14 16 18 20 22 24 26 28 30
Byzantine proportion - f (%)

20

0

20

40

60

80

Ad
di

tio
na

l r
ou

nd
s (

%
)

(c) Round overhead to reach view stability (%)

Fig. 6: Resilience improvement and performance overhead under a 40% eviction rate

10 12 14 16 18 20 22 24 26 28 30
Byzantine proportion - f (%)

0
5

10
15
20
25
30

Re
sil

ie
nc

e 
im

pr
ov

em
en

t (
%

)

t=1%
t=5%
t=10%

t=20%
t=30%
t=50%

(a) Byzantine resilience gain

10 12 14 16 18 20 22 24 26 28 30
Byzantine proportion - f (%)

20

0

20

40

60

80

Ad
di

tio
na

l r
ou

nd
s (

%
)

(b) Round overhead for system discovery (%)

10 12 14 16 18 20 22 24 26 28 30
Byzantine proportion - f (%)

20

0

20

40

60

80

Ad
di

tio
na

l r
ou

nd
s (

%
)

(c) Round overhead to reach view stability (%)

Fig. 7: Resilience improvement and performance overhead under a 60% eviction rate

However, the resilience improvements are better than any of
the fixed rate scenarios described above when the fraction of
Byzantine nodes is below 26%. With only 10% of Byzantine
nodes, RAPTEE offers resilience improvements of between
18% and 25% over BRAHMS.

D. Performance overhead

The overhead in terms of system discovery and view sta-
bility of RAPTEE increases when the eviction rate increases.
However, relatively high eviction rates provide better pro-
tection against view poisoning. The adaptive eviction-rate
configuration provides optimal results with overhead close to
that of the 0%-eviction-rate configuration as well as the highest
level of resilience. Increasing t drives up the overhead to a
tipping point when larger shares of trusted communication
compensate for the propagation of Byzantine IDs that slow
down the discovery of non-Byzantine nodes. The overhead
values of system discovery and view stability are closely
related, and we can draw similar trends and interpretations.
For this reason, we only comment on the system-discovery
overhead in the remainder of this section.

Figure 5b shows the system-discovery overhead of RAPTEE
with a 0% eviction rate. This overhead is negligible and does
not exceed 3% when the number of trusted nodes is very
small (t = 1%). Indeed, in this configuration, trusted nodes
can hardly find their siblings in the mass, making trusted
communication rare and making it unlikely that malicious
nodes will send Byzantine IDs to trusted nodes. Moreover,
this overhead remains constant regardless of the proportion
of Byzantine nodes. In other words, since trusted nodes do
not evict any ID from pull responses, discovery time is barely
affected by Byzantine attempts to pollute views compared with
our baseline results with BRAHMS.

The system-discovery time behaves differently as the share
of trusted nodes increases. When f is less than 14-16%, the
time required for system discovery is actually lower than in
the case of BRAHMS, with a maximum gain of 18% when
considering 50% of trusted nodes. With an eviction rate of
0%, trusted nodes can quickly discover their siblings, leaving
the field open for trusted communication to take over with
efficient dissemination of IDs, sending them back to the honest
nodes that run BRAHMS. Nonetheless, when f exceeds 14-

7



10 12 14 16 18 20 22 24 26 28 30
Byzantine proportion - f (%)

0
5

10
15
20
25
30

Re
sil

ie
nc

e 
im

pr
ov

em
en

t (
%

)
t=1%
t=5%
t=10%

t=20%
t=30%
t=50%

(a) Byzantine resilience gain

10 12 14 16 18 20 22 24 26 28 30
Byzantine proportion - f (%)

20

0

20

40

60

80

Ad
di

tio
na

l r
ou

nd
s (

%
)

(b) Round overhead for system discovery (%)

10 12 14 16 18 20 22 24 26 28 30
Byzantine proportion - f (%)

20

0

20

40

60

80

Ad
di

tio
na

l r
ou

nd
s (

%
)

(c) Round overhead to reach view stability (%)

Fig. 8: Resilience improvement and performance overhead under a 100% eviction rate

10 12 14 16 18 20 22 24 26 28 30
Byzantine proportion - f (%)

0
5

10
15
20
25
30

Re
sil

ie
nc

e 
im

pr
ov

em
en

t (
%

)

t=1%
t=5%
t=10%

t=20%
t=30%
t=50%

(a) Byzantine resilience gain

10 12 14 16 18 20 22 24 26 28 30
Byzantine proportion - f (%)

20

0

20

40

60

80

Ad
di

tio
na

l r
ou

nd
s (

%
)

(b) Round overhead for system discovery (%)

10 12 14 16 18 20 22 24 26 28 30
Byzantine proportion - f (%)

20

0

20

40

60

80

Ad
di

tio
na

l r
ou

nd
s (

%
)

(c) Round overhead to reach view stability (%)

Fig. 9: Resilience improvement and performance overhead under the adaptive eviction rate policy

16%, attacks by Byzantine nodes to poison the views of honest
nodes hinder the benefits of efficient trusted communication,
and the protocol suffers an overhead of 3-16% depending on
the shares of trusted nodes considered.

A particular pattern of discovery time should be noted. For f
greater than or equal to 16%, the most extreme values of t lead
to minimal overhead. Conversely, intermediate values (i.e., t =
10 and t = 20) incur the highest overhead. This bell-shaped
pattern results from trusted nodes’ having Byzantine identifiers
in their views that are advertised by malicious nodes and their
sharing them with other trusted nodes. As a result, this rapid
dissemination of Byzantine identifiers slows the discovery time
of the entire system, which relatively small shares of trusted
nodes (i.e., small values of t) cannot compensate for. A tipping
point is reached once t exceeds 20%. Overhead decreases,
resulting in a higher proportion of trusted nodes broadcasting
more non-Byzantine identifiers.

A similar but amplified bell curve is observed in Figures 6b
and 7b where the eviction rate reaches 40% and 60% respec-
tively. This exacerbated effect results from the fact that the
total number of evicted identifiers increases as t increases from
1 to 10-20%, resulting in an additional delay in the discovery
of the overall system which again is not compensated for by
the relatively small share of trusted nodes.

Another trend is visible on all eviction-rate configurations,
except for 0% (Figures 6b, 7b, 8b, 9b). Overhead costs
decrease as the proportion of Byzantines increases from less
to more than 18-20%. Indeed, increasing f guides both the
amount of non-Byzantine nodes and the amount of over-
advertised IDs to non-Byzantine nodes. Therefore, fewer non-
Byzantine identifiers and more over-advertised IDs have to be
discovered, resulting in faster system discovery compared to

lower values of f .
The adaptive eviction-rate mechanism provides an optimal

trade-off between performance overhead and resilience. With t
as small as 1%, resilience is improved by 8-18%; system dis-
covery and view stability require only 15-20% more rounds.

VI. SECURITY ANALYSIS

This section provides a security analysis of RAPTEE against
two attack vectors: trusted node identification, and view-
poisoned trusted node injection.

A. Trusted node re-identification

In the original BRAHMS paper [6], the authors prove
that an adversary that tries to isolate nodes by launching
targeted attacks on them cannot partition the network. How-
ever, RAPTEE’s use of trusted communications makes trusted
nodes a particularly attractive target for the adversary. If the
adversary could identify these nodes, it could launch a targeted
attack to pollute their views with Byzantine IDs. The adversary
would thus have a backdoor to inject Byzantine IDs into the
protocol to increase the dissemination speed of Byzantine IDs.
This could inhibit the benefits of trusted communications on
resilience to Byzantine behaviors and could further increase
the time required to reach stability and to discover new peers.
To evaluate this attack feasibility, we must distinguish between
two cases: after reaching view stability and before.

We recall that view stability is defined as the state in which
the maximum difference in view composition between any
non-Byzantine node and the average of all non-Byzantine
nodes does not exceed 10%. Our experiments show that
once this state is reached, the difference in view composition
between trusted and untrusted nodes does not exceed 2% on
average. This difference is therefore much smaller than the

8



10% threshold used to define view stability. This makes it
very difficult for an adversary to identify trusted nodes even
with global knowledge of all views in the system.

On the other hand, before reaching view stability, trusted
nodes propagate their views to untrusted nodes via answers
to pull requests, which are sometimes (and purposely) signif-
icantly different from the views of untrusted nodes. To assess
the extent to which this can lead to successful identification,
we consider an attack in which each Byzantine node measures
the proportion of Byzantine IDs in the pull answers it receives
from each non-Byzantine node and provides this information
to the adversary. The adversary first computes the average
percentage of Byzantine IDs in the views of all honest nodes.
Then, for each honest node, it computes the difference between
this average percentage and the percentage of Byzantine IDs
in the honest node’s view. If the difference exceeds the
threshold, the adversary labels the node as a trusted node.
We experimentally tested several thresholds and the one that
maximizes the identification outcome is 10%.

We evaluate the effectiveness of this attack with 10% of
Byzantine nodes in Figures 10 and 30% of Byzantine nodes
in Figure 11. For each Byzantine configuration, we present
recall (subfigures (a)), precision (subfigures (b)), and F1-
score (subfigures (c)) values for different values of eviction-
rate (denoted ER in the figures) and shares of trusted node.
Figure 12 highlights the results with an adaptive eviction rate.

Results show that the effectiveness of the attack grows
steadily with the percentage of trusted nodes in the system.
It is clear that the more nodes of trust there are, the easier
it is for the adversary to identify some of them. However,
success rate also depends on the eviction rate. In particular,
Figure 10 and Figure 11 show an increase in recall of 0.14
(14%) when the eviction rate is increased from 0 to 100%,
and an increase in precision of about 0.12 under the same
conditions. An eviction rate of 60%, for example, leads to
an identification precision of 50% and a recall of about 30%
with 20% of trusted nodes. Moreover, these values increase
only slightly with the percentage of Byzantine nodes.

Although the above values may seem high, they are drasti-
cally reduced by adopting an adaptive eviction rate. Figure 12
shows that precision varies between 0 and 0.3 when going
from 1 to 50% of trusted nodes and does not significantly
depend on the proportion of Byzantine nodes. Recall follows
a similar pattern, although with a stronger dependence on the
percentage of Byzantine nodes. Its values range from 0.01 with
10% of Byzantine nodes, and 0.30 with 30% of Byzantine
nodes.

B. View-poisoned trusted node injection

We have shown that trying to identify trusted nodes in order
to isolate them bring only limited results for the adversary,
especially with an adaptive eviction rate. As an alternative,
the adversary can adopt a totally different strategy by pur-
chasing SGX-capable devices and using them as a means of
disseminating Byzantine node identifiers to real trusted nodes.

Specifically, the adversary can deploy some SGX-capable
nodes in a network that contains only Byzantine nodes,
in order to fill their views with Byzantine identifiers. The
adversary can then move these view-poisoned trusted nodes
into the actual network and wait for them to disseminate the
Byzantine identifiers to the actual trusted nodes.

Figure 13 shows the effect of this attack in a network with
different initial proportions of trusted nodes, t = 1%, 10%, and
30%. Each plot shows how the resilience-improvement metric
varies as a function of the proportion of Byzantine nodes with
several percentages of view-poisoned trusted nodes added by
the adversary 1%, 5%, 10%, 20%, and 30%. In all the plots,
the black line represents the baseline with t honest trusted
nodes and no attacks.

When the proportion of honest trusted nodes is small, t =
1%, and for a relatively small proportion of Byzantine nodes,
the addition of view-poisoned trusted nodes does not appear
to significantly harm resilience. Figure 13a shows that adding
a large number of view-poisoned trusted nodes even seems
to improve resilience. Indeed, even view-poisoned nodes are
forced to work with correct BRAHMS implementations. As a
result, all trusted nodes, including view-poisoned ones, end
up removing the overrepresented identifiers, and the view-
poisoned nodes end up reinforcing the trusted portion of the
network. As the proportion of Byzantine nodes increases (to
the right of the plot in Figure 13a), the sampling process be-
comes less effective at removing Byzantine identifiers from the
views, thus decreasing the percentage resilience improvement.

As the proportion of honest trusted nodes increases from
t = 10% in Figure 13b to t = 30% in Figure 13c, the benefit
of having additional trusted nodes with a small portion of
Byzantine nodes disappears as adding a fraction of trusted
nodes to a larger set makes less of a difference and instead
becomes significantly counterproductive, when t = 30%.

VII. DISCUSSION

Our experimental evaluation in Section V shows that
RAPTEE can provide significant resilience improvement over
BRAHMS. Its adaptive eviction strategy provides a 17% re-
silience improvement in the presence of 10% of Byzantine
nodes at the minimal cost of 1% of trusted nodes. Even when
the proportion of Byzantine nodes increases to 30%, RAPTEE
still provides an 8% improvement.

Most importantly, our analysis in Section VI also shows that
RAPTEE with 1% of trusted nodes effectively resists attackers
that can (i) try to identify the trusted nodes in order to isolate
them, or (ii) inject view-poisoned trusted nodes that try to
spread malicious identifiers to honest nodes. With respect to
(i), an attacker can identify only less than 10% of the trusted
nodes with precision below 2% for an F1-score of less than
3%. When it is possible to increase the proportion of honest
trusted nodes to 10%, RAPTEE provides even higher levels
of resilience improvement above 20%, with trusted nodes be-
coming only slightly more detectable (precision and F1-score
below 15%). With respect to (ii), an attack with 5% of view-
poisoned trusted nodes in a system with 1% of honest trusted

9



0 10 20 30 40 50
Trusted node proportion - t (%)

0.0

0.2

0.4

0.6

0.8
Re

ca
ll

ER-0%
ER-20%
ER-40%

ER-60%
ER-80%
ER-100%

(a) Recall

0 10 20 30 40 50
Trusted node proportion - t (%)

0.0

0.2

0.4

0.6

0.8

Pr
ec

isi
on

(b) Precision

0 10 20 30 40 50
Trusted node proportion - t (%)

0.0

0.2

0.4

0.6

0.8

F1
-s

co
re

(c) F1-score

Fig. 10: Precision, recall and F1-score of trusted-node identification under 10% of Byzantine nodes

0 10 20 30 40 50
Trusted node proportion - t (%)

0.0

0.2

0.4

0.6

0.8

Re
ca

ll

ER-0%
ER-20%
ER-40%

ER-60%
ER-80%
ER-100%

(a) Recall

0 10 20 30 40 50
Trusted node proportion - t (%)

0.0

0.2

0.4

0.6

0.8

Pr
ec

isi
on

(b) Precision

0 10 20 30 40 50
Trusted node proportion - t (%)

0.0

0.2

0.4

0.6

0.8

F1
-s

co
re

(c) F1-score

Fig. 11: Precision, recall and F1-score of trusted-node identification under 30% of Byzantine nodes

0 10 20 30 40 50
Trusted node proportion - t (%)

0.0

0.2

0.4

0.6

0.8

Re
ca

ll

f=10%
f=20%
f=30%

(a) Identificaiton recall

0 10 20 30 40 50
Trusted node proportion - t (%)

0.0

0.2

0.4

0.6

0.8

Pr
ec

isi
on

(b) Identification precision

0 10 20 30 40 50
Trusted node proportion - t (%)

0.0

0.2

0.4

0.6

0.8

F1
-s

co
re

(c) Identification F1-score

Fig. 12: Precision, recall and F1-score of trusted-node identification under adaptive eviction rate

10 12 14 16 18 20 22 24 26 28 30
Byzantine proportion - f (%)

0
5

10
15
20
25
30

Re
sil

ie
nc

e 
im

pr
ov

em
en

t (
%

)

t=1%
+1%
+5%

+10%
+20%
+30%

(a) Attack on a system with t = 1%

10 12 14 16 18 20 22 24 26 28 30
Byzantine proportion - f (%)

0
5

10
15
20
25
30

Re
sil

ie
nc

e 
im

pr
ov

em
en

t (
%

)

t=10%
+1%
+5%

+10%
+20%
+30%

(b) Attack on a system with t = 10%

10 12 14 16 18 20 22 24 26 28 30
Byzantine proportion - f (%)

0
5

10
15
20
25
30

Re
sil

ie
nc

e 
im

pr
ov

em
en

t (
%

)

t=30%
+1%
+5%

+10%
+20%
+30%

(c) Attack on a system with t = 30%

Fig. 13: Corrupted trusted node injection

nodes even improves resilience to Byzantine nodes when the
latter’s proportion is not too high (below 20%). Together these
results suggest that RAPTEE can serve as an effective overlay
for a number of Byzantine-sensitive applications like smart-
contract platforms and cryptocurrencies.

VIII. RELATED WORK

Random peer sampling (RPS) has mostly been studied in
non-adversarial environments. Cyclon [21], Newscast [20],
and the more generic protocol framework for Gossip based
peer sampling of Jelasity et al. [15] efficiently handle churn

and quickly discover other nodes in the network. Our con-
tribution uses such a RPS protocol between trusted nodes.
However, these protocols are easily disturbed by Byzantine
nodes performing eclipse or poisoning attacks.

A few studies targeted the problem of making RPS tolerant
to Byzantine nodes [2], [3], [6], [16]. In the Secure peer
Sampling framework [16], each node uses a detection mecha-
nism to identify and blacklist maliciously acting nodes. This
protocol remains, however, vulnerable to rapid flooding attack
as correct nodes cannot identify and blacklist attackers before
being overwhelmed by them and isolated. RAPTEE reduces

10



for trusted nodes the risk of isolation through such attacks by
dropping pull requests answers from untrusted nodes.

Instead of using a detection mechanism, Brahms [6] em-
ploys push limiting and view sampling in order to mitigate the
over-representation of malicious nodes in the view of honest
ones. The use of a Trusted Execution Environment in RAPTEE
enables better performance than Brahms in terms of resilience
against malicious nodes and alleviates some of the significant
running time overhead of Brahms.

Anceaume et al. [1] formally analyze the requirements of
peer sampling protocols when these need to resist malicious
attacks. They observe that a necessary condition lies in limiting
the request rates of nodes. RAPTEE complements this measure
with its eviction-rate policy. The same authors [2], [3] employ
count-min sketches to unbias a biased stream of identifiers.
Adopting a similar technique in RAPTEE could constitute
interesting future work.

With respect to resistance to Sybil attacks, HAPS [7] uses
a prefix tree to limit the number of known identifiers in each
IP-address prefix. This effectively limits Sybil attacks under
the assumption that honest nodes are uniformly distributed
over the IP address space. This idea is orthogonal to our
rate-limiting mechanism and it could constitute an interesting
addition to RAPTEE a large-scale deployment.

Finally, GossipSub [23] is a recent proposal for strengthen-
ing the gossip-based dissemination in the Ethereum 2.0 and
Filecoin networks. These open blockchain systems rely on
gossip to quickly propagate of transactions and blocks between
miners. GossipSub implements an ad hoc mesh construction
protocol that maintains a balanced in- and out degree for
nodes, as do protocols from the peer sampling family. This
protocol does not, however, target diversity, i.e., the constant
renewal of peers in the views of each node. This makes it
specific for dissemination and unfit for other classes of gossip-
based protocols such as overlay construction [14], [22] or
self-organizing aggregation [13]. GossipSub reduces the risk
of attacks by implementing a reputation mechanism. Every
node ranks peers in its view, and peers are incentivized to
follow the protocol for a long period of time and with the
same communication partners.

IX. CONCLUSION

We presented RAPTEE, a novel Byzantine-tolerant random
peer sampling protocol that builds and leverages trusted
gossip-based communication. RAPTEE interoperates with
BRAHMS, the most resilient peer sampling protocol to date,
and reduces the impact of a poisoning attack against its nodes.
Our experiments show that with only 1% of SGX-capable
devices, RAPTEE can reduce the proportion of Byzantine IDs
in the views of honest nodes by up to 17% when the system
contains 10% of Byzantine nodes, at the cost of very limited
overhead. In addition, the security guarantees of RAPTEE hold
even in the presence of a powerful attacker attempting to
identify trusted nodes and injecting corrupted trusted nodes.

REFERENCES

[1] E. Anceaume, Y. Busnel, and S. Gambs, “Characterizing the Adversarial
Power in Uniform and Ergodic Node Sampling,” in AlMoDEP ’11
(colocated with DISC 2011). Rome, Italy: ACM, Sep. 2011. [Online].
Available: https://hal.inria.fr/inria-00617866

[2] ——, “On the power of the adversary to solve the node sampling
problem,” Transactions on large-scale data-and knowledge-centered
systems, vol. 11, 2013.

[3] E. Anceaume, Y. Busnel, and B. Sericola, “Uniform node sampling
service robust against collusions of malicious nodes,” in 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works, ser. DSN. IEEE, 2013.

[4] O. Babaoglu, G. Canright, A. Deutsch, G. A. D. Caro, F. Ducatelle, L. M.
Gambardella, N. Ganguly, M. Jelasity, R. Montemanni, A. Montresor
et al., “Design patterns from biology for distributed computing,” ACM
Transactions on Autonomous and Adaptive Systems (TAAS), vol. 1, no. 1,
pp. 26–66, 2006.

[5] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot,
Y. Jégou, S. Lanteri, J. Leduc, N. Melab et al., “Grid’5000: a large scale
and highly reconfigurable experimental grid testbed,” The International
Journal of High Performance Computing Applications, vol. 20, no. 4,
pp. 481–494, 2006.

[6] E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, and A. Shraer, “Brahms:
Byzantine resilient random membership sampling,” Computer Networks,
vol. 53, no. 13, pp. 2340–2359, 2009.

[7] A. Bouchra Pilet, D. Frey, and F. Taiani, “Foiling Sybils with HAPS in
permissionless systems: An address-based Peer Sampling Service,” in
IEEE Symposium on Computers and Communications. IEEE, 2020.

[8] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher, “Min-
Wise Independent Permutations,” Journal of Computer and System
Sciences, vol. 60, no. 3, pp. 630–659, Jun. 2000.

[9] V. Costan and S. Devadas, “Intel SGX Explained,” Tech. Rep. 086, 2016.
[10] J. R. Douceur, “The Sybil Attack,” in Peer-to-Peer Systems, ser. Lecture

Notes in Computer Science, P. Druschel, F. Kaashoek, and A. Rowstron,
Eds. Berlin, Heidelberg: Springer, 2002, pp. 251–260.

[11] P. T. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and A.-
M. Kermarrec, “Lightweight probabilistic broadcast,” ACM Transactions
on Computer Systems (TOCS), vol. 21, no. 4, pp. 341–374, 2003.

[12] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse Attacks on
Bitcoin’s Peer-to-Peer Network,” in 24th USENIX Security Symposium,
2015, pp. 129–144.

[13] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based aggregation
in large dynamic networks,” ACM Transactions on Computer Systems
(TOCS), vol. 23, no. 3, pp. 219–252, 2005.

[14] ——, “T-man: Gossip-based fast overlay topology construction,” Com-
puter networks, vol. 53, no. 13, pp. 2321–2339, 2009.

[15] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen, “Gossip-based peer sampling,” ACM Trans. Comput. Syst.,
vol. 25, no. 3, pp. 8–es, Aug. 2007.

[16] G. P. Jesi, A. Montresor, and M. van Steen, “Secure peer sampling,”
Computer Networks, vol. 54, no. 12, pp. 2086–2098, 2010.

[17] M. Matos, V. Schiavoni, P. Felber, R. Oliveira, and E. Riviere,
“Lightweight, efficient, robust epidemic dissemination,” Journal of Par-
allel and Distributed Computing, vol. 73, no. 7, pp. 987–999, 2013.

[18] S. Pinto and N. Santos, “Demystifying ARM TrustZone: A comprehen-
sive survey,” ACM Computing Surveys (CSUR), vol. 51, no. 6, pp. 1–36,
2019.

[19] E. Riviere and S. Voulgaris, “Gossip-based networking for internet-scale
distributed systems,” in International Conference on E-Technologies.
Springer, 2011, pp. 253–284.

[20] N. Tölgyesi and M. Jelasity, “Adaptive peer sampling with Newscast,”
in European Conference on Parallel Processing, ser. EuroPar. Springer,
2009, pp. 523–534.

[21] S. Voulgaris, D. Gavidia, and M. Van Steen, “Cyclon: Inexpensive
membership management for unstructured p2p overlays,” Journal of
Network and systems Management, vol. 13, no. 2, pp. 197–217, 2005.

[22] S. Voulgaris and M. van Steen, “VICINITY: A Pinch of Randomness
Brings out the Structure,” in Middleware 2013. Berlin, Heidelberg:
Springer, 2013, pp. 21–40.

[23] D. Vyzovitis, Y. Napora, D. McCormick, D. Dias, and Y. Psaras,
“GossipSub: Attack-resilient message propagation in the Filecoin and
Eth2.0 networks,” arXiv preprint arXiv:2007.02754, 2020.

11

https://hal.inria.fr/inria-00617866

	I Intro
	II Background
	III Models and objectives
	III-A System, operating models and Raptee’s objectives
	III-B Trust and adversarial models

	IV Interoperating trusted communications with Byzantine resilient peer sampling
	IV-A Mutual authentication
	IV-B Trusted communications
	IV-C Byzantine eviction

	V Experimental Evaluation
	V-A Overhead of using SGX nodes
	V-B Large-scale experimental setup
	V-C Resilience improvements
	V-D Performance overhead

	VI Security analysis
	VI-A Trusted node re-identification
	VI-B View-poisoned trusted node injection

	VII Discussion
	VIII Related work
	IX Conclusion
	References

