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Abstract—Leader-based consensus protocols must undergo a
view-change phase to elect a new leader when the current leader
fails. The new leader is often decided upon a candidate server
that collects votes from a quorum of servers. However, voting-
based election mechanisms intrinsically cause competition in
leadership candidacy when each candidate collects only partial
votes. This split-vote scenario can result in no leadership winner
and prolong the undesired view-change period. In this paper,
we investigate a case study of Raft’s leader election mechanism
and propose a new leader election protocol, called ESCAPE, that
fundamentally solves split votes by prioritizing servers based
on their log responsiveness. ESCAPE dynamically assigns servers
with a configuration that offers different priorities through Raft’s
periodic heartbeat. In each assignment, ESCAPE keeps track
of server log responsiveness and assigns configurations that are
inclined to win an election to more up-to-date servers, thereby
preparing a pool of prioritized candidates. Consequently, when
the next election takes place, the candidate with the highest
priority will defeat its counterparts and becomes the next leader
without competition. The evaluation results show that ESCAPE
progressively reduces the leader election time when the cluster
scales up, and the improvement becomes more significant under
message loss.

Index Terms—consensus algorithms, fault tolerance, leader
election

I. INTRODUCTION

Leader-based consensus algorithms have been widely de-
ployed in practical systems, such as HDFS [1], RAMCloud [2],
Chubby [3], and ZooKeeper [4], and extensively studied in
academia, such as Paxos [5], Viewstamped replication [6],
and Raft [7]. Under normal operation, they utilize a designated
server as a leader to efficiently conduct consensus that satisfies
state machine replication properties. However, leader-based
algorithms are vulnerable to single points of failures. When
the leader fails, the consensus process cannot proceed, and
the system must select a new leader server through a view-
change/leader election phase.

The view-change phase is undesired for providing high
available services because no consensus can be reached with-
out the coordination by the leader. Unfortunately, besides
server crashes [8], [9], leader failures often take place because
of various reasons, such as hardware failures [10], storage
failures [11], and, most commonly, network failures [12].
These issues may result in frequent leadership changes in
systems that use timeouts to detect leader failures [4], [7],
[13]. Before a new leader is elected, the system becomes
temporarily unavailable and endures an out-of-service (OTS)

period. For large-scale online applications, even seconds of
OTS time is detrimental to user experiences and the quality of
service [14], [15]. Therefore, the completion time of leader
election significantly affects the performance of consensus
services.

Voting-based mechanisms have been often chosen to imple-
ment leader election by selecting a server that can collect votes
from a quorum (e.g., simple majority). A typical example is
Raft’s leader election mechanism [7]. Under normal operation,
Raft uses a strong leadership for log replication where its
leader dominates the consensus process. The strong leadership
forces servers (operating as followers) to only passively re-
spond to the leader. Due to its modularity and simplicity, Raft
quickly gained popularity and has been widely deployed [16]–
[20]. However, Raft’s leader election intrinsically creates com-
petition among leadership candidates, which may result in split
votes that needlessly prolong the leader election time.

In Raft, each follower starts a timer when joining the system
and resets the timer upon receiving a heartbeat from the leader.
To maintain its leadership, the leader sends periodic heartbeats
to followers. If a follower triggers a timeout, it transitions to
a candidate state and begins a leader election campaign to
solicit votes. If the candidate successfully collects votes from a
majority of servers, it becomes the new leader. However, Raft
does not discriminate candidates as long as they are up-to-
date. When multiple candidates start their election campaigns
simultaneously and each of them collects only partial votes, no
candidate can be elected by collecting votes from a majority
because votes are split. The system has to repeat the election
process until a candidate collects sufficient votes and becomes
the new leader.

A simple solution to mitigate split votes is to use ran-
domized timeouts; the randomness can reduce the proba-
bility of concurrent candidates that simultaneously initiate
new leader election campaigns. Raft’s evaluation shows the
reduction of competing candidates when adding randomness
to timeouts in a 5-server cluster. However, this method does
not fundamentally solve the problem of split votes and may
become ineffective and inefficient when servers are not fully
synchronized, especially at a large scale. To avoid concurrent
election campaigns, the amount of randomness of election
timeouts needs to be significantly increased when a system has
more servers; the detection time of leader failures subsequently
increases. In addition, stale servers (not fully synchronized)
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can interrupt election campaigns of up-to-date servers. When
the timers of stale servers have a small initial timeout, they
may often trigger timeouts before up-to-date servers, which
may defer the appearance of a correct leader.

To address the above problem, in this paper, we propose a
new leader election protocol, namely ESCAPE, that takes pre-
cautions against leader failures by preparing a pool of “future
leaders” before potential election campaigns take place. When
the current leader fails, ESCAPE is able to elect a new leader by
one election campaign, escaping from leadership competition
that causes split votes.

ESCAPE consists of two key components: the stochastic
configuration assignment (SCA) and probing patrol function
(PPF). Specifically, SCA assigns each server with a unique
configuration that contains two paired parameters: a priority
and an election timeout. The priority is an integer that deter-
mines the growth of a server’s term (the logical time) while the
election timeout defines the initial timeout of the server’s timer.
Initially, configurations are generated stochastically within a
range (e.g., priorities are integers from [1, n] and election
timeouts from [100, 200 ms]), where no two servers adopt the
same configuration.

In addition to SCA, ESCAPE dynamically and atomically
rearranges configurations among servers through the probing
patrol function (PPF) and prepares a pool of prioritized candi-
dates according to their log responsiveness. In principle, PPF
arranges configurations that are inclined to win an election
to servers that are up-to-date. To achieve this goal, first, PPF
keeps track of each server’s log index through the periodic
leader-to-followers heartbeat. Then, it assigns higher-priority
configurations to more up-to-date servers. Next, it distributes
the new configurations in the following heartbeat. Finally, each
server updates its priority and election timeout according to the
received new configuration. Consequently, ESCAPE prepares a
pool of candidates as “future leaders” with differently priori-
tized configurations. If the current leader crashes, a candidate
with a higher priority is able to defeat a competitor with a
lower priority. A new leader will be elected without suffering
from unnecessary leadership competitions.

Although there is no one-size-fits-all leader election mech-
anism for all consensus protocols, ESCAPE can be adapted
to support other election protocols, such as ZooKeeper [4],
Redis cluster election [13] and Azure leader election [21].
It also maintains Raft’s understandability and the proposed
improvement is simple to implement. By applying ESCAPE,
the system can always keep a pool of prioritized future leaders
under normal operation, preventing potential conflicts before
a new leader election takes place.

In this paper, we make the following contributions:
1) Raft leader election analysis. We analyzed the split-

vote scenarios that prolong Raft’s leader election. The
analysis addresses the tradeoff by adding randomness
to election timeouts to mitigate split votes through our
evaluation of a Raft cluster.

2) The ESCAPE leader election protocol. We designed two
major components for ESCAPE: stochastic configuration

Candidate(n)

Candidate(i)

…

discovers slower server with higher term

neither wins nor loses;
competing candidatestimer expires; 

initiates new 
election Candidate(1)

Follower

Leader
Fig. 1: Server state
transitions in Raft.
Due to split votes,
servers may stay in
the candidate state
for multiple elec-
tions.

assignments and the probing patrol function. Configura-
tions are assigned with priorities and rearranged by the
probing patrol function, solving candidacy competition
by periodically prioritizing servers.

3) Experimental comparisons of leader election time. We
implemented ESCAPE and Raft and evaluated their per-
formance of leader election under various fault scenarios
at various scales. We distill the advantages of ESCAPE
based on experimental results.

The remainder of the paper is organized as follows: Sec-
tion II provides Raft basics; Section III states the problem
of split votes and timer randomization; Section IV introduces
the ESCAPE design in detail; Section V discusses correctness
properties for ESCAPE; Section VI reports on the experimental
evaluation of ESCAPE against Raft; and Section VII presents
related work.

II. BACKGROUND

Designed for understandability, Raft relies on a leader to
attain consensus under all non-Byzantine conditions. Con-
sensus in Raft consists of two major phases: leader election
and log replication. The system first elects a leader server
by leader election, and then the leader conducts consensus
in log replication. We now introduce some key concepts and
limitations in Raft leader election.

A. Raft Basics

Raft deploys three servers states, and each server assumes
one of the three states at any given time: leader, follower,
and candidate. Under normal operation, there is only one
leader and other servers assume a follower role. Followers only
passively respond to requests, whereas the leader dominates
the consensus by forcing followers to synchronize its log.
Thus, the leader becomes the only bridge between internal
servers and external clients. The leader receives entries from
clients and issues AppendEntries RPCs to all the other
servers. If the leader collects replies from a majority of servers,
then the consensus for committing the entries is reached.

In Raft, the logical time is represented by terms. Terms are
positive integers that increase monotonically. Each term begins
with a leader election period and proceeds with a subsequent
log replication period if a leader is elected. A server never
reduces its term, which prevents the server from receding to
a previous time point that could overwrite committed entries.
In leader election, a new leader must have the highest term
and log entries consistent with a majority of servers. This
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campaigns. A new leader is elected after
one of the competing candidates triggers a
second timeout.

Fig. 3: Leader election time in a 5-server Raft
cluster under varying amounts of randomness
of election timeouts.
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Fig. 4: Averaged leader election time with
increasing amounts of randomness of election
timeouts.

mechanism forces the system to always elect the most up-
to-date server as a leader.

If an incumbent leader crashes, the consensus service is
suspended until a new leader is elected. Raft uses timeouts to
detect leader failures. Initially, each server joins the system as
a follower and starts a timer. A server resets its timer when
receiving a heartbeat from the leader. If the leader crashes, a
follower will trigger a timeout and transition to a candidate;
it increments its term and initiates a leader election campaign
by broadcasting RequestVotes RPCs to solicit votes. If
it collects votes from a majority of servers (including itself),
the candidate becomes the next leader (shown in Figure 1).
However, if the candidate cannot collect enough votes within
the election timeout nor receive a higher-termed message to
transition back to a follower, the candidate initiates a new
election campaign and repeats the above mentioned process.
Other servers vote for a candidate if it satisfies the three
following requirements: 1) the candidate’s term is not less
than the follower’s term; 2) the follower has not voted yet
in its term; 3) the candidate’s log is at least as up-to-date as
the follower’s log.

B. Split Votes in Leader Election

The election regime may split votes in a given term. By
following the three requirements, votes can be inopportunely
split among candidates when concurrent election campaigns
take place. Consequently, no candidate can collect votes from
a majority of servers to be elected.

Figure 2 shows an example of split votes in a Raft cluster of
5 servers, in which terms are denoted by t. Assume server S1

was the leader in t(1) (i.e., term=1) and crashed. Afterwards
there was no communication between S1 and the other servers.
Consequently, timers of S3 and S4 expire and trigger new elec-
tion campaigns at points B and C, respectively. Meanwhile,
S3 and S4 increase their terms to t(2) and broadcast leader
election requests. Then, S2 receives an election request with
t(2) from S3 before it receives the one from S4. Since each
follower only votes once per term, S2 votes for S3 and ignores
the request from S4 in t(2). On the contrary, S5 votes for S4

and denies the request from S3. At this time, since neither S2

nor S4 can collect three votes to win, the two candidates are
trapped, and a split-votes scenario occurs.

The system has to wait for new elections initiated from
servers whose timers expire. At point D, S3’s timer expires
again, and thus S3 initiates a new election campaign while
increasing its term to t(3). Fortunately, S3 succeeds in collect-
ing votes from a majority of servers without disruptions from
the other servers. Then, S3 is elected to be the new leader
at point E and starts conducting log replication in t(3). After
receiving heartbeats issued from the new leader, S4 steps back
to follower. From then on, the system recovers from the OTS
condition and resumes to normal operation.

In addition, when different groups of servers have a lower
internal (in-group) network latency but a higher external (be-
tween groups) network latency (e.g., geographically distributed
servers), systems are more susceptible to split-vote scenarios.
In this case, servers communicate faster within their “local”
group than with the external servers. Thus, a candidate is
more likely to succeed in collecting votes from its own group,
and election requests from outside-group candidates will be
repeatedly ignored if followers have voted for their “local”
candidate. This problem also arises in distributed transient
networks. Huang et al. [22] hinted that network split and
message loss often cause multiple elections, which exacerbate
the delay of the emergence of a new leader.

III. PROBLEM STATEMENT

Raft uses timer randomization to alleviate split votes. We
implemented Raft and evaluated its leader election perfor-
mance in a 5-server cluster. We measured 1000 runs for each
of the six ranges of election timeouts. The network latency was
set to 100-200 ms. Figure 3 presents the results in cumulative
distribution of percentage, and Figure 4 shows the average
election time. The results indicate that adding randomization
can help the system to avoid split votes. A successful leader
election campaign comprises two periods: the detection of the
absence of leadership and election of a new leader. The former
one is achieved by timer expiration with randomized election
timeouts, and the latter one is accomplished by collecting votes
from a majority of servers.

However, there exists a tradeoff between the durations
of detection and election, which are associated with timer
randomization. In particular, if the range of the randomization
is extended, the positive effect is that it can shorten the
election period but extends the detection period. A higher



amount of randomness can alleviate split votes because the
election timeouts of timers have a higher chance to differ from
each other. This reduces the chance that multiple candidates
simultaneously initiate election campaigns to solicit votes.
While followers only passively respond to other servers, the
negative effect is that it takes longer for servers to detect the
absence of leadership, thereby increasing the leader election
time. Conversely, if the amount of randomness shrinks, though
it takes a shorter amount of time to detect a crashed leader,
the probability of competing candidates increases. Servers
are more likely to simultaneously initiate leader election
campaigns, which inflict additional phases in leader election
and prolong the emergence of a new leader.

For example, in Figure 3, with 300 ms of randomness from
the range of 1500−1800 ms, due to split votes, approximately
18% of the election campaigns cannot converge in 3500 ms.
The split-vote situation is mitigated with a larger amount of
randomness. For example, with 500 ms of randomness from
the range of 1500−2000 ms, less than 12% of the election
campaigns experience split votes, and according to Figure 4,
the average election time decreases. However, with increasing
amount of randomness, the election time rises, in which the
detection of the absence of leadership takes longer than the
election of a new leader.

In clusters at large scales, we can set even larger amounts
of randomness to avoid split votes, but this may not benefit
to shorten the OTS time. If we could avoid split votes
without sacrificing the duration of detection or election, the
performance of leader election can be improved from both
sides, thereby enhancing the reliability of services.

IV. ESCAPE LEADER ELECTION

In this section, we introduce ESCAPE, a leader election pro-
tocol that takes precautions against leader failures by preparing
a pool of “potential leaders”. These potential leaders are
furnished with configurations that enable them to win in future
election campaigns. A configuration contains a unique priority
and an election timeout, and configurations are dynamically
assigned to servers.

In general, ESCAPE enables fast leader election by always
assigning a configuration that leads to an undefeated cam-
paign to a server that has the most potential to become the
next leader. To achieve this goal, ESCAPE assigns unique
configurations to different servers via stochastic configuration
assignment (SCA). In normal operation, ESCAPE dynamically
rearranges and distributes these configurations through the
probing patrol function (PPF).

A. Stochastic Configurations Assignment

The main idea of SCA is to enable differential growth rates
of terms when multiple election campaigns take place. Let
us first consider all candidates are qualified to assume future
leadership; that is, they have the same up-to-date log states
and are in the latest term (disqualified candidates will be
considered in Section IV-B). By applying differential growth
rates of terms, if followers trigger timeouts simultaneously,

their election campaigns will take place in different terms and
will not flock into a single term to form flocked elections that
compete against each other as in Raft. The candidate with the
highest-term campaign wins and becomes the next leader.

1) Stochastic configurations: To achieve stochastic config-
uration assignment, when joining the system, each server Si

assigns a unique priority, denoted by Pi. The priority deter-
mines the term growth and election timeouts. A configuration
is denoted by π(Pi) where Pi is the priority. To maintain
simplicity, ESCAPE implements the priority by using server
IDs. A server assigns a unique server ID, i, as its initial
priority, where i is not assigned to any other server; that is,
∀Si, Sj ∈ ESCAPE, i 6= j. A server’s ID determines its priority
such that Pi = i.

2) Election timeouts: A server’s priority initializes its elec-
tion timeout as Eq. 1.

periodi = baseT ime+ k(n− Pi) (1)

In Eq. 1, baseT ime is of constant value that should be
set significantly larger than the network latency (e.g., if the
network latency is 10ms, we can set baseT ime=100ms). k is a
constant value (ms) for adjusting the election timeout interval;
a higher k promotes a larger gap among server election time-
outs. n is the number of servers in the system. For example,
in a 10-server cluster with a setting of baseT ime=100 ms
and k=10, server S2’s initial priority P2=2, so its election
timeout period2=180ms. For server S10 (P10=10), its initial
election timeout is the base time (100 ms).

A configuration with a higher priority is paired with a
shorter election timeout. Normally, with a shorter election
timeout, a server often detects leader failures faster since
its timer soon runs out of time. This regime provides an
optimization that a higher-priority server will have a quicker
response to leader failures.

3) Term growth: A server’s priority also determines its term
growth. In ESCAPE, we denote a server Si’s term as TSi . If
Si initiates a new leader election campaign, Si increases TSi

by Eq. 2:
T (k+1)
Si

← T (k)
Si

+ Pi, (2)

In addition, a server always updates its term when it receives
messages with a higher term from other servers. The update
is in accordance with Eq. 3.

T (k+1)
Si

← max(T (k)
Si

, T (k+1)
Sj ,j 6=i), (3)

where T (k)
Si

is the term of the latest update, and T (k+1)
Sj ,j 6=i is

the received term from other servers. Si always sets its term
to the highest value regardless of the other arguments in a
received message. For example, let us consider a server Si

with a priority Pi = 2 working in term 3. If Si’s timer expires,
Si initiates an election campaign and sets its term to 5 (Eq. 2).
If Si receives a message sent from a server Sj whose term
is 4, Si simply ignores the message. However, if Sj’s term is
6, Si sets its term to 6, regardless of other information in the
message (Eq. 3).
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(a) All servers synchronously respond to the leader in the k-th
configuration heartbeat, but S4 and S5 fall behind in log replication.
Then, the higher-priority configurations previously possessed by S4 and
S5 are rearranged to more up-to-date servers (S2 and S3).
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(b) S2 and S4 crash after receiving the k-th configuration heartbeat.
Then, S2 recovers in the k+1-th heartbeat, but S3 is still crashed.
After the rearrangement, since S4 cannot receive the newly issued
configuration, S4 will have a stale configuration after recovery.

Fig. 5: Examples for the probing patrol function in a 5-server ESCAPE system.

In contrast to Raft, the increment of logical time in ESCAPE
is no longer consecutive: simultaneously initiated election
campaigns are scattered into different terms. This avoids
flocked elections and split votes before a leader appears.
Similar approaches have been adapted by some state-of-the-art
systems, such as Redis LE [13] and Zookeeper [23]. However,
SCA alone does not always lead the system to the desired con-
dition since the network may change unpredictably. Current
up-to-date servers may fall behind in the next round, whereas
slower servers may catch up. Therefore, a mechanism that
rearranges configurations based on server log responsiveness
is necessary to keep the election scheme efficient.

B. Atomic Configuration Rearrangement

A new leader is the candidate that has successfully collected
votes from a majority of servers in the highest term. Yet,
server configurations are not related to log responsiveness (i.e.,
log replication status). A tricky scenario may occur: if the
candidate that has the highest term does not have an up-to-
date log, its election campaign cannot succeed because up-
to-date servers never vote for it; other servers resume their
election campaigns after updating their terms to the highest
one. Therefore, the configuration that empowers a high term
growth is “wasted” if the candidate is not an up-to-date server,
which undermines the purpose of applying SCA.

To tackle this challenge, ESCAPE reassigns configurations
that are inclined to win a future election to servers that have
up-to-date logs through the probing patrol function (PPF).
First, PPF keeps track of servers’ log index, which indicates
a server’s log responsiveness, via the periodical heartbeat
sent from the leader (Listing 1). Then, the leader collects
replies and rearranges configurations to each server. Next,
it broadcasts new configurations in the following heartbeat.
Finally, servers update to the newly assigned configuration if
the received one is different.

PPF assists the redistribution of configurations based on
log responsiveness, yet the process is not atomic because
configurations are not atomically rearranged. For instance, if
server Si with configuration π(Pi) crashes, the leader may
assign π(Pi) to another server (say Sj). When Si recovers,
Si restores its stale priority (π(Pi)); at this time, if the

leader crashes, Si and Sj may trigger election campaigns
simultaneously and split votes.

Listing 1: Parameters in ESCAPE compared with Raft
//the parameters of AppendEntries RPCs
type AppendEntriesArgs struct{

term int64
leaderId string
prevLogIndex int64
prevLogTerm int64
entries[] Entries
leaderCommit int64
newConfig Configurations //newly added

}

type Configurations struct{
timerPeriod time.Duration
priority int64
confClock int64

}

//the reply messages
type AEReplyArgs struct{

term int64
success bool
status configStatus //newly added

}

type configStatus struct{
LogIndex int64
timerPeriod time.Duration

}

To prevent stale configurations from interfering with leader
election, ESCAPE adds a hyperparameter, configuration clock
(denoted by confClock in Listing 1), that shows the fresh-
ness of configurations. The configuration clock is the logical
clock of configuration rearrangements. In a configuration
π(Pi,k), k denotes the configuration clock of this configuration,
π. In normal operation, the configuration clock increments
monotonically with the number of heartbeats. In leader elec-
tion, servers never vote for candidates whose configuration
clock is stale. That is, a candidate’s configuration clock should
not be less than a voter’s configuration clock. As for deciding
a new leader, ESCAPE adopts all the rules of Raft.

Figure 5 shows two examples of configuration rearrange-
ments in a 5-server cluster. In Figure 5a, initially, server
configurations are assigned in accordance with Eq. 1. Since
PPF rearranges configurations according to log responsiveness,
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if higher-priority servers fall behind in log replication, servers
with the same log as the leader (most up-to-date logs) are
assigned with higher-priority configurations.

When a server recovers (e.g., from a crash or network
issues), its configuration may become stale because the server
is unable to sync up with the leader. For example, in Figure 5b,
S2 and S4 crash and do not respond to the leader after they
receive the k-th configuration heartbeat. Then, S2 recovers
in the next heartbeat, but S4 does not. S2’s high-priority
configuration is assigned to S5, though S5 still has a fresh
configuration. Unfortunately, S4’s configuration becomes stale.
After S4 recovers, S4’s confClock is k, but the system
already operates in a higher configuration clock. S4 needs to
synchronize with the leader to refresh its configuration.

The probing patrol function enables a resilient configuration
distribution and promotes the efficiency of leader election
since it avoids that a higher-priority configuration is assigned
to a losing candidate (i.e., a server without the most up-to-date
log). Therefore, when the current leader crashes, the server
with the highest-priority configuration has the maximum po-
tential to detect the leader failure and initiate a new election
campaign before any other servers.

C. Declining Competing Candidates

The combination of SCA and PPF enables fast leader
election that avoids split votes. When candidates start new
elections simultaneously, the election with the highest term
always defeats other elections. After followers synchronize to
the highest term, they will refuse to respond to lower-term
requests; thus, votes in a given term aggregate at one server,
terminating the election in a single election campaign.

Suppose the leader in Figure 5b crashes in term t, and we
show an extreme case (Figure 6) to illustrate how ESCAPE
elects a leader without competition when three concurrent
leader election campaigns materialize. After S2, S3, and S4’s
timers expire, three election campaigns are initiated simulta-
neously at point A1, B1, and C1, respectively. In this case, no
server votes for S4 since S4’s configuration is stale. On the
contrary, S2 and S3 are up-to-date servers, but S3’s election
campaign has a higher term (t+5) than S2 (in term t+3). Thus,
S4 synchronizes to term t+3 at point A2 and to term t+5 at
point B2, while S5 synchronizes directly to term t+5 and then

rejects S2’s request at point A3. S3’s election campaign takes
over the other campaigns, and S3 is elected at point B3, when
votes from a majority of servers are collected. Overall, leader
election converges in one election campaign, and the system
recovers after S3 becomes the leader.

ESCAPE maintains the understandability of Raft and can
also be easily deployed. If the system is fully synchronous, the
configuration rearrangement can be implemented by a separate
heartbeat at a low interval rate. The separation can reduce the
messaging cost. The leader in ESCAPE needs to sort and assign
configurations, a task with linear time complexity, imposing a
slight computational cost.

The idea of ESCAPE differs from the optimization that Raft
intended to apply to solve split votes. The authors of Raft
argued that they tried to rank candidates in the same term to
solve split-vote scenarios and implied that this measure would
cause corner cases that undermine safety [7]. Figure 7 shows
an intuitive comparison of the ideas behind Raft and ESCAPE
where three candidates initiate election campaigns. Term sur-
faces represent the logical times a system currently accrues.
If we draw a term surface for candidates (not considering
followers), Raft leader election campaigns are more likely
to lie in the same surface (left in Figure 7). Raft’s authors
intended to rank candidates in the same surface to intensify
the competition among candidates in a given term, thereby the
additional mechanisms may cause corner cases that put log
safety in peril. However, due to the discrepant term growth
enabled by prioritized configurations in ESCAPE, simultane-
ously initiated election campaigns escape from competing on
the same surface but reside on their own term surfaces, and
the system leaps to the highest surface with a new leader.
Therefore, concurrent campaigns are in a cube (3D vs. 2D)
consisting of varying term surfaces, and the candidate on the
top surface defeats the other campaigns, leading the system to
the highest term.

In addition to the use in Raft, ESCAPE can also be adapted
to other consensus protocols. Since the correctness of leader-
based consensus protocols relies on the combination of leader
election (view-change) and log replication phases, there is
no one-size-fits-all leader election mechanism that stands
alone to be directly applicable in every consensus protocol.
However, the concept of ESCAPE can be adopted to optimize
leader-based consensus protocols in terms of preparing “future
leaders” in advance, before the next leader election takes
place. For example, the slave election and promotion in
Redis [13] ranks slave servers with SLAVE_RANK, which
determines the delay for a slave server to get elected in a
given configEpoch. This approach has similar issues as
Raft’s competing candidates discussed in Section II. Slave
servers may simultaneously initiate elections and reside in the
same configEpoch. Applying ESCAPE can avoid potential
competitions and boost the election process. The time spent
on leader election is something that leader-based systems want
to avoid but have to endure; similar cases such as [21] and [4]
can also apply ESCAPE to enable fast leader election, paving
the way to avoid potential future conflicts.
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Fig. 7: Raft intended to rank competing candidates whose campaigns
are in the same term (left), while ESCAPE involves priority-based
configuration assignments to distribute concurrent campaigns into
different terms (right).

V. CORRECTNESS ARGUMENTS

While accelerating the completion of leader election by
avoiding split votes, ESCAPE maintains Raft’s safety and
liveness properties. ESCAPE also exhibits a stronger liveness
than Raft. We discuss these points in detail in the remainder
of this section.

Lemma 1. An ESCAPE leader election is able to be translated
to Raft leader elections.

Proof. An ESCAPE leader election can be implemented by
multiple consecutive Raft leader elections depending on a
server’s priority. We denote an ESCAPE leader election ini-
tiated by a server with a priority P as EP . We assume the
system is in term t (i.e., T (t)) before the election takes place.
Consequently, the system will be in term t + P after the
server wins the election and becomes the new leader. We show
that EP can be implemented by P consecutive Raft leader
elections whose term increases from t to t + P , denoted by
Rt→t+P ; that is,

Rt→t+P =⇒ EP , where |Rt→t+P | = P

Suppose a server S operating in term t in Raft triggers a
timeout and becomes a candidate. S then increases its term to
t+1. At this time, if S loses its connection to other servers, S
will time out again and increase its term to t+2. We denote this
period of disconnection as a blackout window. Raft allows a
sufficiently large blackout window because it tolerates all non-
Byzantine (benign) failures. Thus, a server’s leader election
with a priority P in ESCAPE is implemented by P leader
elections in Raft that take place in a blackout window.

Figure 8 illustrates an example of Lemma 1. Si and Sj are
two ESCAPE servers. Before their elections, Si and Sj are in
term T (t) with configurations of π(P3) and π(P2), respectively.
After initiating their election campaign, Si’s term increases
directly to T (t+3) (at A3) while Sj’s term increases to T (t+2)

(at B2). These two election campaigns can be implemented
by Raft leader elections, where Si has a blackout window of
three consecutive timeouts (at A1, A2, and A3), and Sj has
that of two consecutive timeouts (at B1 and B2).

Theorem 1 (Validity). If all the servers have the same input,
then any value decided upon must be that common input.

Proof. The validity property holds in Raft [7], where a
committed value must have been logged by a majority of
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Fig. 8: An ESCAPE leader election can be translated into multiple
consecutive Raft leader elections.

servers. With Lemma 1, since ESCAPE leader election can
be implemented by Raft leader elections, the improvement
made by ESCAPE is isolated from log replication in Raft. Thus,
ESCAPE maintains the validity property.

Lemma 2. An ESCAPE election campaign and a Raft election
campaign initialized by the same server is indistinguishable on
other servers.

Proof. Suppose a cluster runs Raft and ESCAPE simultane-
ously where a server, say Si, initiates an ESCAPE leader
election campaign and sends a request to another server, say
Sj . We show that Sj cannot distinguish if this request is from
a Raft election campaign, denoted by RSi

or an ESCAPE
election campaign, denoted by ESi

. That is,

∀Sj ∈ Raft ∧ ESCAPE, ESi

Sj∼RSi .

ESCAPE does not change the rules or the parameters of elec-
tion requests for electing a new leader in Raft. From Lemma 1,
an ESCAPE election can be implemented by multiple Raft
elections, and Sj is not aware of the length of the blackout
window on Si. Therefore, when Sj receives the ESCAPE
election campaign request from Si, Sj is unable to distinguish
if the request from an ESCAPE election or a Raft election at
the end of the blackout window, i.e., for Sj , ESi

∼ RSi
.

Theorem 2 (Safety). Nonfaulty servers do not decide on
conflicting values.

Proof (Sketch). The safety property also holds in Raft [7].
ESCAPE leader election is isolated from the log replica-
tion phase. Thus, under normal operation, ESCAPE maintains
the safety property. In addition, during a view-change/leader
election phase, from Lemma 2, ESCAPE and Raft election
campaigns are indistinguishable, and servers follow the same
rule to determine a new leader. Thus, a new leader elected
by ESCAPE must be able to be elected by Raft with a
specific initial configuration. A leader in ESCAPE maintains
its correctness and no committed values can be overwritten.
Therefore, ESCAPE maintains Raft’s safety property.

Lemma 3. If any two servers are in the same configuration
clock, they must possess different configurations.

Proof. Initially, SCA assigns each server a unique config-
uration based on the server ID. Under normal operation,
PPF atomically rearranges configurations, based on server log
responsiveness, at any given configuration clock. If the leader
fails, the assignment task may become incomplete, but it never
assigns two servers with the same configuration.



Lemma 4. If any two servers possess same configuration, they
must be in different configuration clocks.

Proof. We prove this lemma by contradiction. We claim that
servers assigned with the same configuration have the same
confClock, say k. Then, at configuration clock k, a leader
must have assigned the same configuration to more than one
server, which contradicts Lemma 3.

Since ESCAPE tolerates f benign faults, from Lemma 4,
there are at most f servers that are in different configuration
clocks while possessing the same configuration. Suppose in
clock k, a server S1 has a configuration π(P∗,k). In clock
k + 1, server S1 crashes, and π(P∗) is assigned to S2; thus,
S2’s configuration is π(P∗,k+1). Then, S2 crashes and π(P∗) is
assigned to S3. In this way, since ESCAPE tolerates f failures,
π(P∗) can be iteratively assigned to Si in clock k+i−1 where
i ≤ f .

Theorem 3 (Configuration uniqueness). No two nonfaulty
servers possess the same prioritized configuration.

Proof. Lemma 3 guarantees that, at any given time, can-
didates are prioritized by configurations. From Lemma 4,
configurations are prioritized by their logical clocks. Since
configuration clocks grow monotonically along with physical
time, the rearrangement of configurations always atomically
scatters servers into different priorities.

Due to the problem of competing candidates, Raft ensures
liveness if the system ultimately elects a leader. That is,
every nonfaulty server eventually decides a value. However,
with bounded messaging delay, Raft cannot guarantee a lower
bound of the eventuality; competing candidates may often
occur if timer timeouts are not ideally chosen. In contrast,
equipped with SCA and PPF, ESCAPE ensures that a new
leader can be elected by at most f + 1 leader elections in
the worst case. If the highest-priority candidate does not fail,
it will become the new leader and terminates leader election
in one election campaign.

Lemma 5. ESCAPE terminates a leader election phase in one
campaign with nonfaulty candidates.

Proof. With Theorem 3, in the phase of leader election, no two
candidates possess the same prioritized configurations. Thus,
at most one legit election campaign takes place in a given
term. With nonfaulty candidates, the candidate that increases
its term to the highest will be elected, which subsequently
terminates the leader election.

Theorem 4 (Strong liveness). Every nonfaulty server decides
a value after at most f + 1 leader elections.

Proof. ESCAPE and Raft both tolerate f non-Byzantine fail-
ures with a total of 2f + 1 servers. With a correct leader,
nonfaulty servers decide a value in two rounds of heartbeats
under normal operation. When the leader fails, normal oper-
ation resumes after a new leader is elected. In ESCAPE, if f
failures occur on every candidate that has the highest-priority

among nonfaulty ones, ESCAPE must wait for f + 1 election
campaigns before a correct candidate appears. With Lemma 5,
ESCAPE elects a new leader in one leader election campaign
when candidates are nonfaulty. Therefore, normal operation
resumes after at most f + 1 leader elections.

Theorem 5 (Complexity). ESCAPE leader election has a
message transmission complexity of O(n2).

Proof. Upon leader failures, every server is able to start an
election campaign after its timer expires and subsequently
broadcasts a request to all the other servers. If a candidate
is qualified for the next leadership, other servers send a vote
to the candidate. Therefore, during the election, the message
transmission complexity is O(n2).

Additionally, the best case, where only one election cam-
paign is initiated, has a message transmission complexity of
O(n). Compared with Raft, ESCAPE has a higher probability
to achieve the best case. The highest priority and the shortest
election timeout is assigned to the most up-to-date candidate,
who presumably will firstly detect leader failure and become
the next leader.

VI. EVALUATION

In this section, we show experimental comparisons majorly
between ESCAPE and Raft. ESCAPE aims to avoid split votes
and reduce the leader election time, so the comparison was
conducted for leader election under various scenarios including
crash and omission failures.

A. Experimental Setup

We implemented ESCAPE and Raft prototypes using the
Golang programming language and deployed the prototypes
on 4, 8, 16, 32, 64 and 128 VM instances on Compute Canada
Cloud. Instances are located in the same data center; the
raw network latency between two VMs is less than 2 ms,
and the network bandwidth is around 400 Megabytes/second.
We simulated a geo-distributed setup by using NetEm to
implement a higher network latency that uniformly distributes
from 100 to 200 ms. Each instance includes a machine with
two 2.40 GHz Intel Core processors (Skylake) with a cache
size of 16 MB, 8 GB of RAM, and 20 GB of disk space
running on Ubuntu 18.04.1 LTS.

B. Election Time under Leader Failures

We first compared the leader election time for ESCAPE and
Raft under leader failures. In this case, we repeatedly crashed
the leader of a cluster of 8, 16, 32, 64, and 128 servers
for 1000 runs of leader election at each scale. In the Raft
cluster, election timeouts were set to 1500-3000 ms, which
is the value range recommended by Raft for our network
latency [7]. In ESCAPE clusters, the baseT ime of election
timeouts for servers was set to 1500 ms with k=500 for
Equation 1. In practice, to avoid simultaneous timeouts among
servers, k can be set ×2 higher than the network latency. Thus,
ESCAPE allows the “potential leader” to complete its election
before other servers trigger timeouts. This setting assists the
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Fig. 9: Leader election (LE) time comparison of ESCAPE and Raft at increasing scales. The first two figures indicate the cumulative percent
of distribution of LE time for 1000 runs of each scale, and the last figure compares the average LE time of both protocols.

occurrence of the best case in leader election (discussed after
Theorem 5). The leader election time is recorded including the
detection of the leader crash and the election of a new leader.
In each run, candidates need to collect votes from a majority of
servers in their terms to claim leadership. For example, in an
8-server cluster, the quorum size is 5; after the leader crashes,
a new leader is the candidate that has collected 4 votes from
the remaining servers (candidates vote only for themselves).

Figure 9 shows the evaluation result for ESCAPE and Raft
operating in clusters at increasing scales (denoted by s). The
cumulative percent of the leader election time distribution
for both protocols are presented in the first two figures. In
ESCAPE, all the election campaigns were completed within
2000 ms, with no occurrence of split votes; in contrast, when
s ≥ 32, less than 40% of Raft’s election campaigns were
completed within 2000 ms. In the 128-server cluster, more
than 17% of election campaigns experienced split votes, and
their election time exceed 4500 ms. The last figure shows the
comparison of averaged election times. Compared with Raft,
ESCAPE shortens the leader election time by 11.6% and 21.3%
at sizes of 8 and 128 servers, respectively.

C. Election Time in Multiple Phases

From Section VI-B, the evaluation result shows that ES-
CAPE outperforms Raft in leader election under single leader
failures. Because ESCAPE does not encounter split votes in a
given term, it reduces the leader election on average. In order
to observe the performance for both protocols when config-
urations lead to multiple phases with competing candidates,
we evaluated the leader election time where five clusters of
various scales elect a new leader in zero, one, two, and three
phases with competing candidates (shown in Figure 10).

Raft witnesses a surge in leader election time when split
votes repeat. Both protocols exhibit similar performance with-
out competing candidates: election converges in 1812 ms
(ESCAPE s=8) to 1976 ms (Raft s=128) for clusters at
different scales. However, Raft suffers from a provisional live-
lock when competing candidates emerge. Although Raft and
ESCAPE take similar time to detect leader failures, competing
candidates impede Raft from completing the current election.
The livelock lasts for approximately the number of phases

with competing candidates × the election timeout. With three
phases of competing candidates, Raft takes approximately
6535 ms to elect a leader in a cluster of 8 servers, and
7473 ms in a cluster of 128 servers, nearly four times as long
as ESCAPE (1924 ms at s=128).

On the contrary, ESCAPE completes all election campaigns
within 2000 ms throughout different evaluations, regardless of
the number of phases with competing candidates. ESCAPE no
longer elects a leader based on the success that a candidate
collects votes faster than its opponents and forms a majority.
The highest-termed candidate finally supersedes the other elec-
tion campaigns and becomes the new leader. In a 128-server
cluster, compared with Raft, ESCAPE reduces the election time
by 44.9%, 64.2%, and 74.3% under one, two, and three phases
with competing candidates, respectively.

D. Election Time under Message Loss

In addition to multiple phases with competing candidates,
we evaluated the leader election performance under message
loss, a scenario that frequently occurs in practice. ESCAPE
and Raft depend on a majority of servers participating in
the consensus, so we chose to evaluate leader election under
message loss rates (∆) of 0%, 20%, 30%, 40%. At each rate, a
broadcast only reaches 1−∆ servers. For example, in a cluster
of 10 servers and ∆=20%, a sender (leader or candidate)
randomly omits two servers in each broadcast, whereas if
∆=0%, no message loss materializes.

Zookeeper [4] implemented a leader election mecha-
nism [23] using unique server IDs to set priorities, which is
similar to ESCAPE’s SCA method without PPF. However, if
applying this approach to Raft, the priority assignment is not
atomic. We applied Zookeeper’s leader election approach in
Raft and refer to it as Z-Raft. To compare the performance
of ESCAPE, Raft, and Z-Raft at various scales under varying
rates of message loss, we chose to perform the experiment in
clusters of 10, 50, and 100 servers.

Figure 11 shows the evaluation results averaged over 1000
runs. Without message loss (∆=0%), the election time of
Raft is slightly higher than that of ESCAPE and Z-Raft.
However, message loss severely exacerbates split votes in
Raft, especially at large scales. When ∆=40% in the Raft



Fig. 10: Leader election time performance in zero, one, two, and three phases with competing candidates (C.C.) at five varying scales.
The detection period is recorded between when a leader crashes and a candidate appears. The election period is recorded between when a
candidate starts an election campaign and a new leader is elected. ESCAPE benefits from its dynamic configuration assignments and performs
leader election in a single campaign regardless of the number of competing candidates.

cluster, 40% of servers become unqualified candidates since
they do not have up-to-date logs. Election campaigns triggered
by unqualified candidates are in the same term and stranded
in their election campaigns until a qualified candidate with a
higher term wins the competition.

The results of Z-Raft and ESCAPE exhibit similarity when
the rate of message loss is relatively small. Since Z-Raft does
not atomically arrange configurations, a low rate of message
loss does not significantly jeopardize the effectiveness of fixed
priorities. However, when message loss rates increase, without
dynamically rearranging priorities, servers that are initially
assigned with higher priorities are more likely to become stale
servers whose logs are no longer up-to-date. This situation
defeats the purpose of using priorities to rank candidates. Thus,
when ∆ increases, the gap of election times among Raft, Z-
Raft, and ESCAPE expands.

In contrast, ESCAPE assigns the “best” configuration (the
highest priority and shortest election timeout) to the most up-
to-date server through SCA and PPF. With message loss in
the network, if the most up-to-date server changes, the “best”
configuration is dynamically rearranged to the qualified server.
Because the configuration rearrangement is atomic, candidates
are differentiated in real time based on log responsiveness
through periodic heartbeats. When the leader crashes, the
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Fig. 11: Leader election comparisons under message loss. When
∆=40%, in each broadcast, 40% of the servers were not able to
receive messages sent by a leader or candidates.

server firstly triggers an election campaign and completes the
campaign in one phase (all the other servers will vote for this
server), escaping from potential competitions.

The evaluation results show the quantitative comparison
among three protocols. In a cluster size of 10 servers, com-
pared with Raft, when ∆=10% and ∆=40%, Z-Raft reduces
election time by 9.8% and 14.3%, respectively, while ESCAPE
reduces election time by 9.6% and 19%, respectively. The
reduction in election time is more significant at large scales for
ESCAPE, especially at a high rate of message loss. In a cluster
of 100 servers, ESCAPE reduces the leader election time by
21.4% and 49.3%, when ∆=10% and ∆=40%, respectively.

VII. RELATED WORK

Consensus algorithms coordinate servers to agree on pro-
posed values in distributed systems. To efficiently achieve
agreement among servers, numerous consensus algorithms use
a designated leader to coordinate the process for committing
values. These algorithms are called leader-based consensus
algorithms and contain election protocols to choose a unique
server to play a particular role.

With an assumption of no server failures and an asyn-
chronous network, the Chang and Roberts algorithm arranges
an array of servers as a logical ring [24], where a server
communicates with its descendant in a clock-wise manner,
and a single process that has the largest identifier is elected
as the leader. In addition, the Bully algorithm [25] addresses
fault tolerance by relying on communication among servers;
it assumes a synchronous network and uses timeouts to detect
server failures. The server with the highest server ID will be
elected as the leader.

More recently, the celebrated Paxos algorithm [5], [26]
implicitly utilize a global leader for reaching consensus; every
server that assumes a proposer role is allowed to broadcast
proposals to be accepted. Nonetheless, the concept of lead-
ership hides behind the consensus process that refuses values
carrying a smaller proposal number [7]. To avoid conflicts and
optimize performance, approaches using explicit leader roles
have been developed [3], [27]–[29]. In addition, Viewstamped
Replication (VR) [6], [30] provides an alternative way to



achieve consensus using a leader-based approach. Although
Raft shares similarities with Paxos and VR, Raft uses strong
leadership where the messages flow only from the leader to
other servers; all other servers passively synchronize states
from the leader, resolving conflicts by obeying the leader’s
commands. Utilizing strong leadership reduces the types of
messages and thus improves Raft’s understandability, making
Raft widely deployed in practical large-scale distributed sys-
tems such as Baidu File System [16], SDN designs [17], and
HyperLedger Kafka [18]. Thus, the leader election mechanism
is crucial because a Raft system fails without a leader. How-
ever, Raft’s leader election may result in competing election
campaigns that needlessly prolong the election time. The
performance evaluation of Raft in [22] hinted at this problem,
especially when the network splits and drops message.

Although Zookeeper [4] ushered a way to prioritize servers
using server IDs as identifiers [23], this approach does not
atomically rearrange priorities based on server log responsive-
ness. Consequently, the highest-priority server is guaranteed as
the most up-to-date. In this case, highest-priority servers can
be defeated in leader election campaigns and can not be elected
as the new leader, especially under problematic networks (e.g.,
packet loss). In contrast, ESCAPE does not only use server
identifiers to assign priorities, but also periodically rearranges
priorities and election timeouts in the cluster. Through the
proposed election mechanism, ESCAPE prepares and manages
a pool of prioritized candidates, resolving potential conflicts
before the next election takes place. Furthermore, ESCAPE
shares Raft’s safety and liveness properties and maintains
understandability and modularity as well.

VIII. CONCLUSIONS

In this paper, we develop a new consensus protocol called
ESCAPE that enables fast leader election. ESCAPE assigns
stochastic configurations to prioritize servers. Higher-priority
configurations are dynamically distributed to more up-to-date
servers via the probing patrol function, forming a pool of prior-
itized candidates. The top candidate, with the highest priority
configuration, in the pool is groomed as a “future leader”.
Thus, leader election completes without suffering from split
votes, taking precautions against leader failures before the next
election takes place. ESCAPE can also be adapted in other
election protocols to resolve potential competition in advance.
The evaluation results show improvements of leader election
time compared with Raft and ZooKeeper under leader failures,
especially under message loss.
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