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Abstract—In recent years, quantum computing (QC) has been
getting a lot of attention from industry and academia. Especially,
among various QC research topics, variational quantum circuit
(VQC) enables quantum deep reinforcement learning (QRL).
Many studies of QRL have shown that the QRL is superior
to the classical reinforcement learning (RL) methods under the
constraints of the number of training parameters. This paper
extends and demonstrates the QRL to quantum multi-agent RL
(QMARL). However, the extension of QRL to QMARL is not
straightforward due to the challenge of the noise intermediate-
scale quantum (NISQ) and the non-stationary properties in
classical multi-agent RL (MARL). Therefore, this paper proposes
the centralized training and decentralized execution (CTDE)
QMARL framework by designing novel VQCs for the framework
to cope with these issues. To corroborate the QMARL framework,
this paper conducts the QMARL demonstration in a single-hop
environment where edge agents offload packets to clouds. The
extensive demonstration shows that the proposed QMARL frame-
work enhances 57.7% of total reward than classical frameworks.

Index Terms—Quantum deep learning, Multi-agent reinforce-
ment learning, Quantum computing

I. INTRODUCTION

The recent advances in computing hardware and deep
learning algorithms have spurred the ground-breaking devel-
opments in distributed learning and multi-agent reinforce-
ment learning (MARL) [1]. The forthcoming innovations in
quantum computing hardware and algorithms will accelerate
or even revolutionize this trend [2], motivating this research
on quantum MARL (QMARL). Indeed, quantum algorithms
have huge potential in reducing model parameters without
compromising accuracy by taking advantage of quantum
entanglement [3]. A remarkable example is the variational
quantum circuit (VQC) architecture, also known as a quantum
neural network (QNN) [4], [5], which integrates a quantum
circuit into a classical deep neural network. The resultant
hybrid quantum-classical model enables quantum reinforce-
ment learning (QRL) that is on par with classical reinforce-
ment learning with more model parameters [6], [7], which
can accelerate the training and inference speed while saving
computing resources [8]. Inspired from this success, in this
article we aim to extend QRL to QMARL by integrating VQC
into classical MARL. This problem is non-trivial due to the

trade-off between quantum errors and MARL training stability
as we shall elaborate next.

In MARL, each agent interacts with other agents in a
cooperative or competitive scenario. Such agent interactions
often incur the non-stationary reward of each agent, hindering
the MARL training convergence. A standard way to cope with
this MARL non-stationarity is the centralized training and
decentralized execution (CTDE) method wherein the reward
is given simultaneously to all agents by concatenating their
state-action pairs. In this respect, one can näively implement
a VQC version of CTDE as in [6]. Unfortunately, since QRL
under VQC represents the state-action pairs using qubits, such
a nı̈ve CTDE QMARL implementation requires the qubits
increasing with the number of agents, and incurs the quantum
errors increasing with the number of qubits [9], hindering the
MARL convergence and scalability. Under the current noise
intermediate-scale quantum (NISQ) era (up to a few hundreds
qubits), it is difficult to correct such type of quantum errors
due to the insufficient number of qubits. Instead, the quantum
errors brought on by quantum gate operations can be properly
controlled under NISQ [9]. Motivated from this, we apply a
quantum state encoding method to CTDE QMARL, which
reduces the dimension of the state-action pairs by making them
pass through a set of quantum gates.
Contributions. The major contributions of this research can
be summarized as follows.
• We propose novel QMARL by integrating CTDE and

quantum state encoding into VQC based MARL.
• By experiments, we demonstrate that the proposed

QMARL framework achieves 57.7% higher total rewards
compared to classical MARL baselines under a multiple
edge-to-cloud queue management scenario.

II. QUANTUM COMPUTING AND CIRCUIT

A. Quantum Computing in a Nutshell
Quantum computing utilizes a qubit as the basic unit of

computation. The qubit represents a quantum superposition
state between two basis states, which denoted as |0〉 and |1〉.
Mathematically, there are two ways to describe a qubit state:

|ψ〉 = α|0〉+ β|1〉, where ‖α‖22 + ‖β‖22 = 1

|ψ〉 = cos(δ/2)|0〉+ eiϕ sin(δ/2)|1〉,∀δ, ϕ ∈ [−π, π].
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Fig. 1: The illustration of VQC.

The former is based on a normalized 2D complex vector,
while the latter is based on polar coordinates (δ, ϕ) from a geo-
metric viewpoint. The qubit state is mapped into the surface of
a 3-dimensional unit sphere, which is called Bloch sphere. In
addition, a quantum gate is a unitary operator transforming a
qubit state. For example, Rx(δ), Ry(δ), and Rz(δ) are rotation
operator gates by rotating δ around their corresponding axes
in the Bloch sphere. These gates are dealing with a single
qubit. In contrast, there are quantum gates which operate on
multiple qubits, called controlled rotation gates. They act on a
qubit according to the signal of several control qubits, which
generates quantum entanglement between those qubits. Among
them, a Controlled-X (or CNOT) gate is one of widely used
control gates which changes the sign of the second qubit if
the first qubit is |1〉. These gates allow quantum algorithms to
work with their features on VQC, which will are for QMARL.

B. Variational Quantum Circuit (VQC)

VQC is a quantum circuit that utilizes learnable parameters
to perform various numerical tasks, including estimation,
optimization, approximation, and classification. As shown in
Fig. 1, the operation of the general VQC model can be divided
into three steps. The first one is state encoding step Uenc,
and in this step, a classical input information is encoded
into corresponding qubit states, which can be treated in the
quantum circuit. The next step is variational step Uvar, and it
is for entangling qubit states by controlled gates and rotating
qubits by parameterized rotation gates. This process can be
repeated in multi-layers with more parameters, which enhances
the performance of the circuit. The last one is measurement
step M, which measures the expectation value of qubit
state according to its corresponding computational bases. This
process can be formulated as follows:

f(x; θ) = ⊗ΠM∈M〈0|U†enc(x)U†var(θ)MUvar(θ)Uenc(x)|0〉,

where ⊗ stands for the qubit superposition operator; f(x; θ) is
the output of VQC with inputs x and circuit parameter θ; M
is the set of quantum measurement bases in VQC with |M| ≤
nqubit where nqubit is the number of qubits. The example of
the state encoder in Fig. 1 can be expressed as follows:

Uenc(s0, s4, s8, s12) = Rx(s12) ·Rz(s8) ·Ry(s4) ·Rx(s0).
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Fig. 2: The structure of QMARL framework.

The quantum circuit parameters are updated every training
epoch, toward the direction of optimizing the objective output
value from VQC. Through this process, VQC is known to be
able to approximate any continuous function, which is similar
to classical neural network computation [10]. Therefore, VQC
is also called quantum neural network (QNN) [11]. In this
paper, two different VQCs are used to approximate the optimal
actions of actor and the accurate state value of critic.

III. QUANTUM MARL FRAMEWORK

A. QMARL Architecture

Our proposed QMARL is decentralized for scalability, every
agent in the QMARL has a VQC-based policy, i.e., agents do
not require communications among agents. Fig. 2 shows the
VQC that is used in quantum actor (refer to Sec. III-A1) and
critic (refer to Sec. III-A2).

1) Quantum Actor: For the quantum actor, the VQC will
be used to calculate the probabilities of actions of each agent.
Then, the quantum policy is written as follows:

πθ(ut|ot) = softmax(f(ot; θ)),

where softmax(x) ,
[

ex1∑N
i=1 e

xi
, · · · , exi∑N

i=1 e
xi
, · · · , exN∑N

i=1 e
xi

]
.

At time t, the actor policy of n-th agent makes action
decision with the given observation ont , which is denoted as
πθn(ant |ont ). Note that θn denotes parameters of n-th actor.
Then, the action unt is computed as follows:

unt = arg max
u

πθn(unt |ont ).

2) Quantum Centralized Critic: We adopt the centralized
critic for CTDE as a state-value function. At t, the parameter-
ized critic estimates the discounted returns given st as follows:

V ψ(st) = f(st;ψ) ' E
[ T∑
t′=t

γt
′−t · r(st′ ,ut′)

∣∣∣st = s
]
,

where γ, T , ut, and r(st′ ,ut′) stand for a discounted factor
γ ∈ [0, 1), an episode length, the actions of all agents, and
reward functions, respectively. In addition, ψ presents trainable
parameters of a critic. Note that st is the ground truth at t. Note
that the state encoding is used as shown in green box in Fig. 1
because the state size is larger than the size in observation.



Algorithm 1: CTDE-based QMARL Training
1 Initialize the parameters of actor-critic networks and the replay

buffer; Θ , {θ1, · · · , θN}, ψ, φ, D = {};
2 repeat
3 t = 0, s0 = initial state;
4 while st 6= terminal and t < episode limit do
5 for each agent n do
6 Calculate πθn (unt |ont ) and sample unt ;
7 end
8 Get reward rt and next state and observations st+1,

ot+1 = {o1
t , · · · , oNt };

9 D = D ∪ {(st,ot,ut, rt, st+1,ot+1)};
10 t = t+ 1, step = step + 1;
11 end
12 for each timestep t in each episode in batch D do
13 Get V ψ(st); V φ(st+1);
14 Calculate the target yt;
15 end
16 Calculate ∇ΘJ , ∇ψ , and update Θ, ψ;
17 if target update period then
18 Update the target network, φ← ψ
19 end
20 until obtaining optimal policies;

TABLE I: The MDP of a single-hop offloading environment.

Observation ont , {qe,nt , qe,nt−1} ∪Kk=1 {q
c,k
t }

Action unt ∈ A ≡ I × P
◦ Destination space I , {1, · · · ,K}
◦ Packet amount space P , {pmin, · · · , pmax}

State st , ∪Nn=1{ont }

Reward r(st,ut) in (1)

TABLE II: The experiment parameters.

Parameters Values

The numbers of clouds and edge agents (K, N ) 2, 4
The packet amount space (P) {0.1, 0.2}
The hyper-parameters of environment (wP , wR) (0.3, 4)

Transmitted packets from the cloud (bc,kt ) 0.3
The capacity of queue (qmax) 1
Optimizer Adam
The number of gates in Uvar 50
The number of qubits of actor/critic 4
Learning rate of actor/critic 1× 10−4, 1× 10−5

IV. EXPERIMENTS AND DEMONSTRATIONS

A. Single-Hop Offloading Environment

The environment used in this paper consists of K clouds
and N edges. The clouds and edges have queues qc and qe that
temporally store packets. All edge agents offload their packets
to clouds. The queue dynamics are as follows:

qi,kt+1 = clip(qi,kt − u
i,k
t + bi,kt , 0, qmax),

where the superscript i ∈ {c, e} identifies the cloud and
an edge device. The terms ui,kt and bi,nt imply the total
transmitting packet size and the packet arrival of k-th cloud
or n-th edge, respectively. Note that ue,nt is n-th edge
agent’s action. In addition, a clipping function is defined as
clip(x, xmin, xmax) , min(xmax,max(x, xmin)).
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Fig. 3: The experimental result of various metrics with com-
paring different MARL frameworks.

B. Training

The objective of MARL agents is to maximize the dis-
counted returns. To derive the gradients, we leverage the joint
state-value function V ψ . Our framework uses an multi-agent
policy gradient (MAPG), which can be formulated as follows:

∇θnJ=−Eπ
[ T∑
t=1

N∑
n=1

yt∇θn log πθ(u
n
t |ont )

]
,∇ψJ=∇ψ

T∑
t=1

‖yt‖2

s.t. yt = r(st,ut)+γV φ(st+1)−V ψ(st), and φ is the parame-
ters of target critic. The detailed procedure is in Algorithm 1.

In this paper, we assume that the capacities of edges and
clouds are all limited to qmax and edge agents receive packets
from previous hops, where the distribution is uniform ∀be,nt ∼
U(0, wP · qmax). The objective of this scenario is to minimize
the total amount of overflowed queue and the event that the
queue is empty. Thus, the reward r(st,ut) can be as follows:

−
K∑
k=1

[
1(qc,kt+1=0) · q̃

c,k
t + 1(qc,kt+1=qmax)

· q̂c,kt · wR
]
, (1)

s.t. q̃c,kt = |qc,kt − u
c,k
t + bc,kt | and q̂c,kt = |qmax− q̃c,kt |, where

wR is the hyperparameter of rewards. Note that r(st,ut) ∈
[−∞, 0] (negative) because we consider the occurrence of
abnormal queue states (e.g., queue overflow or underflow) as a
negative reward. The Markov decision process (MDP) of this
environment is presented in Table I.

C. Experimental and Demonstration Setup

To verify the effectiveness of the proposed QMARL frame-
work (named, Proposed), we compare our proposed QMARL
with two comparing methods. Here, ‘Comp1’ is a CTDE
hybrid QMARL framework where the actors use a VQC-
based policy and the centralized critic uses a classical neural
networks. In addition, ‘Comp2’ is a CTDE classical MARL
framework that is not related to quantum algorithms. Note that
the trainable parameters of these three frameworks are all set
to 50 for actor and critic computation. Lastly, ‘Comp3’ is a
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Fig. 4: The demonstration of QMARL framework.

classical CTDE MARL where the number of parameters is
more than 40K. The simulation parameter settings are listed
in Table II. We use python libraries (e.g., torchquantum
and pytorch) for deploying VQCs and DL methods, which
support GPU acceleration [12]. In addition, all experiments
are conducted on AMD RyzenTM ThreadripperTM 1950x and
NVIDIA RTX 3090. We have confirmed that the training time
of QMARL for 1, 000 epochs is not expensive (≈ 35 minutes).

D. Evaluation Results

1) Reward Convergence: Fig. 3 presents the demonstration
results. As shown in Fig. 3(a), the reward of QMARL frame-
works is around -3.0 for Proposed and -16.6 for Comp1,
whereas the classical MARL frameworks record -22.5 for
Comp2 and -2.8 for Comp3, respectively. We calculate
the achievability as min-max normalization with the average
returns of random walk. Note that the random walk records -
33.2 on average. The achievability of QMARL frameworks
is 90.9% for Proposed and 49.8% for Comp1. However,
the classical MARL frameworks achieve 33.2% for Comp2
and 91.5% for Comp3. In summary, the proposed QMARL
outperforms hybrid QMARL and classical MARL under the
constraint of the number of trainable parameters.

2) Performance: The average queue states of edges/clouds
and clouds are 0.460 for Proposed, 0.480 for Comp1, 0.510
for Comp2, and 0.453 for Comp3, respectively. The ratio
of the number of empty queue events records in a high
order of Comp2, Comp1, Proposed, and Comp3. However,
the overflowed queue is low with the order of Proposed,
Comp3, Comp2, and Comp1. According to Fig. 3(a–d), the
QMARL framework outperforms both classical and hybrid
quantum-classical MARL frameworks under the constraints of
the number of trainable parameters.

E. Demonstration

Due to high network latency of utilizing quantum clouds,
we conduct demonstration on simulation. Fig. 4 shows the
visualization of the workflow of our QMARL framework. The
superpositioned qubit states (i.e., magnitude and, phase vector)
are expressed as 4 × 4 heatmap in hue-lightness-saturation
color system. We provide source codes1 including QMARL,
the single-hop environement, and the simulator.

1https://github.com/WonJoon-Yun/Quantum-Multi-Agent-Reinforcement-Learning

V. CONCLUDING REMARKS AND FUTURE WORK

This paper introduces quantum computing concepts to
MARL, i.e., QMARL. To resolve the challenge of QMARL,
we adopt VQC with state encoding and the concept of CTDE.
From the single-hop environment, we verify the superiority of
QMARL corresponding to the number of trainable parameters
and the feasibility of QMARL. As a future work direction,
the implementation of QMARL to the quantum cloud (e.g.,
IBM quantum, Xanadu, or IonQ) should be interest because
the impact of noise is considerable on quantum computing.
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