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Abstract—Incentive mechanism is crucial for federated learn-
ing (FL) when rational clients do not have the same interests
in the global model as the server. However, due to system
heterogeneity and limited budget, it is generally impractical for
the server to incentivize all clients to participate in all training
rounds (known as full participation). The existing FL incentive
mechanisms are typically designed by stimulating a fixed subset of
clients based on their data quantity or system resources. Hence,
FL is performed only using this subset of clients throughout the
entire training process, leading to a biased model because of data
heterogeneity. This paper proposes a game-theoretic incentive
mechanism for FL with randomized client participation, where the
server adopts a customized pricing strategy that motivates differ-
ent clients to join with different participation levels (probabilities)
for obtaining an unbiased and high-performance model. Each
client responds to the server’s monetary incentive by choosing
its best participation level, to maximize its profit based on not
only the incurred local cost but also its intrinsic value for the
global model. To effectively evaluate clients’ contribution to the
model performance, we derive a new convergence bound which
analytically predicts how clients’ arbitrary participation levels
and their heterogeneous data affect the model performance. By
solving a non-convex optimization problem, our analysis reveals
that the intrinsic value leads to the interesting possibility of bi-
directional payment between the server and clients. Experimental
results using real datasets on a hardware prototype demonstrate
the superiority of our mechanism in achieving higher model
performance for the server as well as higher profits for the clients.

I. INTRODUCTION

Federated learning (FL) has recently emerged as an at-
tractive distributed machine learning paradigm, which enables
many clients to collaboratively train a machine learning model
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under the coordination of a central server, while keeping
the training data private [1]. In FL, each client exploits its
local dataset to compute a local model update, and the server
periodically aggregates these local model updates to obtain
a global model [2]. Because clients and the server in FL
usually belong to different entities, clients may not have as
much interest in obtaining a high-performance model (i.e.,
higher accuracy and lower loss) as the server. For instance, a
company could adopt the FL framework to train a commercial
model by letting its customers train the model with their local
data and on their own devices, while the customers (clients)
may not be interested in the model. Hence, without sufficient
compensation, clients may not be willing to participate due
to the associated local cost (e.g., resource consumption for
computation and communication), which makes the incentive
mechanism design crucial in FL systems [3]–[5].

However, designing an efficient and effective incentive
mechanism for FL is challenging due to two unique FL
features [6]: 1) clients in FL systems are usually massively
distributed with different local resources and independent
availability (known as system heterogeneity); 2) the training
data are unbalanced and non-i.i.d. across the clients (known
as statistical/data heterogeneity).

Due to system heterogeneity, it is generally impractical
to design an incentive mechanism for FL that requires all
clients to participate in all training rounds (known as full
client participation). This is because FL usually involves a
large number of clients and multiple training rounds, and
incentivizing full client participation requires a considerable
monetary compensation, which may be beyond the server’s
budget. Moreover, clients may be only intermittently available
due to their usage patterns, which prevents them from partic-
ipating in every training round.

In the existing studies (e.g., [7]–[14]), incentive mechanism
with partial client participation mainly stimulate a determin-
istic (fixed) subset of “valuable” clients based on their data
quantity, computation or communication resources, where FL
is performed only using this subset of clients throughout the
entire training process. However, these mechanisms may result
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in a severely biased model because of statistical heterogeneity
(e.g., the data at incentivized clients may not be representative
of all clients’ data), which fails to converge to the optimal
model that would be obtained if all the clients participate in
training. Therefore, we are motivated to study the first key
challenging question:
Question 1: How to design a practical incentive mechanism
for FL with partial client participation, to ensure the conver-
gence to a globally optimal unbiased model?

In tackling the bias issue due to partial client participation,
recent works have proposed various client sampling and model
aggregation algorithms (e.g., [15]–[22]), where the clients are
presumed to be always active (available) upon the server’s
request. This assumption may not always hold in practice, as
clients are independent decision-makers with different local
interests. This motivates us to explore the role of clients’
independent participation levels (probabilities) in incentive
mechanism design, where the server offers monetary rewards
to stimulate all clients to join with desired participation levels.

From the server’s perspective, intuitively, it can achieve a
higher model performance if all clients participate at higher
levels, whereas the resulting payment may be beyond the lim-
ited budget. In addition, due to statistical heterogeneity, clients
with higher participation levels may have low data quality
(e.g., small datasize or skewed data distribution) and thus have
little contribution to the model performance. Therefore, it is
critical to design an efficient payment strategy where clients
who contribute more towards the global training objective
receive more rewards. However, without actually training the
model, it is generally impossible to determine how clients’
participation level and their non-i.i.d. data affect the model
performance. This leads to our second key question:
Question 2: How to incentivize the clients’ active partici-
pation in FL by measuring the contribution of each client’s
participation level and local (non i.i.d.) data on the model
performance, so as to design an efficient payment strategy?

From the clients’ perspective, instead of purely providing
training data and services to gain profit, clients may have
intrinsic value (motivation) to participate in FL, e.g., to obtain
a more powerful global model for their own use when they
have few or skewed local data samples. Depending on a
client’s intrinsic value, the server may adopt a flexible pricing
mechanism and achieve the proper trade-off between encour-
aging clients’ participation and reducing the overall cost. To
our best knowledge, the role of intrinsic value has not been
studied in the FL incentive mechanism.

In light of the above discussion, this paper proposes a novel
incentive mechanism for FL with randomized partial client
participation, where the server motivates clients to join FL
with different participation levels (probabilities) as shown in
Fig. 1. Specifically, we model the interaction between the
server and clients as a sequential two-stage Stackelberg game,
where the server (leader) decides a customized pricing scheme
for each client’s participation level to maximize the global

Fig. 1. Incentive mechanism for federated learning with randomized client
participation, where the server adopts a customized payment strategy to
motivate clients to join with different participation levels q.

model performance. Each client (follower) then responds to
the server’s monetary incentive by independently choosing its
best participating level to maximize its own profit, based on
the incurred local cost as well as the intrinsic value for the
global model.

We first develop an adaptive model aggregation scheme to
guarantee the model unbiasedness for arbitrary independent
client participation levels. With the unbiased design, we obtain
a new FL convergence bound, which analytically establishes
the relationship between the global model performance and
clients’ arbitrary participation levels with unbalanced and non-
i.i.d. data without actually training the model.

Then, based on the convergence bound, we obtain the Stack-
elberg Equilibrium (SE) via solving a non-convex optimization
problem, which reveals interesting design principles. Counter-
intuitively, we show that in order to achieve an unbiased global
model, the server will set higher prices for clients who have
larger local costs. For the clients, those with higher intrinsic
values may receive lower prices (compensations) from the
server and choose lower participation levels. When the clients’
intrinsic values are higher than a certain threshold, the clients
may need to pay for the server for participation, which leads
to a bi-directional payment.

Finally, we evaluate the result of our proposed game with
both real and synthetic datasets on a hardware prototype. Ex-
perimental results demonstrate the superiority of our proposed
mechanism in achieving higher global model performance for
the server as well as higher profits for the clients. For example,
for MNIST dataset, our proposed pricing spends 69% less time
than the baseline uniform pricing for reaching the same target
accuracy under the same budget.

In summary, our key contributions are as follows:

• Unbiased Incentive Mechanism for FL with Randomized
Client Participation: To the best of our knowledge, we
are the first to study FL incentive mechanism with prac-
tically randomized client participation that guarantees the
unbiasedness of the obtained global model towards full
client participation.

• Convergence Bound for Evaluating Clients’ Contribution:



We obtain a new FL convergence upper bound for clients’
arbitrary participation levels with unbalanced and non-
i.i.d. data, which allows us to effectively measure each
client’s contribution to the global model performance.

• Intrinsic Value Design: We prove that the intrinsic value
can lead to a flexible bi-directional payment between the
server and clients. As far as we know, this is the first
work that models the impact of clients’ intrinsic value in
the FL incentive mechanism.

• Insightful Equilibrium Properties:

We obtain insightful design principles that characterize
the impact of the server’s and clients’ system parameters.
In particular, our analysis reveals a counter-intuitive result
that the sever may set higher prices for clients who
have larger local costs in order to guarantee the model
unbiasedness.

• Experimental Evaluation with Hardware Prototype: We
provide hardware experimental results that demonstrate
the superiority of our proposed mechanism with a 69%
time savings compared to baseline uniform pricing for
MNIST dataset under the same budget.

II. RELATED WORKS

Incentive mechanism design for FL has received significant
attention over recent years (for a comprehensive review please
refer to [23]). In the literature, existing works mainly focus on
designing incentives mechanism with full client participation
(e.g., [24]–[27]).

Considering the server’s limited budget and clients’ het-
erogeneous local resources, recent FL incentive mechanisms
(e.g., [7]–[9]) have considered more practical partial client
participation scenarios. However, these works mainly stimulate
a deterministic subset of “valuable” clients and train the
global model only with these clients’ data. Although such
mechanisms may speed up the training process at a certain
level and have merits in eliciting clients’ private information,
they may result in a biased global model if the selected clients
have skewed data. We propose to incentivize all clients to join
FL with independent participation probabilities, which enables
the server to obtain all clients’ data contributions to guarantee
the model’s unbiasedness.

In addition, most existing incentive mechanisms evaluate
clients’ contribution based on their data quantity (e.g., [7]–[9],
[12], [13]) or computation/communication resources (e.g., [9]–
[12], [14], [24], [25], [27]), which do not capture the critical
heterogeneous data distribution across clients. Our mechanism
measures clients’ contribution via a theoretical convergence
result for general statistical heterogeneity with unbalanced and
non-i.i.d. data.

The organization of the rest of the paper is as follows.
Section III introduces federated learning and game model.
Section IV presents our new error-convergence bound with
randomized client participation level. Section V analyzes the
equilibrium of the proposed game and solution insights. Sec-

tion VI provides hardware-based cross-device experimental
results. We conclude this paper in Section VII.

III. FEDERATED LEARNING AND GAME MODEL

We first introduce the basics of FL with partial client
participation and the proposed unbiased and independent
client participation scheme in Section III-A. Then, we present
the incentive mechanism design for client participation level
(probability), and describe the decision problems for the server
and clients, respectively in Section III-B. Finally, Section III-C
presents the strategic interactions between the server and
clients with the proposed Stackelberg game as well as the
challenges in solving the game.

A. FL with Randomized Partial Client Participation

We consider a typical FL scenario, where a central server
wants to learn a model based on the data from a set N =
{1, . . . , N} clients. Each client n ∈ N has dn data samples,
(xn,1, . . . ,xn,dn ), which is distributed in a non-i.i.d. fashion.
Define f (w;xn,i) as the loss function, indicating how the
machine learning model parameter w performs on the data
sample xn,i. Thus, the local loss function of client n is

Fn (w) :=
1

dn

∑dn

i=1
f (w;xn,i). (1)

We further denote an = dn/
∑N
n=1dn as the weight of the

n-th device, where
∑N
n=1 an = 1. By denoting F (w) as the

global loss function, the goal of FL is to solve the following
optimization problem [1]:

min
w

F (w) :=
∑N

n=1
anFn (w) . (2)

Due to limited system bandwidth and clients’ diverse avail-
ability, the most popular and de facto optimization algorithm
to solve (2) is FedAvg [2]. In FedAvg, the server randomly
samples a fraction of K clients (known as partial client
participation) in each round, and each selected client performs
multiple (e.g., E) steps of local stochastic gradient descent
(SGD) iterations on (1). Then, the server aggregates their
resulting local model updates periodically for a given deadline
of R rounds or until the global loss (2) converges.

However, considering that clients in FL are independent
decision-makers, each client n can decide its own participation
level (probability) qn, instead of using the sampling proba-
bility decided by the server. Nevertheless, without a careful
algorithm design, the obtained global model can be severely
biased due to statistical heterogeneity.

In the following, before we present our incentive mecha-
nism design, we first propose an unbiased model aggregation
scheme under an arbitrary independent client participation
level q={q1, . . . , qN}, such that the obtained model based on
our mechanism is unbiased towards full client participation.
We define the weighted aggregated model with full client
participation for any round r as wr+1 :=

∑N
n=1 anw

r+1
n .

With this, we have the following result.



Lemma 1. (Unbiased FL with Independent Client Participa-
tion Level) For clients under an arbitrary participation level
q, we aggregate the participants’ local updates as

wr+1 ← wr +
∑

n∈S(q)r

an
qn

(
wr+1
n −wr

)
, (3)

where S(q)r is the participating client set in round r. Then,
we have

ES(q)r [wr+1] = wr+1. (4)

Proof. We give the proof in Appendix A.

Remark: The interpretation of our aggregation scheme is
similar to that of importance sampling. More specifically, we
inversely re-weight the participant’s updated model gradient in
the aggregation step (e.g., 1

qn
for client n), such that the aggre-

gated model is unbiased towards the true update with full client
participation. We note that simply inversely weighting the
model updates from the sampled clients does not yield an un-
biased global model, i.e. EK(q)(r) [

∑
i∈K(q)(r)

pi
Kqi

w
(r+1)
i ] 6=

w(r+1), as the equality holds only when clients are sampled
uniformly at random, i.e., qi = 1/N . Particularly, when qn = 1
for all n, S(q)r is the full set with all N clients, and wr+1 in
(3) recovers wr+1. Nevertheless, unlike most active sampling
schemes (e.g., [15]–[17], [22]) where clients’ sampling prob-
abilities qsam

n are dependent with
∑N
n=1 q

sam
n = 1, the clients’

participation levels qn in our model is independent from each
other with the sum

∑N
n=1 qn varying between 0 to N .

B. Mechanism Design for Randomized Client Participation

As clients are independent decision-makers, we will ex-
plore the impact of clients’ independent participation levels
(probabilities) q = {q1, . . . , qN} in the incentive mechanism
design. Specifically, under a limited payment budget, the
server designs a customized pricing scheme for each client’s
participation level to maximize the model performance. In the
following, we present the decision problems for the server and
the clients.

1) Server’s Decision Problem: The goal of the server is
to minimize the training loss defined in (2) for a certain
number of training rounds. To achieve this, the server imposes
a set of prices P = {P1, . . . , PN} to incentivize each client’s
independent participation level (probability) q = {q1, . . . , qN}
under a payment budget B, where Pi represents the price per
unit of client i’s participating level. Hence, the payment for
each client n is Pnqn.

Let us denote wR(q) as the obtained model after R rounds
when clients participate with level q under pricing strategy P .
We can formulate the server’s problem as the following P1:

P1: min
P

Us(P, q) := E
[
F
(
wR(q)

)]
, (5a)

s.t.
∑N

n=1
Pnqn ≤ B. (5b)

The expectation of the objective in (5a) comes from the
randomness in client’s participation level q and local SGD.

Since the total budget is limited, it is important for the server
to design the optimal pricing strategy P to maximize its utility.

Remark: Unlike existing incentive mechanisms in FL where
the server always pays for the clients (e.g., Pn ≥ 0, for
all n) [7]–[14], we allow the payment to be bi-directional.
This is because, instead of purely providing training data and
computing services, if some client n has a high appreciation
for the global model as we will show later, it may be willing
to pay for the server (i.e., Pn < 0).

2) Clients’ Decision Problem: Each client’s goal is to
choose its participation level qn to maximize its utility function
Un, based on its incurred local cost and its intrinsic value for
the global model, which we will explain next.

Local Cost Model. The cost of client n involves resource
consumption for model computation and communication as
well as the lost opportunity for joining other activities for
monetary reward. Intuitively, the higher participation level the
higher cost will be, so we model the cost function Cn as

Cn = cnq
τ
n, τ > 1, 0 ≤ qn ≤ qn,max. (6)

The exponent τ > 1 captures a broad class of convex cost
functions, indicating an increasing rate as qn increases. We
let τ = 2 for analytical tractability in the rest of the paper,
which is also a standard assumption in economic models when
the decision variable is constrained [28], e.g., qn ≤ qn,max.
Nevertheless, we claim that our theoretical results in this paper
also hold for an arbitrary τ > 1. Parameter cn > 0 is the local
cost parameter.

Intrinsic Value Model. In addition to incurring the resource
cost, clients may have intrinsic motivation to participate in
FL, e.g., obtaining the powerful global model. In order to
effectively model the intrinsic value, we denote F (w∗n) as the
loss when client n applies its locally optimal model w∗n into
the global loss function (2), where w∗n = arg minw Fn(w)
is solved using client’s local training data on its local loss
function Fn(w) as defined in (1). Then, we model the intrinsic
value Vn for client n as

Vn := vn
(
F (w∗n)− E

[
F
(
wR(q)

)])
. (7)

The value of F (w∗n) − E
[
F
(
wR(q)

)]
represents the im-

provement of model performance due to the participation
in FL. Parameter vn ≥ 0 is the preference level for the
improvement, since clients may have different preferences for
the same model improvement. Intuitively, given that F (w∗n) is
a constant value and independent of q, a lower E

[
F
(
wR(q)

)]
yields a higher intrinsic value Vn, indicating that client n has
an internal drive to minimize the server’s utility in (5a).

Based on the above, we formulate each client n’s decision
problem as follows:

P2 : max
qn

Un(qn, Pn) := Pnqn − Cn + Vn (8a)

s.t. 0 ≤ qn ≤ qn,max. (8b)

Remark: As we discussed in the previous subsection, due to
the existence of the intrinsic value, clients may have incentives
to participate in FL even without monetary reward, i.e.,



Fig. 2. Stackelberg game between the server and Clients.

Pn = 0. In certain cases, when some client n has a very
high intrinsic value vn, it is possible for client n to pay for
the server for participation, i.e., Pn < 0.

C. Stackelberg Game Formulation

As shown in Fig. 2, we model the sequential decision-
making between the server and clients as a two-stage Stack-
elberg game [29], where the server acts as the Stackelberg
leader and decides the pricing variables P = {P1, . . . , PN}
to minimize its utility defined in (5a) in Stage I. Then,
given the server’s pricing strategy P , each client acts as a
Stackelberg follower and chooses its reactive participation
level qn to maximize its utility defined in (8a) in Stage II.
In the following, we refer to the proposed Stackelberg game
as Client Participation Level Game (CPL Game).1

1) Solution Concept of the Proposed CPL Game: The
common solution concept of the CPL Game is Stackelberg
equilibrium (SE), which we define as follows.

Definition 1. The Stackelberg equilibrium (SE) of the CPL
Game is a set of decisions {P SE, qSE} satisfying

qSE
n (P ) = arg max

qn(P )
Un (qn(P )) ,∀n ∈ N , (9a)

P SE = arg min
P

Us
(
P , qSE(P )

)
. (9b)

At a SE, neither the server or the clients has incentive to
deviate for better choice. A powerful technique to obtain SE
is backward induction [30], where we first solve for clients’
decision-making q(P ) given the server’s pricing scheme P
in Stage II, and then move back to Stage I to determine the
server’s pricing strategy P .

2) Challenges in Solving the CPL Game: Solving the
CPL Game, however, is challenging due to the lack of an
analytical expression of E[F

(
wR(q)

)
] to characterize the

impact of q. Hence, it is difficult for the server to evaluate the
clients’ contributions and make an efficient pricing decision.
Moreover, in general, without actually training the model, it
is impossible to find out how q affects the final model wR(q)
and the corresponding loss E[F

(
wR(q)

)
].

We will show how to address the above challenge in
Section IV, and then we will find the SE solution for the
CPL Game in Section V.

1Our mechanism assumes complete information, focusing on evaluating
clients’ contribution and designing an effective payment scheme. For the more
realistic incomplete information scenario, we can adopt Bayesian method to
model and analyze the performance similarly with a higher complexity.

IV. CONVERGENCE ANALYSIS FOR RANDOMIZED CLIENT
PARTICIPATION LEVEL

In this section, we address the challenge mentioned in
Section III-C2 by deriving a new tractable error-convergence
bound. The convergence bound establishes the analytical rela-
tionship between q and E[F

(
wR(q)

)
], which allows us to

approximate E[F
(
wR(q)

)
] in Us and Un and analytically

solve the PCL Game.

A. Key Assumptions

Assumption 1. For each client n ∈ N , Fn is L-smooth and
µ-strongly convex.

Assumption 2. For each client n ∈ N , the stochastic gradient
of Fn is unbiased with its variance bounded by σ2

n.

Assumption 3. For each client n ∈ N , the expected squared
norm of its stochastic gradient is bounded by G2

n.

Assumptions 1 and 2 are commonly made in many existing
studies of convex FL problems, such as `2-norm regularized
linear regression, logistic regression (e.g., [16]–[18], [21],
[31], [32]). Nevertheless, in Assumption 3, we make an
assumption for each client n with the bound Gn instead of the
bound G for all the clients as in [16]–[18], [21], [31], [32].
This is because if clients’ data are i.i,d., then Gn would be
the same across the clients since each client locally performs
SGD from the same data distribution. However, when clients
have non-i.i.d. data distribution, the values of Gn would be
different, which not only characterizes the data heterogeneity
in our convergence result but also yields a more accurate
pricing design (as we will show in Section V). In practice, we
can estimate Gn by letting the participated clients send back
their actual local stochastic gradient norms computed along
the trajectory of the model updates.

B. Bounded Model Variance

We first present the introduced variance of the aggregated
model wr+1 in (3) due to randomized client participation.
Lemma 2. The variance between the aggregated model wr+1

in (3) and the global model with full participation wr+1 is
bounded as

ES(q)r
∥∥wr+1−wr+1

∥∥2 ≤ 4
N∑
n=1

(1−qn) a2nG
2
n

qn
(ηrE)

2
. (10)

Proof Sketch. The proof follows a similar argument of
Lemma 5 in [16], except that our client participation levels qn
are independent among each other, which does not satisfy the
assumption of

∑N
n=1 qn=1 made in [16].

Remark: When qn = 1 for all n, the variance in (10) is
equal to zero, since the aggregated model wr+1 in the left hand
side of (10) is the same as wr+1 because qn = 1 implies full
participation.

C. Main Convergence Result

Theorem 1. (Convergence Upper Bound under an Arbi-
trary q) Consider any given client participation level q =
{q1, . . . , qN} and the unbiased aggregation in Lemma 1, if we



choose the decaying learning rate ηr = 2
max{8L,µE}+µr , the

optimality gap after R rounds satisfies

E[F
(
wR(q)

)
]−F ∗≤ 1

R

(
α
N∑
n=1

(1−qn) a2nG
2
n

qn
+β

)
, (11)

where α = 8LE
µ2 , β = 2L

µ2EA0 + 12L2

µ2E Γ + 4L2

µE ‖w0 −w∗‖2,

A0 =
N∑
n=1

a2nσ
2
n+8

N∑
n=1

anG
2
n(E−1)2, and Γ=F ∗−

∑N
n=1 anF

∗
n .

Proof. We give the proof in Appendix B.

We summarize the key insights of Theorem 1 as follows:

• The bound in (11) is valid for arbitrary independent client
participating level q and variant number of participating
clients in each round (i.e.,

∑N
n=1 qn can vary between

0 to N ), which is the key difference from existing
convergence results with active client sampling [15]–[19],
[21], [22].

• The bound in (11) characterizes how randomized partial
client participation (i.e., qn < 1) worsens the convergence
rate compared to full client participation. It also indicates
that in order to obtain an unbiased global model, all
clients need to participate with non-zero probability for
model convergence, i.e., qn > 0, for all n. This is because
when qn → 0, it will take infinite number of rounds
R for convergence. Our bound also explains why only
incentivizing and training part of the clients in existing
mechanisms (e.g., [7]–[14]) may fail to converge to the
optimal global model.

• The convergence bound in (11) establishes the relation-
ship between the expected loss function E[F

(
wR(q)

)
],

clients’ participation level q, and their heterogeneous
data anGn. In other words, how clients’ unbalanced
data (an) and non-i.i.d. data distribution (Gn) affect the
model training. This not only provides analytical utility
expressions for the server Us and clients Un, but also
enables an efficient pricing strategy as we will show in
Section V.

The use of Gi in our convergence analysis (instead of more
accurate instantaneous gradient norms) is mainly due to the
challenging “chicken and egg” problem. Specifically, before
the model has been fully trained, it is generally impossible to
know exactly how different FL configurations (e.g., clients’
different participation levels in this paper) affect the FL
performance. Therefore, to optimize the FL performance, we
need to have a lightweight surrogate that can (approximately)
predict what will happen if we choose a specific configuration.
A common surrogate used for this purpose is the convergence
upper bound, which has become a common practice in the
communications and networking community (e.g., [22], [33]–
[37]). Moreover, our experiments in Section VI demonstrate
the superiority of our designed pricing scheme based on the
convergence bound, in terms of achieving higher global model
performance and higher client profits compared to baseline
schemes.

V. STACKELBERG EQUILIBRIUM ANALYSIS

In this section, we use the obtained convergence bound
in Theorem 1 to approximate E[F

(
wR(q)

)
] in the server’s

utility Us and clients’ utility Un, and solve the CPL Game via
backward induction. We first solve clients’ decision-making
q given the server’s pricing scheme P in Stage II, and then
move back to Stage I to determine P . Finally, we characterize
the key insights of the optimal solution.

A. Client’s Decision at Stage II

We approximate E[F
(
wR(q)

)
] with the convergence bound

in (11), and rewrite client n’s problem given the server’s
pricing strategy P as the following Problem P2′:

P2′ : max
qn

Un(q, Pn) = Pnqn − cnq2n

+ vn

[
F (w∗n)−F ∗− 1

R

(
α

N∑
n=1

(1−qn) a2nG
2
n

qn
+β

)]
, (12a)

s.t. 0 ≤ qn ≤ qn,max. (12b)

We observe that the objective function (12a) is concave in
qn. Along with the linear constraints in (12b), we conclude
that Problem P2′ is concave. Therefore, the optimal solution
of Problem P2′ is unique, which is the best choice of qn to
maximize its own utility.

Based on the first order condition, the optimal choice of
q∗n(Pn) for client n satisfies

Pn + vn
α

R

a2nG
2
n

q∗2n
− 2cnq

∗
n = 0. (13)

Although the closed form solution of q∗n(Pn) is complicated
because (13) is a cubic equation, we can show that q∗n(Pn) is
a monotonically increasing convex function in Pn.

Based on the client’s optimal solution in (13), we move to
Stage I of the CPL game.

B. Server’s Decision at Stage I

In Stage I, the server chooses its pricing strategy based
on all the clients’ best responses. In other words, the server
substitutes q∗n(Pn) into its utility function in (5) for obtaining
the optimal price vector P under the budget constraint B.

However, since the analytical expression of qn(Pn) is com-
plicated, it is difficult to obtain the optimal P in the server’s
decision problem. As q∗n(Pn) is unique, we can write its in-
verse function based on (13), i.e., Pn(qn) = 2cnqn−a2nG2

n/q
2
n.

Then, we substitute this expression of Pn(qn) into the server’s
utility function and solve Stage I problem in (5). Therefore,
with the obtained convergence bound and the constraints of
qn, we rewrite problem in (5) as the following Problem P1′:

P1′ : min
q

F ∗ +
1

R

(
α

N∑
n=1

(1− qn)a2nG
2
n

qn
+ β

)
(14a)

s.t.
N∑
n=1

(
2cnqn −

α

R

vna
2
nG

2
n

q2n

)
qn ≤ B, (14b)

0 ≤ qn ≤ qn,max. (14c)



Although the objective function in (14a) is convex in qn, the
budget constraint in (14b) is not convex in qn. Thus, Problem
P1′ is non-convex. To efficiently solve Problem P1′, we define
a new control variable

M :=
∑N

n=1
cnq

2
n, (15)

where 0 ≤ M ≤
∑N
n=1 cn. Then, we rewrite Problem P1′ as

the following Problem P1′′:2

P1′′ : min
q,M

g (q,M) :=
α

R

N∑
i=1

(1− qn)a2nG
2
n

qn

s.t. 2M −
N∑
n=1

α

R

vna
2
nG

2
n

qn
≤ B,

∑N

n=1
cnq

2
n = M, 0 ≤ qn ≤ qn,max.

(16)

For any fixed feasible value of M , Problem P1′′ is convex
because the objective function and the constraints are convex.
Hence, we can approximately solve Problem P1′′ in two steps.
First, for any fixed M , we solve for the optimal q∗(M) in
Problem P1′′ via a convex optimization tool, e.g., CVX [38].
This allows us to write the objective function of Problem P1′′
as g(q∗(M),M). Then we will further solve the problem by
using a linear search method with a fixed step-size ε0 over the
interval

[
0,
∑N
n=1 cnq

2
n,max

]
, which leads to q∗(M∗(ε0)) =

arg minM(ε0) q
∗(M(ε0)).

Once we obtain q∗ from Problem P1′′, we immediately have
the optimal price P ∗ via (13) as follows,

P ∗n = 2cnq
∗
n − vn

α

R

a2nG
2
n

q∗n
2 . (17)

Finally, we conclude that the obtained solution pair
{q∗,P ∗} based on backward induction are the SE {P SE, qSE}
for the proposed CPL game [29]. Notably, based on the
relationship between qSE

n and P SE
n in (17), we highlight that

clients with low participation level qSE
n will receive a low price

P SE
n , which leads to a low payment P SE

n qSE
n from the server.

In particular, if these clients with low participation levels also
have high intrinsic value vn, they may need to pay for the
server, i.e., P SE

n < 0, which we show in the next section.

C. Properties of SE in the CPL Game

This subsection presents some interesting properties of
the obtained SE {P SE, qSE}. Before that, we first give the
following lemma which leads to our property analysis.

Lemma 3. At the SE of the CPL Game, the server’s budget
constraint is tight.

Proof Sketch. The idea of this proof is to use contradiction,
which we omit due to page limitation.

2We omit constants F ∗ and β in the objective of P1′ for simplicity.

1) Impact of the server’s budget B: We first show the
impact of the server’s budget B on SE {P SE, qSE}.

Proposition 1. Both P SE and qSE increase in budget B.

Proof. Given B=
N∑
n=1

(
2cnq

∗
n
2 − α

R
vna

2
nG

2
n

q∗n

)
from Lemma 3,

we have ∂B/∂q∗n = 4cnq
∗
n + α

R
vna

2
nG

2
n

q∗n

2

> 0. Thus, q∗n
increases in B. Next, based on the monotonically increasing
relationship between q∗n and P ∗n in (17), we conclude that P ∗n
also increases in B.

Proposition 1 shows that when the budget B is higher, the
server could increase its price Pn to incentivize higher client
participation level qn to decrease the global loss for improving
the model performance. Similarly, clients also have incentive
to increase their participation level for more profit.

2) Impact of clients’ parameters: This subsection shows
how client’s parameters, including data quality, local cost, and
intrinsic value affect the values of {P SE, qSE} at SE. For sim-
plicity, we consider those clients whose equilibrium choices
are in the (strict) interior of domains, i.e., 0 < qSE

n < qn,max.

Theorem 2. (Impact of clients’ parameters on qSE) For any
clients i and j whose equilibrium qSE

i and qSE
j are in the

interior of the domains, we must have ciq
∗
i
3

a2iG
2
i

+vi =
cjq

∗
j
3

a2jG
2
j

+vj .

Proof. We give the proof in Appendix C.

We summarize the key insights of Theorem 2 as follows:

• (Heterogeneous Data quality) Clients with larger anGn
(e.g., large data size and gradient norm upper-bound) have
higher participation level qSE

n , given the same parameters
cn and vn among clients.

• (Local cost) Clients with large local cost parameter cn
have lower participate level qSE

n , given the same parame-
ters anGn and vn among clients.

• (Intrinsic value) It is counter-intuitive that a client with a
larger intrinsic value parameter vn has a lower participa-
tion rate qSE

n , given the same anGn and cn among clients.
This is because although a higher qn benefits its intrinsic
value if its vn is large, the server will set a lower price Pn
(as we show in the next theorem) which yields a smaller
payment Pnqn. Considering that the larger qn also incurs
larger cost cnq2n, qn should not be large.

Theorem 3. (Impact of clients’ parameters on P SE) For any
client n whose equilibrium qSE

n is in the interior domain, we
must have

P ∗n =

(
2αc2na

2
nG

2
n

R

)1
3

( 1

λ∗
−vn

)1
3

−2

(
v

3
2
n

1
λ∗−vn

)2
3

. (18)

In addition, there exists a threshold vt, such that P SE
n > 0, if

vn ≤ vt, and P SE
n < 0 otherwise.

Proof. We give the proof in Appendix D.



Fig. 3. Cross-device FL prototype with a laptop serving as the central server
and 40 Raspberry Pis serving as clients.

Before we present the insights of Theorem 3, we show how
parameters cn and anGn affect P SE

n with the following result.

Corollary 1. With the same threshold vt in Theorem 3, and
for any clients i and j whose equilibrium qSE

i and qSE
j are in

the interior of the domains and satisfy ciaiGi > cjajGj ,

1) if vi < vj < vt, then P SE
i > P SE

j > 0;
2) if vi > vj > vt, then P SE

i < P SE
j < 0.

We summarize the key insights of Theorem 3 and Corol-
lary 1 as follows:

• (Intrinsic value) Our result provides a quantitative cri-
terion, which indicates the payment direction of P SE

n

between the server and the clients.
• (Data quality) We have shown that, no matter which

payment direction, the price P SE
n is higher for clients who

have large values of anGn, given the same parameters cn
and vn among clients. This result demonstrates the sub-
optimality of existing mechanisms with uniform pricing
or data quantity-based pricing.

• (Local cost) It is counter-intuitive that clients with large
cn will have higher price P SE

n when parameters anGn
and vn are the same as other clients. However, this result
makes sense because a client with a large local cost cn
tends to join with low participation level qn, which can
cause a negative impact on the server’s utility. Hence, to
prevent this, the server will set a higher price.

VI. EXPERIMENTAL EVALUATION

In this section, we empirically evaluate the performance
of our proposed mechanism with different datasets on our
hardware-based cross-device FL prototype, as illustrated in
Fig. 3. Our prototype consists of N = 40 Raspberry Pis
serving as clients and a laptop computer acting as the central
server. All devices are interconnected via an enterprise-grade
Wi-Fi router. We develop a TCP-based socket interface for the
communication between the server and clients.

In the following, we first present the evaluation setup and
then show the experimental results.

TABLE I
SYSTEM PARAMETERS FOR DIFFERENT SETUPS

Setup\Parameter budget B local cost c intrinsic value v

Setup 1 200 50 4, 000

Setup 2 40 20 30, 000

Setup 3 500 80 10, 000

A. Experimental Setup

1) Datasets and Implementations: Following similar se-
tups as in [16], [22], we evaluate our results on three datasets,
with detailed implementations as follows:
• Setup 1: The first experiment uses the Synthetic dataset,

which generates 60-dimensional random vectors as input
data with a non-i.i.d. Synthetic (1, 1) setting. We gener-
ate 22, 377 data samples and distribute them among the
devices in an unbalanced power-law distribution.

• Setup 2: The second experiment uses MNIST dataset,
where we randomly subsample 14, 463 data samples from
MNIST and distribute them among the devices in an
unbalanced (following the power-law distribution) and
non-i.i.d. (i.e., each device has 1–6 classes) fashion.

• Setup 3: The third experiment uses EMNIST dataset,
where we randomly subsample 35, 155 lower case char-
acter samples from the EMNIST dataset and distribute
among the devices in an unbalanced (i.e., numbers of data
samples at each device follows a power-law distribution)
and non-i.i.d. fashion (i.e., each device has a randomly
chosen number of classes, ranging from 1 to 10).

2) Model and Parameters: For all experiments, we adopt
the convex multinomial logistic regression model, with w0 =0
and SGD batch size 24. We use an initial learning rate of
η0 = 0.1, a decay rate of 0.996, and a local iteration number
E = 100. We estimate the task-related parameters α and
data quality-related parameter Gn for each setup following
a similar approach as [22]. We let qn,max = 1 for all n
and training round R = 1000 for all three setups. Table I
shows the parameter settings for budget B, mean local cost
parameter c, and mean intrinsic value parameter v for each
setup, with c and v following exponential distribution among
clients. We note that the parameters and results are general,
and the specific parameters for a scenario can often be obtained
through measurement in practice.

B. Experimental Results

We first compare the performance of our proposed optimal
pricing with other benchmark pricing schemes, and then we
evaluate the impact of different system parameters on the
model performance and Equilibrium solution. For all three
setups, we average each experiment over 20 independent runs.

1) Comparison with Different Pricing Schemes: We com-
pare our proposed optimal pricing P ∗ with two benchmark
pricing schemes: uniform pricing P u where the server sets the
same price for all devices, and weighted pricing P w where



(a) Loss for Setup 1 (b) Accuracy for Setup 1

(c) Loss for for Setup 2 (d) Accuracy for for Setup 2

(e) Loss for for Setup 3 (f) Accuracy for for Setup 3

Fig. 4. Model performance of loss and accuracy for Setups 1 – 3 for different
pricing schemes.

clients’ prices are proportional to their datasize. Then, we
run experiments for all three Setups using the corresponding
optimal clients’ participation levels q∗, qu, and qw, based
on the above three pricing schemes. Fig. 4 illustrates the
global model performance of global loss and test accuracy
for different pricing schemes for Setups 1–3 with evaluating
time 1, 000, 2, 000, and 3, 000 seconds, respectively.

Loss. As shown in Figs. 4(a), 4(c), and 4(e), our pro-
posed optimal pricing scheme achieves lower global loss with
smaller variance throughout the evaluating process compared
to the other benchmarks under the same budget. Specifically,
for EMNIST dataset, Fig. 4(c) shows that our scheme reaches a
target loss of 0.33 using around 33.1% less time than weighted
pricing and around 52.9% less time than the uniform pricing.
We summarize the superior performances of loss in Table II.

Accuracy. Figs. 4(b), 4(d), and 4(f) show that our proposed
optimal pricing scheme achieves higher test accuracy with
smaller variance compared to the other benchmarks under the
same budget. In particular, for MNIST dataset, Fig. 4(d) shows
that our proposed pricing scheme spends around 20.0% less
time than the weighted pricing and around 46.5% less time
than the uniform pricing for reaching a target accuracy of
69%. We summarize the superior performances of accuracy

TABLE II
RUNNING TIME FOR REACHING THE TARGET LOSS (SHOWN IN FIG. 4) FOR

DIFFERENT PRICING SCHEMES

Setup \ Pricing Schemes Proposed Weighted Uniform

Setup 1 711 s 791 s 903 s

Setup 2 926 s 1, 384 s 1, 969 s

Setup 3 1,448 s 1, 758 s 2, 735 s

TABLE III
RUNNING TIME FOR REACHING THE TARGET ACCURACY (SHOWN IN

FIG. 4) FOR DIFFERENT PRICING SCHEMES

Setup \ Pricing Schemes Proposed Weighted Uniform

Setup 1 668 s 759 s 871 s

Setup 2 411 s 1, 096 s 1, 767 s

Setup 3 1,412 s 1, 766 s 2, 645 s

TABLE IV
TOTAL CLIENTS’ UTILITY GAIN OF OUR PROPOSED PRICING SCHEME

OVER THE OTHER TWO BENCHMARK PRICING SCHEMES

Setup \ Gain
N∑

n=1
U∗n −

N∑
n=1

Uu
n

N∑
n=1

U∗n −
N∑

n=1
Uw
n

Setup 1 10, 839 5, 175

Setup 2 77, 975 75, 909

Setup 3 86, 200 22, 413

in Table III.
Clients’ Utility. Table IV shows the gain of clients’ total

utility of our proposed pricing over the other two benchmarks.
We see that our proposed optimal pricing scheme yields higher
total clients’ utility compared to the other two benchmark
pricing schemes.

The above observations validate that our designed mecha-
nism with optimal pricing can incentivize high-quality clients
to participate with higher participation levels under the same
budget, which benefits both the server and clients’ utilities.

2) Impact of System Parameters: Fig. 5 - Fig. 7 show the
impact of system parameters on the global model performance
of our proposed mechanism with evaluating time 600 seconds.
Due to page limit, we evaluate each parameter with one setup.

Impact of v: Fig. 5 shows that as clients’ mean intrinsic
value v increases in Setup 1, the obtained model achieves
a lower loss and a higher accuracy, respectively. This ob-
servation is because when clients have more interest in the
global model, they have internal motivation to participate in
higher levels. In addition, as predicted by our theory, we show
in Table V that as v increases, the number of clients whose
payment is negative also increases, e.g., from 0 to 5.

Impact of c: Fig. 6 shows that as clients’ mean local cost
c decreases in Setup 2, the obtained model achieves a lower
loss, a higher accuracy, and a smaller variance. This is because
large cost prevents clients from participating in higher levels.

Impact of B: Fig. 7 shows that as budget B increases in
Setup 3, the obtained model achieves a lower loss, a higher



TABLE V
NUMBER OF NEGATIVE PAYMENT CLIENTS FOR DIFFERENT v

Setup 1 (Synthetic) v = 0 v = 4, 000 v = 80, 000

Client number with Pn < 0 0 3 5

(a) Loss for different v (b) Accuracy for different v

Fig. 5. Model performance for different v for Setup 1.

(a) Loss for different c (b) Accuracy for different c

Fig. 6. Model performance for different c for Setup 2.

(a) Loss for different B (b) Accuracy for different B

Fig. 7. Model performance for different B for Setup 3.

accuracy, and a smaller variance. This observation is because
more budget allows more clients to participate in higher levels.

VII. CONCLUSION AND FUTURE WORK

In this work, we proposed a randomized client participation
mechanism for FL, which guarantees that the obtained model
is unbiased and converges to the globally optimal model. We
derived a new tractable convergence bound that analytically
characterizes the impact of clients’ participation levels and
their non-i.i.d data on the server’s model performance, which
yields a more accurate and customized pricing scheme. To
characterize clients’ internal interests in the global model,
we introduced and modeled a new intrinsic value in clients’
utilities, which allows clients to pay for the server. We showed

both theoretical and empirical evidence that the intrinsic value
plays a critical role in the server and clients’ decision-making.
We conducted extensive experiments on a developed hardware
prototype to demonstrate the superiority of our mechanism.

Our mechanism serves as an initial step towards the incen-
tive mechanism design to achieve an unbiased and convergence
guaranteed model with practical randomized client participa-
tion. In the future, we will extend our incentive mechanism for
incomplete information scenarios using Bayesian method. We
will further refine our cost model by decoupling the local cost
into computation and communication consumption, and design
an effective measurement to model clients’ intrinsic value.

APPENDIX

A. Proof of Lemma 1

Substituting (3) into (4), we have

ES(q)r
[
wr+1

]
=wr+E

[∑
n∈S(q)r

an
qn

(
wr+1
n −wr

)]
= wr+

∑N
n=1 qn

an
qn

(
wr+1
n −wr

)
= wr+

∑N
n=1 an

(
wr+1
n −wr

)
= wr+wr+1 −wr = wr+1,

(19)
where n in the first equation is a random variable in the
randomly sampled set S(q)(r), which concludes the proof.

B. Proof Sketch of Theorem 1

Following a similar proof of convergence under full client
participation [16], [32], we first show the convergence result
under full client participation is E[F

(
wR)

)
]−F ∗ ≤ β/R,

where E[F
(
wR)

)
] is the expected global loss after R rounds

with full participation, and β is the same as in (11). Then,
we use mathematical induction to obtain a non-recursive
bound on ES(q)r

∥∥wR −w∗
∥∥2, and show that its difference

compared to the bound of full participation E
∥∥wR −w∗

∥∥2 is
the variance introduced in (10). After that, we converted the
bound of ES(q)r

∥∥wR −w∗
∥∥2 to E[F

(
wR(q)

)
] − F ∗ using

L-smoothness and strong convexity of F (·), which yields the
additional term of α

∑N
n=1

(1−qn)a2nG
2
n

qn
in (11) compared to

the upper bound with full client participation. �

C. Proof of Theorem 2

We write the Lagrangian function L(q, λ, µn, γn) of P1′ as

L=F ∗+
1

R

(
α

N∑
n=1

(1−qn)a2nG
2
n

qn
+β

)
+

N∑
n=1

γn(qn−qn,max)

−
∑N

n=1
µnqn + λ

(∑N

n=1

(
2cnq

2
n −

α

R

vna
2
nG

2
n

qn

)
−B

)
,

(20)
where λ > 0, µn ≥ 0 and γn ≥ 0 are Lagrangian multi-
pliers (dual variables). Although Problem P1′ is non-convex,
the Karush-Kuhn-Tucker (KKT) conditions are necessary for
optimality. Thus, for the first order condition, we must have

− α
R

a2nG
2
n

q∗2n
+λ∗

(
4cnq

∗
n +

α

R

vna
2
nG

2
n

q∗2n

)
−µ∗n+γ∗n = 0. (21)



Given that 0 < q∗n < qn,max, we have µ∗n = 0 and γ∗n = 0
due to the Complementary Slackness in the KKT conditions,
which we rewrite (21) as follows

1

λ∗
=

4R

α

cnq
∗
n
3

a2nG
2
n

+ vn. (22)

The result is obtained since 1/λ∗ is independent of index n.

D. Proof of Theorem 3

We exploit the relationship between q∗n and P ∗n in (17), and
substitute it into the first order condition (22), which leads to
(18). By letting P ∗n = 0, we have vn = 1/(3λ∗). Therefore,
given that P ∗n in (18) decreases in vn, we must have P ∗n >
0 when vn < 1/(3λ∗), and P ∗n < 0 when vn > 1/(3λ∗).
Hence, we conclude the proof by letting the threshold vt =
1/(3λ∗).
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