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Abstract—Communication scheduling has been shown to be
effective in accelerating distributed training, which enables all-
reduce communications to be overlapped with backpropagation
computations. This has been commonly adopted in popular
distributed deep learning frameworks. However, there exist two
fundamental problems: (1) excessive startup latency proportional
to the number of workers for each all-reduce operation; (2)
it only achieves sub-optimal training performance due to the
dependency and synchronization requirement of the feed-forward
computation in the next iteration. We propose a novel scheduling
algorithm, DeAR, that decouples the all-reduce primitive into
two continuous operations, which overlaps with both backprop-
agation and feed-forward computations without extra communi-
cations. We further design a practical tensor fusion algorithm
to improve the training performance. Experimental results with
five popular models show that DeAR achieves up to 83% and
15% training speedup over the state-of-the-art solutions on a
64-GPU cluster with 10Gb/s Ethernet and 100Gb/s InfiniBand
interconnects, respectively.

I. INTRODUCTION

Training a complex deep neural network (DNN) model
over a large data set requires a massive amount of compute
resources and is typically performed on a cluster of GPU
machines [1]-[3]. To accelerate distributed training, many dif-
ferent ways of parallelism have been proposed recently, such
as data-parallel [4], model-parallel [1], pipeline-parallel [5],
and the combination of the above [6]. Among them, the
data-parallel synchronous stochastic gradient descent (S-SGD)
algorithms are the most popular when each worker machine
has sufficient GPU memory to hold the training model. In
S-SGD, the training data is sharded across multiple GPU
workers. Each worker iteratively updates the training model
by aggregating the local gradients computed with local data
samples. To efficiently support gradient aggregation, current
training frameworks use the all-reduce architecture [2,4,7]-
[10], in which gradient aggregation is performed with an all-
reduce collective. The all-reduce architecture has been widely
adopted in practice to distributed training, according to the
MLPerf training benchmarks'.

As the model size and the number of workers increase,
gradient aggregation requires extensive data communications,
which easily become the bottleneck [11,12]. System-level
optimizations are thus needed to address this scalability issue.
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One effective approach that exploits the layer-wise structure
of DNN models is to pipeline gradient calculation (computing
tasks) with gradient aggregation (communication tasks) in the
backpropagation stage, so as to hide the communication over-
head and thus improve the system throughput [13,14]. This
approach, known as wait-free backpropagation (WFBP) [13],
has been implemented as the default mechanism in mod-
ern deep learning (DL) frameworks such as TensorFlow,
PyTorch-DDP [15], and Horovod [16,17]. However, WFBP
only pipelines communications with gradient computations in
the backpropagation stage, which does not consider the feed-
forward stage, thus making it sub-optimal. It is worth pointing
out that feed-forward computations account for around one
third of the total computation time in each iteration [18], which
can be properly exploited to further accelerating the training
speed.

However, it is challenging to enable pipelining between the
communication tasks for gradient aggregation and the next
iteration’s feed-forward computing tasks under the all-reduce
architecture, for two reasons. First, a tensor’s gradient aggre-
gation is an all-reduce primitive, which can only begin after
its gradient has been calculated in backpropagation and should
be synchronized before the next iteration’s feed-forward com-
putation. Thus, it only allows coarse-grained scheduling be-
tween communications and computations. Second, the all-
reduce communication tasks are coming in a first-in, first-
out (FIFO) order with the dependency of backpropagation
computing tasks. Communication tasks can be re-ordered to
be pipelined with feed-forward computing tasks. Yet, different
workers execute the computing tasks concurrently, such a re-
ordering needs to be done collectively in a consistent manner
by all workers to ensure the correctness of all-reduce results.
Therefore, this requires synchronization among workers in
each iteration, which causes extra communication overheads.

To address the two challenges above, we propose a new
scheduling algorithm called DeAR? that decouples the all-
reduce primitive to two operations, so as to enable fine-
grained scheduling without introducing extra communication
overhead. DeAR applies three novel techniques to distributed
training for the all-reduce architecture. To the best of our
knowledge, we are the first to decouple the all-reduce primitive
without introducing extra time costs so that communications

2Source code can be found in https://github.com/lzhangbv/dear_pytorch.
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become possible to be overlapped with feed-forward compu-
tations in distributed training.

First, though the all-reduce operation is a primitive in
distributed training, all-reduce implementations can be handled
as a combination of basic routines [19]-[22]. For example,
a classic implementation of the widely used ring-based all-
reduce is a combination of a reduce-scatter collective followed
by an all-gather collective [19,20]. Based on the nature of all-
reduce implementations, we decouple the all-reduce primitive
to two continuous collectives in distributed training, which
allows a fine-grained schedule of communication tasks.

Second, given that one all-reduce primitive is decoupled into
two operations, we propose to schedule the first operation to
be pipelined with backpropagation computing tasks, and the
second operation pipelined with feed-forward computing tasks.
By doing so, there is no need to re-order the communication
tasks while enabling the pipelining between the communica-
tion tasks and all the computing tasks without introducing any
extra communication overhead during training.

Third, due to the pipelining between the communication
tasks and feed-forward computing tasks, tensor fusion tech-
niques [16,23,24], which have been proven effective in reduc-
ing the latency overhead in WFBP [13], becomes impractical
in DeAR. The main challenge is how to determine which
tensor should (not) be fused. To this end, we propose a
dynamic tensor fusion algorithm using Bayesian optimization
in DeAR to judiciously determine which tensors should be
fused to improve the training efficiency, without any prior
knowledge about the model and cluster configurations.

We implemented DeAR atop PyTorch. Our implementation
provides an easy-to-use API such that users can integrate our
training algorithm by adding a few lines of code. Extensive
experiments are conducted with popular DNNs on a 64-
GPU cluster under various system configurations. Experi-
mental results show that, compared with the state-of-the-art
solutions, including PyTorch-DDP, Horovod, MG-WFBP [23],
and ByteScheduler [25], DeAR accelerates the model training
by up to 83% and 15% over 10Gb/s Ethernet and 100Gb/s
InfiniBand interconnects, respectively. In all experiments, the
training speedup enabled by DeAR reaches 72.3-99.2% of the
maximum possible.

II. BACKGROUND AND MOTIVATION

A. Mini-batch SGD

The training of DNN models is to minimize a designed
loss function £(w, X), where w is the model parameter and
X is the training data. In mini-batch SGD, the model param-
eters is updated iteratively based on its first-order gradient.
Specifically, at each iteration i, a mini-batch data (X;) is
randomly sampled to calculate the loss through feed-forward
from the first layer to the last layer; and then the first-
order gradient w.r.t. the model parameter is calculated through
backpropagation. Then, the gradient is used to update the

parameter. Formally, the update formula at the *" iteration
can be represented as follows.
Wi41 = Wi — UVL(IU“ Xl), (1)

where 7 is the learning rate, w; and X; are the model
parameter and sampled data at iteration ¢, respectively. Thus,
in a single-GPU environment, the training time is mainly
consumed in the feed-forward and backpropagation computing
tasks.

B. $-SGD

When exploiting multiple workers (e.g., GPUs) to train a
single model, synchronous SGD (S-SGD) with data paral-
lelism is a de-facto approach for training as it preserves the
convergence properties of mini-batch SGD. In S-SGD, each
iteration’s training data X; is distributed to P workers as X?
at worker p, where p = 1,2,..., P on a P-worker cluster, and
all workers keep consistent parameters at every iteration. The
update rule of S-SGD is

P
Wi41 = Wy —n%ZVL(w“Xf’) (2)
p=1
It is seen that the distributed gradients should be aggregated
before updating the model parameter, which introduces com-
munication costs and limits the system scaling efficiency. In
practice, the gradient aggregation (GA) can be implemented
through a parameter server [26] or an all-reduce collective.
We focus on the all-reduce implementation in this work. In
summary, the iteration time of S-SGD contains the feed-
forward computation time, the backpropagation computation
time, and the communication time of gradient aggregation.
Due to the layer-wise structure of DNN models, the com-
puting tasks and communication tasks can be organized as
a directed acyclic graph (DAG) as shown in Fig. 1(a). One
layer’s communication (AR;) can only begin after its gradient
has been calculated (BP;), and its feed-forward computation
(FF;) should wait for the completion of AR;. According to the
DAGQG, it is possible to schedule the order of different tasks so
that they can be overlapped to shorten the iteration time.

C. Wait-free backpropagation

Gradient aggregation of some layers can be overlapped with
backpropagation using the wait-free backpropagation algo-
rithm (WFBP) [13,14], in which the gradient communication
can immediately begin after the gradient is calculated. Due
to the nature of backpropagation, where the gradients are
calculated from the last layer to the first layer, multiple layers
communications are scheduled with a first-in-first-out (FIFO)
order as shown in Fig. 1(b). In modern DNN models, there are
many layers which have a relatively small number of gradients
that need to be aggregated, thus WFBP requires tensor fusion
(e.g., MG-WFBP [23]) to alleviate the startup overhead in all-
reduce communications as shown in Fig. 1(c).

However, WFBP and its variant only allow the gradient
aggregation communication tasks to be pipelined with back-
propagation computing tasks as shown in Fig. 1(b)(c). That
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Fig. 1: (a) The DAG of computing and communication tasks in
an L-layer DNN, and (b-d) the timeline of S-SGD algorithms
with different schedules. (b) WFBP: Gradient communication
of each layer begins after that layer’s gradients are calculated
and the communications are executed in a FIFO order. (c)
The gradients of nearby layers are fused to be communicated
together. (d) ByteScheduler: large tensors may be partitioned
into multiple smaller tensors and the order of communications
is based on their priorities but not FIFO.

is, the feed-forward computing tasks of the next iteration can
only begin after all the GA communication tasks of the current
iteration have been completed. Thus, the communication tasks
have no opportunity to be pipelined with the feed-forward
computing tasks, which is sub-optimal if the communication
time cannot be fully hidden by the backpropagation com-
putation time. The feed-forward computing tasks normally
consume around one to third of the total computation time
at each iteration [18]. If one can pipeline the communication
tasks with feed-forward computing tasks, the one to third
computation time could also be saved.

D. Priority scheduling and tensor partitioning

Though ByteScheduler regards the gradient aggregation as
a pair of (PUSH, PULL) in the PS architecture to enable
a finer-gained schedule, it cannot use the (PUSH, PULL)
feature in all-reduce which is a primitive in existing deep

learning frameworks. Instead, to enable some communication
tasks to be overlapped with feed-forward computing tasks,
ByteScheduler [25] re-orders the communication tasks and
issues the tasks in an “optimal” order by allowing large tensors
to be partitioned into multiple small tensors as shown in
Fig. 1(d). First, the communication of the second layer (i.e.,
AR5), which can only begin after AR, to AR3 in a FIFO order,
is scheduled to be executed prior to ARy _;. Second, some
large tensors may be partitioned into multiple small tensors to
provide finer-grained scheduling. For example, the tensor of
layer 2’s gradient is partitioned to two tensors which can be
separately completed with two all-reduce operations. The pri-
ority scheduling and tensor partitioning techniques in enabling
the communication tasks to be pipelined with feed-forward
computing tasks may work well in the PS architecture [25],
but it would have significant performance issues in the all-to-
all architecture due to the following two problems.

First, re-ordering the communication tasks requires all
workers, which execute computing tasks concurrently during
training, to have a consensus on communicating a particular
tensor. In other words, before aggregating the gradient of a
layer, all workers should negotiate with each other that the
layer is ready for communicating to ensure the correctness
of training. This would introduce extra communication over-
heads. Even though the negotiation only needs to communicate
several bytes of data, it may have significant latency with
the increasing number of workers, especially on high-latency
interconnects (e.g., 10Gb/s Ethernet).

Second, using tensor partitioning for a finer-grained sched-
ule may introduce extra startup overheads of communications.
Generally, the time cost of an all-reduce communication
contains a startup overhead that is proportional to the number
of workers [20]-[23]. For example, in the widely used ring-
based all-reduce algorithm, which is a default in NCCL, the
startup time is linear to the number of GPUs [21]. Therefore,
partitioning a tensor to n smaller tensors to be communicated
separately would introduce extra n — 1 startup overheads.
For example, on a 64-GPU cluster with 10Gb/s Ethernet,
all-reducing a 1MB message takes around 4.5ms, while all-
reducing a 500KB message takes around 3.9ms.

In summary, existing scheduling techniques to enable the
pipelining between communication tasks and feed-forward
computing tasks are impractical for distributed training in
the all-to-all architecture. Pipelining the communication tasks
with feed-forward computing tasks is expected to save one
to third of the computation time, but the introduced extra
communication overhead in ByteScheduler may be larger
than the hidden computation time, resulting an even worse
performance.

This motivates us to decouple the all-reduce primitive
based on its implementation nature to two operations for a
finer-grained schedule, and it does not introduce any extra
communication overhead.



III. DEAR: DECOUPLING THE ALL-REDUCE PRIMITIVE

The design philosophy of our DeAR is to decouple the
all-reduce primitive to two continuous operations without
introducing extra communication overheads.

A. Decoupling all-reduce with zero overhead

According to the inherent feature of all-reduce primitive that
tries to maximally utilize the network bandwidth or minimally
reduce the latency [21,27], it should be implemented with
multiple rounds of communications, each of which has mul-
tiple workers participating in sending and receiving messages
simultaneously. Thus, it is very common that the all-reduce
algorithm is implemented with a combination of other basic
routines [20]. For example, the ring-based all-reduce algorithm
can be implemented by a ring-based reduce-scatter operation
followed by a ring-based all-gather operation [21]. Thus, the-
oretically, the all-reduce primitive can be decoupled into two
or more continuous operations whose total time equals to the
time cost of the all-reduce primitive. The decoupled operations
of a primitive will allow finer-grained tasks scheduling in
distributed training.

As our goal is to enable some communication tasks to be
pipelined with feed-forward computing tasks, we break down
the all-reduce operation OF,,. into two continuous communi-
cation operations, say OP; and OP,. Note that the total time
of OP; and OP, equals to the time of OF,,, which means
the decoupling is free. Therefore, OP; of different layers
can still be pipelined with backpropagation computing tasks,
while OP, can be pipelined with feed-forward computing
tasks. The DAG of computing and communication tasks in
DeAR is shown in Fig. 2(a). One layer’s gradient aggregation
is composed of two continuous communication operations.
Compared to Fig. 1(a), the fine-grained DAG with decoupled
all-reduce allows us to schedule OP; and O P, communication
tasks separately, which offers great opportunities to pipeline
the communication tasks with feed-forward computing tasks
without tensor partitioning.

In this work, we use the ring-based all-reduce algorithm,
which is widely used in distributed training, as an example to
show how we decouple it with zero overhead. Note that the
key idea of DeAR can be applied in any all-reduce algorithms
as long as they can be decoupled into two operations without
introducing any extra overhead. In the ring-based algorithm on
a P-worker cluster, the d elements are divided to P chunks,
each of which has d/P elements. In the first step, each chunk
will be reduced to each worker via P — 1 communication
rounds, which is a reduce-scatter operation and it takes a time
complexity of

trs:(P_l)(a+%B)7 (3)

where « and [ are the latency and transmission time per
element between two workers according to the o« — 3 cost
model [28]. As we only focus on the communication time, we
omit the overhead of arithmetic operations of accumulating
elements in Eq. 3.
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(a) DAG of computing and communication tasks in DeAR.
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(c) Timeline of DeAR with tensor fusion.

Fig. 2: (a) The DAG of computing and communication tasks
with an L-layer DNN in DeAR. (b) DeAR without tensor
fusion: the decomposed communications are executed in a
FIFO order. (c) DeAR with tensor fusion: Nearby gradients
could be merged to a single one for the decoupled operations.

In the second step, each reduced chunk at every worker is
broadcast to all other workers, which is an all-gather operation
and it also takes P—1 communication rounds in the ring-based
algorithm. The all-gather operation has a time complexity of

fay = (P— 10+ 56). @

Putting Eq. 3 and Eq. 4 together, we achieve the time
complexity of an all-reduce operation as follows.
2(P—-1)d

tar = 2(P — Da + %5. (5)

B. Pipelining communication tasks without re-ordering

By decoupling the all-reduce primitive to two continuous
operations, it becomes possible to pipeline the first com-
munication operation with backpropagation computing tasks,
and pipeline the second communication operation with feed-
forward computing tasks as shown in 2(b). To guarantee data
dependencies between tasks at run-time, we propose 1) Back-
Pipe: starting the communication task of OP; immediately
when the gradient of one layer is ready in the backward
pass, and 2) FeedPipe: waiting for the completion of the
communication task of OPFP, of one layer before its feed-
forward computation, and starting the communication task of
OP; of the next layer. Besides, we synchronize all the tasks
of OP; at the end of BackPipe to ensure the dependencies
between OP; and OP;.

In doing so, our DeAR can execute the communication tasks
asynchronously to support pipelining with both feed-forward
and backpropagation computing tasks, while preserving data



dependencies between tasks without any requirement to adjust
the order of communication tasks. That is, communication
tasks are issued among all workers consistently from the last
layer to the first layer during backpropagation and its reverse
order during feed-forward, respectively. Therefore, all workers
do not need the time-consuming negotiation with each other
to reach a consensus in which tensors should be aggregated.

In summary, compared with the WFBP [13,14] or its
variant [16,23] algorithms, DeAR is able to overlap the gradi-
ent aggregation communications with both feed-forward and
backpropagation computing tasks. Compared with ByteSched-
uler [25], DeAR enables a finer-grained tasks schedule in
distributed training without the requirement of partitioning
tensors and re-ordering the communication tasks.

Moreover, DeAR reserves the property of tensor fusion as
like WFBP, where the gradients in nearby layers can be merged
together to be communicated once to reduce the startup over-
head. Unlike ByteScheduler which exploits tensor partitioning
(a mutual operation with tensor fusion) to provide a fine-
grained schedule, DeAR schedules O P; with backpropagation
computing tasks and O P, with feed-forward computing tasks,
which means O P; in different layers are possible to be merged
to be communicated together and it is similar to OP,. We
discuss the details about tensor fusion in the following section.

IV. TENSOR FUSION IN DEAR

Tensor fusion [16,23] has been proven to be a simple
yet effective approach to reducing the startup overheads
of all-reduce operations. It has become a default feature
in distributed DL frameworks like PyTorch-DDP [15] and
Horovod [16]. However, how to determine which layers should
be merged is quite challenging as merging any nearby layers
requires to wait for their backpropagation computing tasks to
be completed.

A. Preliminary of tensor fusion techniques

In the standard all-reduce primitive case (like PyTorch-
DDP and Horovod), where the communication tasks only
overlap with backpropagation computing tasks, a buffer with
a pre-defined size (e.g., 25MB in PyTorch-DDP and 64MB
in Horovod) is allocated to store the ready-to-communicate
tensors. When the total size of ready tensors reaches out of
the buffer size, the buffer is communicated for aggregation
with an all-reduce operation, which means multiple tensors
stored in the buffer only communicate once at each iteration.
The buffer data is then copied back to the original tensors
when the current all-reduce operation completes. Due to the
gradients in different layers become ready in a backward order,
fusing any two layers needs to wait for the completion of all
gradients in these two layers as shown in Fig. 1(c). Thus, it
is non-trivial to determine the optimal buffer size to achieve
minimal iteration time.

One can also measure the backpropagation computation
time of each layer and estimate the communication time of
all-reduce to dynamically determine whether the benefit of
merging any two nearby layers is larger than the sacrifice of
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Fig. 3: Bayesian optimization example: 9 samples; tuning
buffer size for training DenseNet-201.

the waiting time [23]. Yet, two main issues may make the
solution impractical [23]. First, the layer-wise backpropagation
time is quite difficult to be correctly measured as each layer
gradient may be computed asynchronously. Second, the variant
tensor sizes in a DNN model make it difficult to predict the
communication time accurately by a simple model.

Different from the previous works, DeAR pipelines some
communication tasks with feed-forward computing tasks,
which means that tensor fusion of any two layers may af-
fect the granularity of feed-forward pipelining as shown in
Fig. 2(c). Layer L — 1 and layer L — 2 are fused to be
communicated once using OP; so that OP, of these two
layers should also be invoked only once and it should be
synchronized before the feed-forward computation of layer
L — 2. In this case, OP, of layer L — 1 cannot be overlapped
with the feed-forward computation of layer L — 2. As a result,
though DeAR reserves the property of tensor fusion, it is non-
trivial to determine which layers should be fused to achieve
minimal iteration time.

B. Bayesian optimization based tensor fusion

In DeAR, fusing the gradients of any two nearby layers has
two drawbacks. 1) It requires to wait for the completion of the
two layers’ gradient computations to start the communication
of reduce-scatter, which means the current ready layer cannot
start communication immediately. 2) It reduces the opportunity
of overlapping all-gather of one layer with the feed-forward
computation of its previous layer. Thus, one should carefully
choose the tensor fusion strategy such that the overall iteration
time can be shortened. Due to the difficulty in formulating
the tensor fusion problem with heuristic or optimal solutions,
we choose to use Bayesian optimization (BO) [29,30], which
attempts to find good parameters of an unknown objective
function in as few number of trials as possible [16,25].

The target of BO used in DeAR is try to achieve maximum
training performance (measured as the system throughput, i.e.,
the number of training samples that can be processed per
second) during run-time in our system. We use P(x) to denote
the performance model of our system, which is unknown, and
x is the buffer size which is an input parameter used for tensor
fusion. Note that different x may generate different tensor
fusion solutions. Specifically, nearby layers are put into one
group if their total number of gradients does not exceed the



size x. Gradients in one group will have only one reduce-
scatter operation during backpropagation, and one all-gather
operation during feed-forward. We would like to update x
dynamically such that P(x) converges to a stable value.

BO is effective to find near-optimal tensor fusion solu-
tions for three reasons. First, BO uses the Gaussian process
regression in predicting the function value, so it has no
constraints on the objective function format and only relies
on the existing observations, i.e., P(z1), P(22), ..., P(x,).
Second, BO usually needs a few number of trials to find good
solutions, which only requires very small search costs. This is
because BO suggests the next system configuration based on
a well-defined acquisition function [31]. In this work, we use
expected improvement (EI) acquisition function to pick the
next point that can maximize the expected improvement over
the current best result. Third, BO can tolerate uncertainty with
quantitative confidence interval. For example, by tuning the EI
hyper-parameter, we find BO can balance between exploitation
and exploration during the search process, which is helpful to
escape from a local optimum. In general, smaller EI hyper-
parameter prefers exploitation (i.e., most points are around
the peaks), while larger value prefers exploration (i.e., the
points are more spread out across the whole range) [31]. In
this problem, we set EI hyper-parameter as 0.1 to prefer buffer
size exploration, e.g., from 1MB to 100MB (see Fig. 3).

To support BO during training, we first use a default buffer
size 1 = 25MB to initialize the tensor fusion configuration
and measure the average system throughput (i.e., ]5(331)) over
multiple steps (e.g., 10 steps). Based on this measurement
]5(:51), BO fits the performance function and suggests the next
buffer size x5, which can be used to generate a new tensor
fusion solution. By repeating this process, BO can predict the

performance accurately with enough samples, and find a good -
tensor fusion solution. For example, in Fig. 3, we use BO to °

find the buffer size for training DenseNet-201 [32] in DeAR.
With only 9 samples, it returns a nearly optimal value at 35MB
with a good confidence. In practice, tens of trials are enough to
find a good solution for DeAR (see Figure 10), while the BO
tuner developed for Horovod is much more costly, as it needs
to search multiple system configurations including buffer size,
cycle time, response cache, and hierarchical collective algo-
rithms [16].

V. IMPLEMENTATION

We implement our prototype system, DeAR, based on
PyTorch and NCCL. In the system, we wrap a communication
library using C/C++ based on NCCL and expose APIs for
high-level scripts in Python. The overview of our DeAR
implementation is shown in Fig. 4. The blue components are
new in DeAR, but they are totally transparent to end users.
Users only need to change their code (normally with several
new inserted lines) to use DeAR.

A. Workflow of DeAR

We implement our DeAR as a middle layer between user
code and communication primitives. DeAR does not change
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Fig. 4: Overview of our system (blue parts are new).

the original DAG constructed in PyTorch. A distributed opti-
mizer is implemented in DeAR to handle the gradient commu-
nications in hook functions provided by PyTorch APIs. Before
communicating gradients through reduce-scatter or all-gather,
gradients should be put in the tensor fusion controller which
determines whether the pushed tensor should be copied to the
buffer to be communicated together. When the buffer should
be aggregated among all workers, DeAR invokes the wrapped
NCCL APIs (e.g., ncclReduceScatter and ncclAllGather) in
communication package.

B. User usage

import dear # +++
dear.init () # +++
optim torch.optim.SGD (model.parameters (), .
optim = dear.DistOptim(optim, model, ...) # +++
# Training
model.train ()
for 1 in range (epochs) :
for data, target in train_loader:
train_step (optim, data, target)

)

# Validation
optim.synchronize ()
optim.step() # +++
model.eval ()

# o+t

5 validation ()

Listing 1: Code example of using DeAR

To make our DeAR be easily integrated with existing user
code, we design a distributed optimizer (DistOptim) that is
exposed to users. Users only need to wrap their original
PyTorch optimizer instances to our DistOptim and initialize
a new instance of the optimizer as the sample code shown in
Listing 1. The first two lines should be inserted to initialize the
run-time of DeAR. Then line 4 is inserted after the standard
optimizer instance and the training code remains unchanged.
As DeAR pipelines the communication tasks of current itera-
tion with the next iteration’s feed-forward computing tasks,
the communication tasks should be forced to synchronize



to update the model parameters (lines 12 and 13) before
evaluating the model.
VI. EVALUATION

A. Experimental settings

Testbeds. We conduct experiments on a 16-node dense-
GPU cluster, which has 64 Nvidia GTX 2080Ti GPUs with
four GPUs per node. The cluster is connected with both
10Gb/s Ethernet (10GbE) and 100Gb/s InfiniBand (100GbIB).
Thus, we can choose two different network configurations
to test the scalability of different algorithms. Each node has
512GiB RAM and the same software configurations. Specif-
ically, each node is installed with Ubuntul8.04, CUDA-10.2,
cuDNN-7.6, NCCL-2.10, OpenMPI-4.0, and PyTorch-1.8. We
use NCCL APIs for all collective communications in our
experiments.

DNN models. We choose two popular types of DNNs.
They are image classification models, CNNs, on the ImageNet
dataset [33], and NLP pre-training models BERT [34]. The
detailed settings are shown in Table I. A training sample is an
image with a resolution of 224 x 224 x 3 for CNNs, and a
sentence with a length of 64 words for BERTS.

TABLE I: DNN details for experiments. “BS” denotes the
mini-batch size per GPU. “# Layers” represents the number
of learnable layers. “# Tensors” and “# Param.” denote the
number of learnable parameter tensors and the number of
elements (million) in these tensors, respectively.

[ Application | Model [ BS [# Layers [# Tensors [ # Param. (M) ]
Image ResNet-50 [35] 64 107 161 25.6
Classification DenseNet-201 [32]| 32 402 604 20.0
Inception-v4 [36] | 64 299 449 42.7
NLP BERT-Base [34] 64 105 206 110.1
Pre-training | BERT-Large [34] | 32 201 398 336.2

Baselines. We compare our system with existing state-
of-the-art systems including Horovod-0.21.3 [16], PyTorch-
DDP [15] (at PyTorch-1.8), ByteScheduler®, and MG-WFBP*.
All the systems are based on the DL framework PyTorch.

B. Verification of all-reduce breakdowns

To verify that the decoupling of all-reduce has almost
zero overhead with different message sizes on dense-GPU
clusters, we measure the elapsed-time of all-reduce and its
decoupling methods (i.e., reduce-scatter, all-gather, and their
combination). We run experiments using nccl-tests® on the 64-
GPU cluster connected with 10GbE. The results are shown
in Fig. 5, in which we can see that both reduce-scatter and
all-gather take around half of the time of all-reduce with
both small and large sizes messages. Thus, DeAR enables a
finer-grained schedule for the decoupled communication tasks
without introducing extra communication overheads.

3https://github.com/bytedance/byteps/tree/bytescheduler/bytescheduler (at
GitHub commit 33fe89). Note that ByteScheduler cannot support PyTorch-
1.8, so we configure PyTorch-1.4 when running ByteScheduler.

“https://github.com/HKBU-HPML/MG-WFBP (at  GitHub
5b8ad5)

Shttps://github.com/NVIDIA/nccl-tests
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Fig. 5: Performance comparison with different message aggre-
gation methods. “RSAG” represents the all-reduce algorithm
that is implemented with a reduce-scatter operation followed
by an all-gather operation.
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Fig. 6: Speedups without tensor fusion. The performance of
WEFBP is used as the baseline. ByteScheduler runs out-of-
memory (OOM) in BERT-Large.

C. Speed comparison w/o tensor fusion

We first show the benefits of overlapping the communica-
tion tasks with feed-forward computing tasks in our DeAR
without any tensor fusion techniques. We compare DeAR with
existing scheduling algorithms without tensor fusion including
WEFBP [13] and ByteScheduler [25]. For a fair comparison
with WFBP, we implement the all-reduce API with a reduce-
scatter operation followed by an all-gather operation. The
speedup results are shown in Fig. 6, using the performance
of WFBP as the baseline.

Compared with WFBP which only pipelines the commu-
nications with backpropagation computing tasks, our DeAR
achieves 6%-19% improvement in all tested cases due to
our fine-grained schedule where the communication tasks
are pipelined with both feed-forward and backpropagation
computing tasks.

ByteScheduler also pipelines the communications with both
feed-forward and backpropagation computing tasks, but it


https://github.com/bytedance/byteps/tree/bytescheduler/bytescheduler
https://github.com/HKBU-HPML/MG-WFBP
https://github.com/NVIDIA/nccl-tests

uses tensor partitioning and task re-ordering to achieve finer-
grained scheduling of tasks. However, tensor partitioning and
re-ordering require extensive extra communication overheads
under the all-to-all architecture, ByteScheduler runs very slow
in most cases especially on CNNs, thus its bars in Fig. 6
are very low (e.g., < 0.9). DeAR significantly outperforms
ByteScheduler, especially on CNNs. In contrast, on BERT
models which have much larger tensor sizes, the performance
of ByteScheduler is relatively good since partitioning large
tensor sizes does not introduce dramatic extra startup over-
heads.
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Fig. 7: Speedups with tensor fusion. The performance of
Horovod is used as the baseline. MG-WFBP runs out-of-
memory (OOM) in training BERT-Large.

D. Speed comparison w/ tensor fusion

Due to the high latency of the all-to-all collectives, ten-
sor fusion has become a default feature to accelerate dis-
tributed training. Though DeAR decouples one all-reduce op-
eration to two operations for better communication scheduling,
we need to use tensor fusion for high latency collectives
(§IV). We compare our DeAR with existing state-of-the-
art algorithms including Horovod, PyTorch-DDP, and MG-
WEFBP [23], which are all equipped with tensor fusion tech-
niques. For a fair comparison, we fix the buffer size of all
algorithms with 25MB, except MG-WFBP. The results are
shown in Fig. 7, where we use the performance of Horovod
as the baseline.

On the 10GbE cluster. On the 64-GPU cluster with a
relatively high-latency and low-bandwidth 10GbE network,
we can see that DeAR with tensor fusion always outperforms
all the other methods. Specifically, our DeAR achieves 6%-
83% (an average of 36%) improvement over existing methods
on the five tested models. DeAR achieves near-linear scaling
efficiency on 64 GPUs in CNNs whose number of parameters

is moderate (as shown in Table I). Though DeAR achieves sig-
nificant improvement over other methods on BERT models, the
scaling efficiency is still low due to the high communication-
to-computation ratio. It typically requires some algorithmic-
level optimizations like gradient compression [37]. We will
leave it as our future work to introduce gradient compression
techniques into our DeAR scheduling framework.

On the 100GbIB cluster. On the 64-GPU cluster with a
low-latency and high-bandwidth 100GbIB network, the startup
problem in distributed training is less significant. Even so,
the end-to-end performance improvement of our DeAR over
existing methods can be up to 15% (an average of 8%). In the
100GbIB network, the scalability of traditional methods like
Horovod and PyTorch-DDP is close to linear scale in CNNs.
For example, in the 64-GPU case of running ResNet-50,
Horovod achieves 91% scaling efficiency leaving limited room
for further improvement. Therefore, the improvement of DeAR
in 100GbIB over other methods is less significant than that of
10GbE. Given the model size and network configurations, we
discuss their maximum speedups in the next subsection.

E. Maximum speedups on 64-GPU clusters

Intuitively, on a P-GPU cluster, the maximum speedup over
a single GPU should be P, i.e., linear scale. However, due
to the communication constraint, the maximum speedup may
be smaller than P. In DeAR, each training iteration time
is composed of four parts: feed-forward computation (tfy),
backpropagation computation (tp,), gradient communication
of reduce-scatter (t,s) and gradient communication of all-
gather (t44). The all-reduce time is ¢4, = t,.s+%44. Given a DL
model with m gradient size and a cluster with P workers, the
communication time should be larger than the time when the
link bandwidth is fully utilized. For the ring-based all-reduce
algorithm, t,, > 2m/B according to Eq. 5, where B = 1/f is
the minimum link bandwidth between any two workers. Thus,
for any scheduling algorithms that pipeline communications
with computations, the speedup of the overall throughput on
the P-worker system over the single worker is limited by

mar __ P X (tff +tbp)
trr+top +tar — min{trs, tbp} — min{tag, tff}(’6)

where min{t,, %} and min{t,y,t¢s} are the overlapped
time during backpropagation and feed-forward, respectively.
Optimally, either computations or communications are fully
hidden. According to the link bandwidth of 10GbE and
100GbIB and the model size shown in Table I, we can compare
the achieved speedups of DeAR on the 64-GPU cluster over a
single GPU with the maximum speedups as shown in Table. II.

It is seen that given a high communication-to-computation
ratio, the linear scaling efficiency may not be reachable. For
example, on the 10GbE cluster, theoretically, running BERT
models on 64 GPUs can only achieve less than 25.5 times
speedup over a single GPU. In our DeAR which has two level
of pipelining between communications and computations, it
achieves an average of 93.6% and 83.9% of the theoretical



TABLE 1II: Comparison between the real speedup (S) of
DeAR on 64-GPU clusters over single GPU and the theoretical
maximal speedup (S™").

Model
ResNet-50[DenseNet-201[Inception-v4[BERT-Base[BERT-Large
10- |97 F] 616 64 59.8 255 2.1
GbEL_ S 61.1 52.8 56.5 23.9 1.8
<oz | 992% 82.5% 94.5% 93.9% 98.0%
100 |57 64 64 64 64 51.8
GbIBL_S 61.6 54.0 572 496 375
<z | 962% 84.4% 89.4% 77.5% 72.3%

optimal speedup on 10GbE and 100GbIB interconnects, re-
spectively.
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Fig. 8: Time breakdowns. The communication time excludes
the part hidden by computations.

F. Time breakdowns

To understand the improvement of DeAR over existing
methods clearer, we break down the iteration time into three
parts: feed-forward (FF) computation time, backpropagation
(BP) computation time, and gradient aggregation communica-
tion time (under the 10GbE network configuration) as shown
in Fig. 8. The blue bars are the non-overlapped communica-
tion time in one iteration, which means the hidden time by
computations is excluded. As both DeAR and Horovod use
the same back-end of PyTorch, the FF and BP computation
times are the same on the same model. In DeAR, there are
two parts of communication, reduce-scatter and all-gather. We
use RS-only to indicate that DeAR excludes the time of all-
gather, and AG-only to indicate that DeAR excludes the time
of reduce-scatter in Fig. 8.

RS-only vs. AG-only. In the decoupling of all-reduce,
reduce-scatter and all-gather operations have the same message
size for communication and they have the same communi-
cation complexity as shown in Eq. 3 and Eq. 4. In other
words, the communication time of reduce-scatter and all-
gather operations should be the same without considering the
overlapping with computations. However, as shown in Fig. §,
RS-only has a less communication overhead than AG-only.
The reason is that the reduce-scatter operations are overlapped
with backpropagation computing tasks which typically take
two times slower than feed-forward computing tasks [18].

Thus, reduce-scatter has more communication tasks to be
overlapped with computing tasks than all-gather.

DeAR vs. Horovod. In the results on the breakdown of
the iteration time, we can see that DeAR has a smaller
non-overlapped communication time than Horovod. Though
our DeAR has a similar pipelining with Horovod during
backpropagation, DeAR has the opportunity to further pipeline
the communications with feed-forward computations, which
contributes to the performance improvement.

G. Studies of tensor fusion

Tensor fusion is an important technique to improve perfor-
mance as shown in Fig. 9. The tensor fusion version of DeAR
with BO (DeAR-BO) achieves 1.35x-4.54x and 1.29x-1.78 x
improvement over the version w/o tensor fusion (DeAR w/o
TF) under 10GbE and 100GbIB interconnects, respectively.
1) Performance comparison between w/ BO and w/o BO
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Fig. 9: Speed improvements with dynamic tensor fusion.

Determining which tensors should be fused is very impor-
tant in affecting the training performance. We compare our
BO-based tensor fusion method (DeAR-BO) with two naive
tensor fusion methods, a fixed number of four nearby layers
(DeAR-NL) and a fixed buffer size (SMB) threshold (DeAR-
FB), and BO-based Horovod. The results are shown in Fig. 9.

Horovod-BO vs. Horovod-FB. Horovod with BO
(Horovod-BO) achieves only slight improvement in ResNet-50
and DenseNet-201 over Horovod with a fixed buffer (Horovod-
FB) size (64MB by default), while Horovod-BO has no
improvement in BERT-Base over Horovod-FB. The results
indicate that Horovod-FB may be a good solution in tensor
fusion for WFBP and tuning the buffer size does not help
improve the performance.

DeAR-NL vs. DeAR-FB. By merging a fixed number
of consecutive layers, DeAR-NL is normally worse than
Horovod-FB or DeAR-FB in CNNs as CNNs have a very
imbalanced number of parameters in different layers. For the
model (BERT-Base) that has a very balanced distribution of
parameters in different layers, DeAR-NL performs better than
Horovod-FB and DeAR-FB.

DeAR-FB vs. Horovod-FB. With the opportunity of over-
lapping communications with both feed-forward and back-
propagation computing tasks, DeAR-FB normally outperforms
Horovod-FB. Since DeAR requires to pipeline tasks during
feed-forward, the configured buffer size is more sensitive to
the time performance than Horovod-FB. Thus, DeAR-FB only
achieves a marginal improvement over Horovod-FB.
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Fig. 10: Tuning cost of different search algorithms. Error bars
show standard deviation.

DeAR-BO vs. others. Using BO in DeAR, the buffer
size can be well adjusted during run-time. Hence, DeAR-
BO can improve the training speed over DeAR-FB, and
it achieves the best performance among all the evaluated
methods. Specifically, DeAR-BO is around 22%-56% and 7%-
14% faster than Horovod-FB on 10GbE and 100GbIB 64-GPU
clusters, respectively.

2) Search cost comparison between BO and other methods

In DeAR, we use BO to find a good buffer size. Actually,
one can also use random search or grid search to find the
solution. However, both random search and grid search take a
much larger number of iterations to find a good solution. For
example, as shown in Fig.10, in training different models, BO
takes several trials to find a stable solution while random and
grid search take tens of trials. In DNN training, one cannot
consume too much number of iterations to tune their time
performance related parameters, otherwise it may result in a
longer end-to-end training time than the naive methods. The
average cost of BO is 0.207 seconds per trial over 20 trials.

H. Performance with different batch sizes

The local mini-batch size has a direct impact on the feed-
forward and backpropagation computation time, thus training
with different batch sizes has different communication-to-
computation ratios on the same model, which would affect
the opportunity for overlapping. We compare our DeAR with
the existing methods on the 10GbE cluster using ResNet-
50 and BERT-Base under different batch sizes as shown in
Fig. 11. The batch size is the local mini-batch size for each
GPU running on the 64-GPU clusters. Smaller batch size indi-
cates shorter computation time while the communication time
remains unchanged (if not overlapped). The results show that
our DeAR is robust to the mini-batch size and it outperforms
all other methods in all tested cases.

1. Potential improvement on larger-scale clusters

Due to the hardware limit, we are unable to perform exper-
iments on larger-scale GPU clusters to verify the performance
of DeAR. We provide some discussions here. According
to Fig. 7, we can see that the improvement of our DeAR
over existing methods on 100GbIB (an average of 8%) is
much smaller than on 10GbE (an average of 36%). In our
experiment environments, the two clusters are with the same
GPU hardware, which means the FF and BP computation time
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Fig. 11: Speed comparison with different batch sizes.

remain unchanged while the network speed of 100GbIB is 10
times faster than 10GbE. That is, existing methods should be
better scaling efficiency with a higher network speed, which
makes the optimization room be smaller. For example, in
ResNet-50, Horovod achieves 58.2x speedup on 64 GPUs
with 100GbIB over the single GPU while the maximum
speedup is only 64x (Table II). Therefore, any optimization
cannot achieve improvement larger than 10% over Horovod.
We argue that with increasing size of the cluster and more
powerful GPUs, DeAR could have a higher improvement
over Horovod and PyTorch-DDP as the communication-to-
computation ratio becomes larger.

Formally, the theoretical optimal iteration time for DeAR
and baseline algorithms with perfect overlapping is given by

tDeAR = max{tff,tag} +max{tbp,trs}, (7)
tbaseline = tff + max{tbp7 tar}y (8)

where t ¢ and t;, are feed-forward and back-propagation com-
putation time, ¢,s, tqq, and ¢, are reduce-scatter, all-gather,
and all-reduce communication time, respectively. Assume that
lar = 2l,s = 2t44 and ty, = 2ty ;, we can derive that

0, if tag <tgy,
thaseline — tDeAR = tag - tff, if tff < tag < Qtff,
trs, otherwise.

)

This implies that, if we implement DeAR properly to over-
lap communications with forward and backward computa-
tions, DeAR can always outperform baseline algorithms such
as Horovod and PyTorch-DDP. As the communication-to-
computation ratio becomes larger, the saved iteration time can
be at most one feed-forward computation cost of ;.

VII. RELATED WORK

There are many studies in addressing the communication
problem of distributed training, like asynchronous training [38,
39] and gradient compression [40]-[43]. A more comprehen-
sive introduction can be found in recent survey papers [44,45].
Here we highlight some very related work from the systems
perspective in S-SGD.



A. Efficient all-reduce design

As the all-reduce collective is very ubiquitous in distributed
deep learning, there are many works providing efficient al-
gorithms for different cluster configurations [2,7,8,14,37,46]-
[50]. For example, the double-binary trees algorithm [46] has
been integrated in NCCL to scale-out on extremely large-
scale GPU clusters. Some particular all-reduce algorithms
are also designed for different cluster topology, like [51] on
Torus networks, [8,48] on NVLink-based GPU servers, [37,47]
on public cloud clusters, and [50] on heterogenecous GPU
clusters. These designs are orthogonal to our DeAR as long as
these algorithms can be decoupled into two operations without
introducing extra overheads. For example, one can decompose
the double-binary tree-based all-reduce [46] into tree-based
reduce and tree-based broadcast, and decompose the hierar-
chical ring-based all-reduce [51] into intra-node and inter-
node reduce-scatter and all-gather. We leave decoupling more
all-reduce algorithms as our future work, and the decoupling
configuration can be automatically tuned using BO.

B. Communication scheduling

Due to the layer-wise structure of DNN models and even
tensor-wise in modern deep learning frameworks like PyTorch
and TensorFlow, the computing and communication tasks
are generally organized as a directed acyclic graph (DAG).
Thus, the tasks without any dependency can be executed
concurrently, making it possible to hide some communication
costs by overlapping them with computing tasks. The wait-
free backpropagation (WFPB) algorithm [13,14] was the early
scheduling method that pipelines the communication tasks of
gradient aggregation with gradient calculation during back-
propagation. Then some tensor fusion techniques (e.g., [17,23,
24,52,53]) were further proposed to address the high latency
problem in WFBP with all-reduce. As the communication of
some large tensors may block the execution of higher-priority
tensors, ByteScheduler [25] proposes tensor partitioning in
priority scheduling to provide a finer-grained schedule of
overlapping between computing and communication tasks.
ZeRO [54] decoupled all-reduce like DeAR, but it was to
shard parameters to optimize memory rather than optimizing
communication efficiency. To shard parameters, ZeRO requires
one all-gather for each forward pass and one extra all-gather
for each backward pass, which unfortunately has increased
the total communication overheads compared with DeAR. In
the recent PyTorch v1.13 release, Ful1yShardedDataParallel"
has combined the ideas of ZeRO’s parameter sharding and
DeAR'’s FeedPipe to alleviate the memory and communication
overheads, respectively, but it does not consider dynamic
tensor fusion to explore the optimal training performance.

VIII. CONCLUSION

In this work, we proposed a novel communication schedul-
ing algorithm named DeAR with fine-grained all-reduce

Shttps://pytorch.org/docs/stable/fsdp.html

pipelining. In DeAR, we first decoupled the all-reduce prim-
itive into two continuous communication operations without
introducing any extra communication overhead to enable a
fine-grained schedule of computations and communications.
Then we proposed to pipeline the backpropagation and feed-
forward computing tasks with the first operations and second
operations of the decoupled all-reduce primitives, respectively.
To integrate the effective tensor fusion technique, we proposed
a practical tensor fusion method using Bayesian optimization
in DeAR to further reduce the communication time with-
out considering the DNN model and network configuration.
Extensive experiments were conducted on a 64-GPU cluster
connected with two types of networks (10Gb/s Ethernet and
100Gb/s InfiniBand) on different applications including CNNs
and BERTSs. Experimental results show that DeAR achieves up
to 83% improvement over existing state-of-the-art methods.
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