
Optimizing Scientific Data Transfer on Globus with
Error-bounded Lossy Compression

Yuanjian Liu∗, Sheng Di†, Kyle Chard∗†, Ian Foster∗†, Franck Cappello†
∗ University of Chicago, Chicago, IL, USA

† Argonne National Laboratory, Lemont, IL, USA
yuanjian@uchicago.edu, sdi1@anl.gov, chard@uchicago.edu, foster@anl.gov, cappello@mcs.anl.gov

Abstract—The increasing volume and velocity of science data
necessitate the frequent movement of enormous data volumes
as part of routine research activities. As a result, limited
wide-area bandwidth often leads to bottlenecks in research
progress. However, in many cases, consuming applications (e.g.,
for analysis, visualization, and machine learning) can achieve
acceptable performance on reduced-precision data, and thus
researchers may wish to compromise on data precision to reduce
transfer and storage costs. Error-bounded lossy compression
presents a promising approach as it can significantly reduce
data volumes while preserving data integrity based on user-
specified error bounds. In this paper, we propose a novel data
transfer framework called Ocelot that integrates error-bounded
lossy compression into the Globus data transfer infrastructure.
We note four key contributions: (1) Ocelot is the first integration
of lossy compression in Globus to significantly improve scientific
data transfer performance over wide area network (WAN). (2) We
propose an effective machine-learning based lossy compression
quality estimation model that can predict the quality of error-
bounded lossy compressors, which is fundamental to ensure
that transferred data are acceptable to users. (3) We develop
optimized strategies to reduce the compression time overhead,
counter the compute-node waiting time, and improve transfer
speed for compressed files. (4) We perform evaluations using
many real-world scientific applications across different domains
and distributed Globus endpoints. Our experiments show that
Ocelot can improve dataset transfer performance substantially,
and the quality of lossy compression (time, ratio and data
distortion) can be predicted accurately for the purpose of quality
assurance.

Keywords—Lossy Compression, Performance, Data Transfer,
Globus, WAN

I. INTRODUCTION

Large amounts of data are being produced by high per-
formance computing (HPC) simulations and advanced in-
struments such as the Advanced Photon Source (APS) [1]
and LCLS-II [2]. These data typically need to be shared
for analysis, storage, publication, and archival, and often
across multiple research institutions. However, transferring
data over a wide area network (WAN) can be time-consuming,
significantly delaying research progress. Tools like Globus [3],
[4] have been widely adopted to improve data transfer perfor-
mance; however, while transfer performance can be increased
by deploying more data transfer nodes or creating parallel data
streams, limited network bandwidth constrains transfer speeds.

Corresponding author: Sheng Di, Mathematics and Computer Science
Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, IL
60439, USA

Many scientific data are collections of floating point num-
bers, and often scientific applications do not require the level
of precision encoded in those data. Thus, it is possible to
reduce the data size by compromising the precision to a
certain level. Error-bounded lossy compression exploits this
fact and offers the potential to significantly reduce data sizes.
However, optimal tuning of compression process (i.e., for per-
formance and quality) remains an open problem and thus such
methods are rarely used in data transfer solutions. Although
error-bounded lossy compression can substantially reduce the
volume of data with user-tolerable data distortion, existing
studies focus on conventional use cases such as reducing
storage space [5], lowering I/O cost [6], or reducing memory
capacity requirements [7], [8]. Li et al. [9] studied how to make
the error-bounded lossy compressor SZ resilient to soft errors
during data transfers and evaluated their approach by using a
numerical analysis/simulator, but they did not systematically
model and optimize data transfer performance with respect to
lossy compression techniques.

Modeling and optimizing the error-bounded lossy compres-
sion based data transfer over WAN is challenging in practice.
On one hand, adding compression/decompression into the
transfer services introduces new complexities (compute nodes
will be involved, compressors need to be configured, overall
transfer performance will be influenced by the compression
speed, etc.). On the other hand, it is critical for users to
understand the quality of compressed data, so that they can
precisely control the data distortion and/or meet expected
compression ratios for their use cases. However, scientific
applications are distinct from each other and lossy compressors
exhibit different characteristics/performance because of their
distinct designs. It is non-trivial to predict the compression
ratios and quality accurately.

In this paper, we propose an optimized data transfer model,
namely Ocelot, by leveraging error-bounded lossy compres-
sion techniques in data transfers. Our contributions are:

• We develop an efficient lossy compression quality pre-
diction model, which is fundamental to accurately pre-
dict the data distortion of lossy reconstructed data and
compression ratio/speed.

• We propose a novel approach for efficient wide-area
data transfer by combining the error-bounded lossy com-
pression techniques, Globus [3], [10], [11], and FuncX,
a federated-Function-As-a-Service (FaaS) platform [12].

1

ar
X

iv
:2

30
7.

05
41

6v
1 

 [
cs

.D
C

] 
 1

1 
Ju

l 2
02

3



We also optimize the performance by developing a series
of strategies to address I/O contention, compute-node
waiting, and transfer slow-down for many small files.

• We evaluate Ocelot using several Globus endpoints and
real-world scientific applications across different do-
mains. Experiments show that applying parallel compres-
sion can significantly improve data transfer performance
over WAN (reaching 11.2× speed-up with negligible data
distortion for users).

The rest of the paper is organized as follows. In Section
II, we discuss related work. In Section III, we present the re-
search background. In Section IV, we propose the online data
transfer framework Ocelot, which integrates error-bounded
lossy compression technology with Globus. In Section V,
we describe three capabilities of Ocelot. In Sections VI and
VII, we describe how we conduct lossy compression quality
prediction and optimize data transfer performance with lossy
compression techniques, respectively. In Section VIII, we
evaluate Ocelot on real-world scientific datasets and the state-
of-the-art lossy compressor SZ with different compression
pipelines. Finally, we conclude the paper with a discussion
of future work in Section IX.

II. RELATED WORK

In this section, we discuss the related works in two facets:
the modern techniques in wide area data transfer and common
use-cases of error-bounded lossy compression.

Many systems have been developed to improve the per-
formance of large wide-area data transfers. One common
method adopted by many commercial data transfer tools, such
as FileCatalyst [13] and IBM Aspera [14], is using User
Datagram Protocol (UDP) or multiple Transmission Control
Protocol (TCP) streams. BitTorrent is a popular Peer-to-Peer
(P2P) data transfer software developed at the application level
over TCP/IP, which can be used to transfer big data files.
BitTorrent adopts a tracker/seed mechanism to allow each data
downloader to be a data uploader in a community, such that
the more the users participate, the higher the data transfer
speed. The BitTorrent technique, however, is unsuitable for big
data transfer in the science community because a stable and
secure science data-sharing service is highly required. Globus
is a research data management platform that enables high-
performance, secure, and reliable third-party data transfers.
Globus builds upon the GridFTP protocol for data movement
and adopts several optimization techniques such as paral-
lel streams [15]–[17], which can significantly improve data
transfer performance. Transferring big data files with Globus,
however, may still suffer from low performance in practice, as
performance is related to multiple sophisticated factors such
as the settings on Globus connect server (GCS) endpoints
(concurrency, pipelining, striping, etc.) [4], low quality net-
work paths, and underprovisioned data transfer nodes (DTNs).
In particular, recent studies [4] show that transferring big
data files between Argonne Leadership Computing Facility
(ALCF) and National Energy Research Scientific Computing

Center (NERSC) could be slow (only hundreds of MB/s) at
an inefficient concurrency setting.

Error-bounded lossy compression has been effective in
significantly reducing data volumes for many use cases. How-
ever, it has rarely been used in the wide area data transfer
case. Common use cases for error-bounded lossy compression
include reducing storage footprint [5], [18], [19], reducing
memory capacity requirements [7], [20], mitigating I/O costs
in supercomputers [6], and avoiding recomputation of data
[21]. Zhao et al. [5], for instance, developed an efficient
lossy compressor for molecular dynamics (MD) simulation
data based on the spatio-temporal patterns of MD datasets,
which aims to reduce the storage space as much as possible.
Wu et al. [7] explored the best-qualified error-bounded lossy
compression method for Intel-QS [22]—a full-state quantum
circuit simulator developed by Intel, in order to significantly
lower the required memory capacity for large-scale quantum
computing simulations. Li et al. [9] proposed a resilient error-
bounded lossy compression method, which aims to protect the
data compression against potential errors such as SDCs. How-
ever, their work does not involve data transfer performance
optimization, which is instead addressed in our work.

III. RESEARCH BACKGROUND

We briefly describe the critical technical components on
which we build.

A. Error-bounded Lossy Compression

Error-bounded lossy compression has been broadly used to
significantly reduce the volumes of scientific datasets produced
by large-scale HPC applications or advanced instruments (with
a compression ratio of several hundreds or thousands [23]),
while effectively controlling data distortion based on the user-
specified error bound. In comparison with lossy compression,
lossless compression suffers from low compression ratios (≤2
in most cases [5], [24], [25]) since lossless compressors
generally depend on the exactly repeated byte stream patterns
while scientific datasets are often composed of floating-point
data values often with diverse ending mantissa bits.

There have been many error-bounded lossy compres-
sors developed. In general, there are two models for
error-bounded lossy compression: the transform-based model
and the prediction-based model. The former performs the
(near)orthogonal transform to decorrelate the raw data to
another coefficient data (such as by wavelet transform) and
then reduce the coefficient data by specific encoders such as
embedded encoding [26]. The typical examples are ZFP [26]
and SSEM [27]. The latter uses a data predictor and linear-
scale quantization to decorrelate the datasets and then uses
a variable-length encoding (such as Huffman encoding [28])
and dictionary encoding (such as LZ77 [29]) to obtain a fairly
high compression ratio. Examples include SZ [25], [30] and
MGARDx [31].

We adopt SZ3 [32] in our work for two reasons: its
modular structure, which allows us to construct many different
compression pipelines (i.e., different compressors) for different

2



datasets and use cases, and the high performance [25] of its
default SZ-interp compression algorithm, which exhibits the
highest compression ratio and quality in many cases compared
with the other state-of-the-art lossy compressors including
ZFP, SZ2, and MGARDx.

B. Globus Data Transfer Infrastructure

Globus is a research data management platform that is used
to transfer, synchronize, and share large volumes of data.
Globus was launched in 2010, and has since managed the re-
liable movement of almost two exabytes of data across 40,000
endpoints distributed around the world. Globus endpoints are
widely deployed at universities, research laboratories, and on
cloud platforms (such as Amazon S3 and Google drive).

Globus adopts the GridFTP protocol [17], [33] to pro-
vide high-performance, secure, and reliable data transfer over
WAN. There are many optimization strategies in GridFTP
for improving data transfer performance, such as pipelin-
ing, parallelism, and concurrency. GridFTP pipelining avoids
blocking/waiting on transfer-commands, which can transfer
many small files very efficiently. Parallelism allows different
portions of the same file to be sent by multiple channels in
parallel. Concurrency supports transferring of different data
files through multiple channels in parallel.

C. Federated Function as A Service (FuncX)

FuncX [12] is a distributed and scalable function execution
platform. FuncX differs from traditional cloud-hosted FaaS
platforms in that it combines a centralized cloud-hosted service
with a collection of user-deployed and managed endpoints.
Users can deploy their own endpoints on their own resources
via a small Python endpoint software. They may config-
ure that endpoint to provision resources dynamically from
various backend resource providers (e.g., batch schedulers,
Kubernetes clusters, cloud instances). Users may register and
execute Python functions in a similar way to cloud-hosted
FaaS, by providing the function body and input arguments.
However, unliek centralized FaaS they must also select an
endpoint on which to execute that function. The FuncX service
relies on an OAuth-based identity and access management
platform, Globus Auth [34], to securely execute functions.
FuncX leverages containers to package function codes and
resolve dependencies on endpoints, and also enables multiple
optimization strategies to obtain the best performance in the
remote function calls, such as container warming (avoid-
ing/reducing the container instantiation cost), executor/user
batching (amortizing costs across many function requests), and
prefetching (advertising the anticipated capacity to interleave
network communication with computation).

IV. OCELOT: ONLINE DATA TRANSFER WITH
ERROR-BOUNDED LOSSY COMPRESSION

Fig. 1 presents a high-level overview of Ocelot. As shown
in the figure, Ocelot provides an ML-based quality prediction
model for users to predict the lossy compression quality (such
as data distortion and compression ratio), thus guaranteeing

the integrity/validity of the lossy reconstructed data (step 1 ).
The data then progress through five steps ( 2 - 6 ) during the
data transfer procedure from one endpoint to another over
WAN. The key difference between Ocelot and the traditional
data transfer method is that we integrate an error-bounded
lossy compression step, which is expected to significantly
reduce the data volume before transferring the data. At the
target endpoint, upon receiving of compressed data, they are
be decompressed and then written to the file system. The
detailed compression technologies have been discussed in
Section III-A. Ocelot can be used remotely without needing
to manually log in to the source or destination machine
to perform the compression/decompression task, because the
executors have been deployed on those machines beforehand.

Source End-point Target End-point

2
3

4

File

6

5

Data loading

Data transfer over WAN

Data writing

Parallel Error-bounded 
lossy compression

Parallel data 
decompression

Ocelot

Users

ML-based lossy 
quality prediction 

1 File

Fig. 1. Design overview: (1) Use the quality prediction model to obtain
an appropriate compressor setting; (2) Load data of various formats into the
compression program; (3) One or more compute nodes on the source machine
are used to compress the datasets; (4) transfer the data over WAN with Globus;
(5) One or more compute nodes on the target machine are used to decompress
the datasets; (6) The decompressed files are written into the disks on the target
machine.

User Interface

FuncX Service Globus Service

Parallel Executor

Msg Passing Interface (MPI) calls

Lo
sy

y 
C

om
pr

es
si

on
Q

ua
lit

y 
Pr

ed
ic

to
r

Error-bonded Lossy Compressor

Data Loader/Writer

Application Users/Scientists

Files on filesystems (Bin, HDF, NetCDF, etc.)

O
ce

lo
t F

ra
m

ew
or

k

Fig. 2. System architecture: Six new modules (colored) are added to form the
Ocelot framework: (1) Data loader can load data of multiple formats including
NetCDF, HDF5 [35], binary; (2) The lossy compression quality predictor is
used to find a suitable error bound and compressor to conduct the compression;
(3) Parallel executor handles the compression/decompression tasks; (4) FuncX
service deals with remote orchestration; (5) Globus manages the data transfer;
(6) User interface offers a graphical interface that helps users submit the tasks
easily.

We present our architecture in Fig. 2 (the colored boxes
indicate the new modules we developed for Ocelot). In our
design, the user connects the Ocelot Framework through a
user interface (e.g., a command line or GUI). Upon receiving
user’s data transfer task, Ocelot starts the quality predictor via
funcX to obtain a suitable compressor configuration by testing
a few settings very quickly with subsampling methods. funcX
allows these tasks to be executed on the remote resource on
which the data reside. Ocelot then uses funcX to initiate a
compression task on the remote endpoint. The compression

3



is conducted by an MPI program that loads different files
from the file systems and compresses them in parallel. Ocelot
then starts the transfer via Globus. The transfer will move
the compressed files to the target machine once the files are
ready. There is some optimization here because sometimes the
compression tasks cannot be scheduled immediately. We will
leave the detailed discussion to Section VII. We design Ocelot
to be flexible, enabling users to bypass the quality predictor
by manually providing a compressor configuration for certain
cases when they know what error bound and compressor to
use. The quality predictor module is driven by our designed
machine-learning model, which will be detailed in Section VI.

V. CRITICAL CAPABILITIES OFFERED BY OCELOT

Before diving into the technical details, we introduce three
key capabilities of our framework from a user’s perspective.

1) Selecting best-qualified lossy compression configuration
based on our proposed quality predictor.
Ocelot is able to select the most suitable lossy com-
pression configuration in terms of users’ requirements.
Based on the estimated results generated by our quality
predictor, the user can select the “best” compression
solution for their data. Specifically, users can view the
data distortion, compression ratio, and compression time
for different lossy compression pipelines or configura-
tions, thus guiding them in selecting/optimizing the best-
qualified setting.

2) Reducing transfer time with parallel (de)compression.
After applying the prediction model to configure com-
pression automatically, users can utilize Ocelot to re-
duce the file transfer time. Users need only to spec-
ify data paths and start the transfer. The compres-
sion/decompression will be performed automatically.

3) Remote orchestrating (de)compression and transfer.
We incorporate FuncX and Globus Transfer API into
our framework, allowing users to control the compres-
sion and transfer between endpoints on any authorized
machines. Users do not have to explicitly connect to
remote resources (e.g., via ssh) to submit batch jobs
to do compression. Instead, they just need to run our
Ocelot software on their personal computer and control
the compression, transfer, and decompression remotely.
Moreover, Ocelot allows users to collect information
about compression and transfer. The analytical data is
stored on the user’s personal computer, and can be used
to further analyze the performance with graphical tools.

VI. COMPRESSION QUALITY PREDICTION

In this section, we propose a prediction model to estimate
the lossy compression ratio, compression speed, and peak-
to-noise ratio (PSNR) [36]. In general, it is impossible for
users to predict compression quality (such as compression ratio
and data distortion level) for a particular error-bounded lossy
compressor without performing the compression on the given
dataset. This is because the effect of data prediction/transform
and coding in the compressor varies with diverse data features.

With our prediction model, users can quickly test multiple
compression settings and choose the one that best matches
their use case.

Lorenzo Prediction
Interpolation
Linear Regression

Predictor

Quantizer Quantization Bins

Data

Compressor-based Features

P0 quantization
entropy

run-length
estimator

min max value range entropy
average

lorenzo error

p0

Data-based Features

subsampling

Config-based
Features

error bound

compressor
type

Fig. 3. The features used to predict compression quality are categorized into
three types: config-based, compressor-based, and data-based features, which
are shown as colored boxes.

We train a machine learning (ML) model on masses of
sample datasets, with the aim to build a relationship between
the compression-related features and the compression quality.
The model can then be used to estimate compression quality
accurately based on the features extracted from the given
datasets at runtime.

We derive many features as input to our model, as illustrated
in Fig. 3. Identifying a set of useful features is challenging,
because (1) the extraction of each feature should have low
computation cost, and (2) the features should form an accurate
indicator of the compression quality. We consider features in
one of three categories: (1) config-level features, (2) data-based
features, and (3) compressor-level features.

Config-based features are configuration settings (includ-
ing error bound values and compression pipeline) specified
by users. Different error bounds can yield largely different
compression quality (e.g., compression ratios and compres-
sion speed). Compression quality also depends on specific
compressors each with distinct designs. The prediction-based
compressors [32], [37], for example, may adopt various pre-
dictors which may exhibit different performances. We enable
our model to recognize the characteristics of compressors by
treating the compressor-type feature as a discrete classification
variable and feeding it with profiling data.

Data-based features describe the characteristics of datasets,
which is also a key factor to distinguish the compressibility.
As shown in TABLE I, even for the same application, different
datasets can have very different properties such as min, max,
and value range. In addition, we also use byte-level informa-
tion entropy as one feature, because it reflects the “chaos-
level” of a dataset. The entropy is defined as

H(X) = −
∑

x∈S
p(x) log p(x) = E[− log p(X)]

where S is the set of byte values (0-255) and p denotes the
probability/frequency of an element in S. In general, the higher
entropy a dataset exhibits, the more difficult it is to compress
that dataset. As verified in Fig. 4 (a) and (b), the entropy value
projects a positive correlation against the compression time,
especially when the error bound is relatively low. It is worth

4



noting that when the error bound is relatively high, the entropy
would lose its effect (as shown in Fig. 4 (c)), because the large
error bound would diminish the data variation. Moreover, we
use the average Lorenzo error (i.e., the difference between
the true data value and Lorenzo-predicted value [37]) as a
feature to shape the “easiness of prediction” for a dataset. If
the average Lorenzo error is high, the prediction stage tend to
be imprecise, leading to low compression ratio.

TABLE I
EXAMPLES OF THE BASIC DATA-BASED FEATURES IN DIFFERENT

DATASETS: CLDHGH, FLDSC, PCONVT ARE THREE FIELDS IN THE
CESM [38] DATASET. HACC-VX AND HACC-VY ARE TWO FIELDS IN

THE HACC [39] DATASET.

Dataset CLDHGH FLDSC PCONVT HACC-VX HACC-XX
min 0.00 92.84 39025.27 -3846.21 0.00
max 0.92 418.24 103207.45 4031.25 256.00
value range 0.92 325.40 64182.18 7877.46 256.00

Fig. 4. Data entropy vs compression time in Reverse Time Migration (RTM)
[40] application with three error bound settings

Compressor-based features are the properties of the inter-
mediate data used in the course of lossy compression, which
generally have the highest prediction ability for compression
quality. Specifically, we focus on the quantization bins, as
shown in Fig. 3. Since the quantization bins are encoded
by the subsequent lossless encoders, its characteristic closely
correlates to the final compression quality. In order to control
the execution overhead, the quantization bins are computed
based on the sampled data points. As demonstrated in Fig. 3,
we develop four compressor-based features, including p0,
P0, quantization entropy, and run-length estimator. (1) p0
denotes the percentage of the 0-value bins over all quantization
bins. In general, large p0 tends to yield a high compression
ratio and compression speed, because a large majority of
predictions should be accurate in this situation. (2) P0 denotes
the fraction of ‘0’(encoded) taken in Huffman coding in the
regard of the full Huffman encoded data size. (3) Quantization
entropy is the entropy of quantization bins. If the prediction
is accurate, quantization bin values will mostly be near 0, and
the quantization entropy will be low. (4) Run-length estimator
(denoted Rrle) is derived from P0 and p0 by the following
equation: Rrle = 1/((1− p0)P0 + (1− P0)).

Fig. 5. The relationship between p0, quantization entropy, run-length estima-
tor and compression ratio for Nyx application.

Fig. 6. Run-length estimator alone fails to predict the compression ratio for
Miranda application while the three features together form a correlation to
the compression ratio which can be learned by a machine-learning model.

Although the p0 and P0 are also used in related work
[41], our solution is much more accurate in compression
quality estimation in general cases. The estimation of com-
pression ratio in [41] depends on the following formula:
ĈR = 1/(C1(1 − p0)P0 + (1 − P0)), where C1 is an ad-
hoc tuning parameter which varies with different applications.
As shown in Fig. 5 (c), almost all data points are located
on the line y = x (red line in the figure), which means the
estimated compression ratio ĈR under that formula could be
very accurate in this case. This is due to the fact that this
formula happens to form a linear function with compression
ratio for the Nyx [42] application. However, that formula
is sensitive to the tuning of the C1 parameter, which may
cause unexpected large compression quality estimation errors
in other applications. For instance, the estimator’s value does
not form a linear relationship with the compression ratio for
the Miranda [43] application (as shown in Fig. 6 (a) and (b)),
which leads to bad compression quality estimation in turn (see
Fig. 6 (c)). In comparison, our Rrle formula does not depend
on the C1. In fact, Rrle serves as a feature and we feed it
into the ML model along with other features (including p0
and P0), and thus the model can automatically fine-tune the
coefficients applied on those features, thus being able to keep
an accurate estimation in most of cases (to be shown later).

Fig. 7. CESM dataset — PSNR versus compressor-level features

Fig. 8. ISABEL dataset — PSNR versus compressor-level features

Our compressor-based features can also be used to predict
the reconstructed data distortion. This is because these features
are also closely correlated to the data distortion metrics such
as PSNR, as verified in Fig. 7 and Fig. 8.

Based on the observations above, we use a decision tree
model to perform the compression quality estimation. The

5



evaluation result will be demonstrated in Section VIII.

VII. OPTIMIZATION OF DATA TRANSFER WITH
ERROR-BOUNDED LOSSY COMPRESSION

The compression performance prediction model described
above provides a fast and automatic way to determine appro-
priate compressor settings. However, compression remains a
computational expensive process, especially with large data.
In Ocelot we utilize multiple cores/nodes to compress files in
parallel.

Nonetheless, it is worth noting that there are two issues
that may impede the “compress and transfer” performance.
First, for large datasets the compression task may exceed
the capacity available on DTNs or login nodes, and thus
require provisioning of compute nodes via batch scheduler.
Such requests may not be scheduled immediately. Second, the
number and size of files significantly influence the transfer
speed because (1) each file transfer has an inevitable data
handling cost in addition to data transfer time, and many small
files may significantly lower the overall transfer throughput;
(2) transfers with too few files cannot utilize the available
concurrent transfer threads.

We describe our transfer performance optimization strate-
gies in this section. To address the first issue, we need a
strategy to transfer files when compute nodes are not imme-
diately available. For the second issue, we need an efficient
file grouping method to counter issues with many compressed
small files.

A. Parallel Compression/Decompression

Our fundamental approach to reduce the transfer time is
using compression methods to reduce the file sizes. However,
each compression suffers a certain time cost, thus if we
compress thousands of files sequentially, the total compression
time may surpass the transfer time. We utilize parallel com-
puting to significantly accelerate the compression process. We
investigate the performance of different levels of paralleliza-
tion: as shown in Fig. 9 (left), the increase in the number of
CPU cores significantly reduces the time needed to compress
these datasets because they consist of many independent files.
To address this issue, we let each core handle the compression
of a set of files in parallel. The compression time cannot be
further reduced when the number of cores reaches the number
of files to be compressed because of the saturation of the
parallelism.

Our experiments show that decompression performance
does not increase monotonically with the number of CPU
cores. For instance, decompressing the CESM [38] dataset
on Cori takes 68.7s on four nodes but more than 5 minutes
on 16 nodes. We conduct a more thorough test for parallel
decompression on the Purdue Anvil machine, and the result
is shown in Fig. 9 (right). We see in this experiment that
performance degrades with more nodes. We believe this to be
due to I/O contention on a shared file system. We can avoid
the slow-down by tuning the number of cores to the parallel
file system.

Fig. 9. Parallel compression and decompression times vs. number of nodes,
as measured on Purdue Anvil. Each node has 128 CPU cores.

B. Optimization for Node Waiting Time

The uncertain wait time on compression tasks and trans-
fer tasks may degrade transfer performance when involving
compression. In most systems there are infrequently sufficient
nodes available immediately to do the compression when users
submit the data compression tasks. If the compression tasks
are stuck too long in the scheduler queue, the overall transfer
performance would be even slower than transferring without
compression.

Raw File 1

Raw File 2

Raw File N

Raw File K
Sentinal 
Program

Raw File K+1

Transfer Without Compression
Raw File 1

Raw File 2

Raw File K

Compress
Compressed

Files

Transfer

DP File N

DP File K+1

Decompression

Wait For
Compute Nodes

Stop Transfer When
Nodes Are Assigned

Sender Machine Receiver Machine

Globus Transfer Service

FuncX Service

Fig. 10. Transfer without compression during node waiting time: the
monitoring program submit the compression task; while waiting for nodes,
the transfer service is already transferring the data without compression.

In order to counter the node waiting time, we run a sentinel
program to monitor and schedule the transfer/compression
task. As shown in Fig. 10, when a user submits a transfer
request (with lossy compression option turned on) which is
not assigned compute nodes immediately, we start transferring
the files in groups without compression. Once a file transfer
is complete, we write their filenames in a meta file so that the
compression scheduler knows which files no longer need com-
pression. When the compute nodes are assigned, the sentinel
program notifies the transfer tasks to stop and let the parallel
compression scheduler take over the remaining files. In this
way, the data transfer is not be suspended because of waiting
for nodes, and the worst-case is that all data are transferred
without compression (when the nodes are not assigned through
the whole period). In production deployments, we anticipate
that the Ocelot service could be deployed on dedicated cluster
nodes (e.g., DTNs) with the approval of system administrator

6



(similar to Globus service). In this case, wait time would
be only dependent on other Ocelot transfers sharing those
resources.

C. File Grouping for High Data Transfer Throughput

We propose a file grouping strategy to improve the data
transfer throughput based on our observation that the number
of files and file sizes may significantly affect the transfer speed
(as shown in TABLE II). Although the effective transfer speed
fluctuates due to network and I/O contention, we generally
see that the effective network speed decreases as the number
of files increases, when transferring the same amount of
data. This motivates us to optimize the file transfer speed by
grouping small files together.

TABLE II
FILE TRANSFER PATTERNS BETWEEN TWO SUPERCOMPUTERS: NERSC

CORI AND ARGONNE BEBOP

Total size File size # Files Speed (MB/s) Duration (s)
300GB 1M 300000 247.0 1235
300GB 10M 30000 921.1 325
300GB 100M 3000 1120.0 267
300GB 1000M 300 1060.0 281

Raw File 1 Raw File 2 Raw File N

Header 1  File1 File 2 File N1

Header 2  File N1+1 File N1+2 File N2

Header M  File K File K+1 File N

Parallel Compression

O
pt

im
iz

ed
 F

or
 T

ra
ns

fe
r

Metadata Text File

Fig. 11. Parallel compression optimization by grouping small compressed
files to achieve higher transfer speed.

Grouping small compressed files can increase a single file’s
size and reduce the number of files, and thus improve transfer
speed. As shown in Fig. 11, we compress files in parallel
and group many compressed files to achieve a better size
for transfer. We use MPI to communicate the compressed
sizes among CPU cores to determine the file offset for each
core to write. Each grouped file has a header and a body of
connected compressed data. The header contains information
about the number of compressed files in this group, the
starting offset, and the size of each file. The metadata text
file contains human-readable information about the number
of files, grouping strategy, and the original filenames that are
useful for decompression. The default strategy is to group files
by the “world size”, i.e., the available number of cores for
compression, because they run in parallel and can usually
finish the compression at a similar time. According to the
profiling test and information provided by the administrator,
we know in advance the preferred size for each file to achieve
the fastest transfer speed. Thus, the compression scheduler can

also determine the number of files to put in one group based
on the file sizes.

VIII. PERFORMANCE EVALUATION

In this section, we present our experimental testbed and
performance evaluation results of our models with an in-
depth analysis. We first evaluate the prediction precision on
individual files with different settings and then evaluate the
performance of transfer with parallel compression.

A. Experimental Settings

We collect performance data on three supercomputers: Be-
bop, NERSC Cori, and Purdue Anvil, with specs shown in
TABLE III. Each is located in different regions of the United
States and has different network conditions. The evaluation
of network transfer performance is based on the network
connecting these supercomputers. We evaluate our prediction
approaches on datasets generated by six scientific applications:
QMCPACK [44], RTM [40], Miranda [43], CESM [38],
Nyx [42], and Hurricane Isabel [45], as presented in Table IV.

TABLE III
MACHINE SPECIFICATIONS: BDWALL AND KNLALL ARE FROM BEBOP,
WHOLENODE IS FROM ANVIL, AND HASWELL IS FROM NERSC CORI

Partition # Nodes CPU Cores Memory
Bebop bdwall 664 Intel Xeon E5-2695v4 36 128GB
Bebop knlall 348 Intel Xeon Phi 7230 64 96GB
Anvil wholenode 750 Two Milan CPUs @ 2.45GHz 128 256GB
Cori haswell 2388 Intel Xeon Processor E5-2698 v3 128 128GB

The Miranda, CESM, and RTM applications contain many
files and are well-suitable for our parallel compression tasks.
Specifically, we use a fixed subset of these three applications
in our parallel compression evaluation. Miranda contains 768
files each of dimension 256×384×384; CESM contains 61
snapshots and in total 7182 files of two types of dimensions
— 26×1800×3600 and 1800×3600; RTM contains 3601
snapshots and each file is of dimension 449× 449× 235.

TABLE IV
BASIC APPLICATION AND DATASET INFORMATION

Application Dataset Dimensions Science
QMCPACK einspine 33120×69×69 Electronic struc-

tures
RTM 3600 Snapshots 449×449×235 Electronic

Miranda density, velocity,
diffusity,
pressure,
viscosity, etc.

256×384×384 Hydrodynamics
code for large
turbulence
simulations

CESM cloud,
temperature,
pressure, etc.

1800×3600 Climate

Nyx density, tempera-
ture, etc.

512×512×512 Cosmology

ISABEL temperature,
speed, etc.

100×500×500 Weather

We focus on SZ2 [37], SZ3 [32] and their variants because
our compression quality prediction method is based on the
prediction-based compression model. How to estimate com-
pression quality for transformer-based compression models is
left to future work.

7



B. Estimation of Compression Time and Ratio

To make an estimation of compression time and ratio, we
apply a decision tree regressor model on 11 features described
in Section VI, and train on 30% of files from each of the
applications in TABLE IV (the remaining 70% serves as
testing data). We set 11 different error bounds from 1e-6 to
1e-1 to compress the data and collect the features for training.

The distribution of the difference between the predicted
values and real values is shown in Fig. 12. The green bounding
box shows the 80% confidence interval, meaning 80% of
prediction error falls into the green box. Thinner box means
higher prediction accuracy. Fig. 12 indicates our prediction
method performs very well, as the differences between pre-
dicted and actual values are very close to 0.

Fig. 12. Nyx/CESM/Miranda application compression time and ratio predic-
tion error distribution (measured on Bebop KNL partition): the X-axis is the
difference between the predicted value and the real value, the Y-axis is the
percentage for each small range of difference values.

The prediction has a negligible overhead (around 1.7%)
compared with the total compression time when we sample
1% of data (using 1 data point every 100 data points). As
shown in Fig. 13 (A), the sampling helps reduce the overhead
time from more than 70% to less than 5%. The extracted
compressor-based features p0 and P0 are different from the
actual percentage of the zero quantization code because we
run the Lorenzo prediction with the real data values instead
of the reconstructed data values.

Fig. 13. (A) Overhead time analysis on Nyx application; (B) Compression
time range on Bebop and Anvil machines for multiple applications.

Fig. 14 shows a high correlation between compression
time and the compressor-level features. In fact, the datasets’
compression times are similar with each other as long as they
have the same dimensions (usually because they belong to the
same application) as shown in Fig. 13 (B). This pattern helps
us estimate the overall compression time accurately in parallel
compression: the rough estimation would be the number of

datasets divided by the number of cores then multiplied by
the average compression time per one dataset.

Fig. 14. RTM application compression time versus compressor-level features

TABLE V shows the prediction results for our datasets.
We can observe from the values that the compression time
is gathered into groups related to the application to which
they belong. Moreover, we see that our model can always
precisely predict the compression ratio and time at different
error-bound settings. This is because the distribution of the
quantization code changes according to error bounds, and
our model captures this information with p0, P0 and the
quantization entropy effectively.

TABLE V
COMPRESSION TIME AND RATIO PREDICTION EXAMPLES: EB DENOTES
ERROR BOUND, CR DENOTES COMPRESSION RATION, CPTIME DENOTES

COMPRESSION TIME. P-CR AND P-CPTIME DENOTE PREDICTED
COMPRESSION RATIO AND COMPRESSION TIME, RESPECTIVELY. ALL

TIME-RELATED INFORMATION IS MEASURED ON BEBOP MACHINE IN KNL
PARTITION.

Dataset EB P-CR CR P-CPTime CPTime
Nyx 1e-6 1.19 1.18 35.9 35.6
Baryon Density 1e-4 3.15 3.10 32.3 33.3

1e-2 10.40 10.20 30.3 30.3
CESM 1e-6 1.139 1.135 1.459 1.456
LHFLX 1e-3 2.56 2.49 1.97 1.59

1e-2 5.25 4.43 1.55 1.50
CESM 1e-6 5.36 6.97 1.61 1.85
SNOWHICE 1e-4 21.0 21.9 1.55 1.58

1e-3 48.0 52.8 1.40 1.48
RTM-1982 1e-6 4.78 4.80 13.85 13.32
RTM-1048 1e-4 24.72 24.89 13.1 13.3
RTM-0594 1e-4 83.15 84.99 12.13 11.43
Miranda 1e-2 18.99 16.74 9.57 9.31
Velocity-x 1e-3 7.11 7.67 10.17 9.7

1e-1 9.11 9.43 52.05 52.49

C. Estimation of Data Quality via PSNR

We use 50% of gathered data for training, and perform the
compression quality prediction test for the remaining 50% of
data. TABLE VI shows the PSNR based on 10 data files ran-
domly selected in the CESM application, where the root mean
squared error of the PSNR prediction is 13.05. TABLE VII
shows a similar prediction result for the ISABEL application,
and the corresponding root mean squared error of PSNR is
14.23. Unlike the prediction of compression ratio/time which
is fairly accurate, the prediction of PSNR is good in most
cases yet still suffers relatively high errors occasionally on a
few datasets. We plan to improve it in our future work.

We explain the key reasons why the PSNR is predictable
as follows. On one hand, if the quantization bins often gather
around zero (especially when a relatively large error bound is
used), the predicted values are likely unable to be corrected

8



TABLE VI
PREDICTION OF PSNR FOR CESM APPLICATION

Filename eb Real PSNR Predicted PSNR
TMQ 1 1800 3600.dat 1e-3 96.80 96.39
CLDMED 1 1800 3600.dat 1e-3 59.64 60.88
TROP Z 1 1800 3600.dat 1e-3 146.05 141.45
ICEFRAC 1 1800 3600.dat 1e-5 102.43 98.65
PSL 1 1800 3600.dat 1e-1 99.10 117.11
FLNSC 1 1800 3600.dat 1e-2 85.07 92.02
ODV ocar2 1 1800 3600.dat 1e-5 79.16 83.92
LHFLX 1 1800 3600.dat 1e-4 138.92 136.23
TREFHT 1 1800 3600.dat 1e-3 99.28 86.82
FSDTOA 1 1800 3600.dat 1e-6 184.85 184.86

TABLE VII
PREDICTION OF PSNR FOR ISABEL DATASET

Filename eb Real PSNR Predicted PSNR
QSNOWf48 log10.bin.dat 1e-2 72.85 81.11
PRECIPf48 log10.bin.dat 1e-1 52.49 52.78
QVAPORf48.bin.dat 1e-6 88.01 128.52
PRECIPf48 log10.bin.dat 1e-6 160.18 160.26
CLOUDf48 log10.bin.dat 1e-2 62.07 88.00
Wf48.bin.dat 1e-2 69.19 67.96
QSNOWf48 log10.bin.dat 1e-3 93.14 93.48
CLOUDf48 log10.bin.dat 1e-6 144.24 123.23
Pf48.bin.dat 1e-2 98.23 81.21
QSNOWf48 log10.bin.dat 1e-6 160.12 165.35

by quantization bins, leading to relatively low PSNR. On the
other hand, if the zero quantization bin takes a tiny percentage,
this means the quantization bins are likely very small because
of the small error bounds used. In this situation, many data
points would be corrected by the quantization bins or stored
as they are based on the SZ compression model, thus leading
to relatively high PSNR.

We explain why the prediction of PSNR may not be as
precise as the compression ratio’s prediction as follows. In fact,
when p0 and the quantization entropy are in the middle, most
data points can still be the quantization-based reconstructed
data, and it is unclear how far away these data points are
from the original data values. They can be either an error
bound away or quite close, therefore it is unclear how they will
contribute to the final PSNR based on the selected features.

O
ri
g
in

a
l

C
o
m

p
re

s
s
e
d

(A) CLDMED (B) TMQ (C) TROP

Fig. 15. CESM data visualization comparison between original and com-
pressed data: The PSNRs are 59.64, 96.80, and 146.05 respectively, and there
is no obvious visual difference between the original and compressed data.

With the settings shown in TABLE VI, we visualize the

original and compressed data of three data files in Fig. 15.
From our experience, when PSNR is higher than 50, there is no
visible visual difference between the original and compressed
data. Therefore, when the predicted PSNR is high, we are
confident that the compressed data will be of a good quality
for post-analysis.

D. Transfer Datasets with Parallel Compression

We now investigate the overall transfer performance when
utilizing parallel compression on supercomputers. We use
three applications CESM, RTM, and Miranda to analyze
parallel compression performance.

Fig. 16. Transfer time comparison between direct transfer and transfer with
compression. (1) means transferring from Purdue Anvil to NERSC Cori, (2)
means transferring from Purdue Anvil to Argonne Bebop.

Fig. 16 shows the time reduction because of our parallel
compression applied in the data transfer. The compression time
is measured on the Purdue Anvil machine with 16 nodes (each
node uses 128 CPU cores, and in total 2048 CPU cores), while
decompression is measured on Bebop for experiment (1) and
on Cori for experiment (2) with 8 nodes (each node has 32
CPU cores and in total 256 CPU cores). We see increased
transfer speed when using parallel compression because (1)
the total file size is much smaller and (2) the compression
time is minimized by parallelization. The node waiting time
on Purdue Anvil machine is negligible in our experiments
because compression tasks can immediately be scheduled. On
Bebop and Cori, however, the node waiting time varies. When
there were idle nodes, the waiting time was between 0s to 30s,
but sometimes it took a few minutes or even hours to get an
available compute node. The behavior is highly dependent on
other users’ tasks, and we could not conclude any quantifiable
patterns on the expected node waiting time. Our sentinel
program can ensure the worst case would be transferring the
data without compression.

TABLE VIII shows the comparison between direct trans-
fer without compression and transfer involving our parallel
compression method. Because of a significant reduction in
file sizes, we can see an obvious reduction in the transfer
time for all three applications. We notice that the effective
transfer speed drops after compression without file grouping.
This is because the files are smaller while the number of
directories and the number of files stays constant. This result
aligns with the pattern shown in TABLE II. Because large files
generally transfer faster in the network than small files, our

9



TABLE VIII
DATA TRANSFER TEST AMONG PURDUE ANVIL, ARGONNE BEBOP, AND NERSC CORI: T/SPEED(NP) IS THE TRANSFER TIME/EFFECTIVE SPEED

WITHOUT COMPRESSION; T/SPEED(CP) IS WITH COMPRESSION, WHILE EACH FILE HAS ITS OWN COMPRESSED FILE; T/SPEED(OP) IS COMPRESSION
WITH OUR FILE GROUPING OPTIMIZATION. THE CPTIME IS THE TOTAL COMPRESSION TIME BEFORE THE TRANSFER BEGINS, AND DPTIME IS THE

TOTAL DECOMPRESSION TIME AFTER THE FILES ARE TRANSFERRED. TOTAL T IS THE TOTAL TIME USING OUR SOLUTION, INCLUDING COMPRESSION,
TRANSFER, AND DECOMPRESSION TIME. GAIN IS THE PERFORMANCE IMPROVEMENT CALCULATED BY (T(NP) - TOTAL T)/ T(NP)

.
Dataset # Files Direction T(NP) Speed(NP) T(CP) Speed(CP) T(OP) Speed(OP) CPTime DPTime Total T Reduced

Anvil->Cori 446s 3.63GB/s 87s 2.55GB/s 75s 2.93GB/s 32.48s 68.7s 176.18s 60%
CESM 7182 Anvil->Bebop 1685s 960MB/s 269s 822MB/s 250s 885MB/s 32.54s 126s 408.54s 76%
1.61TB Bebop->Cori 1484s 1.09GB/s 268s 827MB/s 217s 1.02GB/s 135s 69.4s 421.4s 72%

Anvil->Cori 181s 3.76GB/s 15s 932MB/s 11s 1.27GB/s 8.99s 21.8s 41.79s 77%
RTM 3601 Anvil->Bebop 784s 870MB/s 28s 503MB/s 20s 712MB/s 9.03s 41.2s 70.23s 91%
682GB Bebop->Cori 623s 1.09GB/s 25s 544MB/s 18s 795MB/s 56s 21.9s 95.9s 85%

Anvil->Cori 35s 3.32GB/s 11s 1.22GB/s 13s 974MB/s 6.52s 3.07s 20.59s 41%
Miranda 768 Anvil->Bebop 134s 870MB/s 23s 577MB/s 30s 444MB/s 6.27s 8.89s 38.16s 72%
115GB Bebop->Cori 119s 972MB/s 19s 676MB/s 24s 553MB/s 8.83s 3.08s 30.91s 74%

file grouping strategy helps counter the speed reduction for the
RTM and CESM applications. For the Miranda application, the
grouped files do not transfer faster because, after grouping,
there are only 8 files and it has not reached the number of
concurrent threads available in the Globus Transfer Service.
This result also shows that we should strategically group
files into multiple groups instead of simply connecting all
compressed files into one large file. Moreover, making all cores
write to the same file would cause I/O contention and add
overhead to the file grouping process.

IX. CONCLUSION AND FUTURE WORK

We developed a novel data transfer framework, Ocelot,
that integrates Globus transfer with transparent error-bounded
prediction-based lossy compression. We proposed a model
to predict compression ratio/time and data quality for user
defined compression settings with little overhead. Based on
our evaluation on six real-world scientific datasets, we report
the following key findings.

• Compression time/ratio and PSNR are predictable by
using various categories of features. By doing 1% sam-
pling, we can reduce the overhead required to finish the
prediction to 1.7% of compression time—a small cost
when compared with transfer time.

• Scientific data transfer performance can be greatly im-
proved by applying parallel compression. We use FuncX
to further control the node waiting time on supercom-
puters, and minimize the transfer time for given datasets.
More than 90% of the transfer time can be reduced by
this method.

• Network transfer speed can be significantly affected by
file size and number of files. A few large files generally
transfer faster than many small files. We can improve
transfer speed by grouping smaller compressed files, and
the transfer time can be reduced by more than 25%
because of file grouping.

• While the use of more CPU cores can improve com-
pression and decompression performance, I/O contention
can become a problem in the decompression case. It is
generally better to use more CPU cores for compression
and fewer CPU cores for decompression.

We selected features that were simple to derive and fast to
train and make predictions, but there is still room to extract
better features to improve prediction accuracy. In addition, our
model requires seeing the dataset in advance to make predic-
tions and has very limited generalization to other datasets.
Moreover, we lack effective time/ratio prediction methods for
transformer-based compressors like ZFP [26] and TTHRESH
[46]. In the future, we will look into other features, particularly
those that do not require processing of the data, to see if
we can make accurate predictions on datasets that have never
appeared in the training set. We will also investigate additional
compressor types and work to identify features that are suitable
for transformer-based compressors.

ACKNOWLEDGMENTS

The material was supported by the U.S. Department of
Energy, Office of Science, Advanced Scientific Computing
Research (ASCR), under contract DE-AC02-06CH11357, and
supported by the National Science Foundation under Grant
OAC-2003709 and OAC-2104023. We acknowledge the com-
puting resources provided on Bebop (operated by Laboratory
Computing Resource Center at Argonne).

REFERENCES

[1] T. E. Fornek, “Advanced photon source upgrade project preliminary
design report,” 9 2017.

[2] Linac Coherent Light Source (LCLS-II), https://lcls.slac.stanford.edu/,
2017, online.

[3] K. Chard, S. Tuecke, and I. Foster, “Globus: Recent enhancements and
future plans,” in XSEDE16 Conference on Diversity, Big Data, and
Science at Scale, ser. XSEDE16. New York, NY, USA: Association
for Computing Machinery, 2016.

[4] Y. Liu, Z. Liu, R. Kettimuthu, N. Rao, Z. Chen, and I. Foster, “Data
transfer between scientific facilities – bottleneck analysis, insights and
optimizations,” in 19th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, 2019, pp. 122–131.

[5] K. Zhao, S. Di, D. Perez, X. Liang, Z. Chen, and F. Cappello, “MDZ:
An efficient error-bounded lossy compressor for molecular dynamics,”
in IEEE 38th International Conference on Data Engineering, 2022, pp.
27–40.

[6] X. Liang, S. Di, D. Tao, S. Li, B. Nicolae, Z. Chen, and F. Cappello,
“Improving performance of data dumping with lossy compression for
scientific simulation,” in IEEE International Conference on Cluster
Computing, 2019, pp. 1–11.

10



[7] X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, H. Finkel, Y. Alexeev,
and F. T. Chong, “Full-state quantum circuit simulation by using
data compression,” in International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3295500.3356155

[8] S. Jin, S. Di, X. Liang, J. Tian, D. Tao, and F. Cappello, “Deepsz:
A novel framework to compress deep neural networks by using
error-bounded lossy compression,” in 28th International Symposium on
High-Performance Parallel and Distributed Computing, ser. HPDC ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
159–170. [Online]. Available: https://doi.org/10.1145/3307681.3326608

[9] S. Li, S. Di, K. Zhao, X. Liang, Z. Chen, and F. Cappello, “Resilient
error-bounded lossy compressor for data transfer,” in International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’21. New York, NY, USA: Association for Computing
Machinery, 2021.

[10] R. Ananthakrishnan, K. Chard, I. Foster, and S. Tuecke, “Globus
platform-as-a-service for collaborative science applications,” Concur-
rency - Practice and Experience, vol. 27, no. 2, pp. 290–305, 2014.

[11] K. Chard, J. Pruyne, B. Blaiszik, R. Ananthakrishnan, S. Tuecke, and
I. Foster, “Globus data publication as a service: Lowering barriers
to reproducible science,” in 11th IEEE International Conference on
eScience, 2015.

[12] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik,
I. Foster, and K. Chard, “Funcx: A federated function serving fabric
for science,” in Proceedings of the 29th International Symposium on
High-Performance Parallel and Distributed Computing, ser. HPDC ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
65–76. [Online]. Available: https://doi.org/10.1145/3369583.3392683

[13] FileCatalyst, online. [Online]. Available: https://www.filecatalyst.com/
[14] IBM, “Moving the world’s data at maximum speed,” online. [Online].

Available: https://www.ibm.com/products/aspera
[15] J. Crowcroft and P. Oechslin, “Differentiated end-to-end internet

services using a weighted proportional fair sharing tcp,” SIGCOMM
Comput. Commun. Rev., vol. 28, no. 3, p. 53–69, jul 1998. [Online].
Available: https://doi.org/10.1145/293927.293930

[16] T. Hacker, B. Athey, and B. Noble, “The end-to-end performance effects
of parallel tcp sockets on a lossy wide-area network,” in Proceedings
16th International Parallel and Distributed Processing Symposium,
2002, pp. 10 pp–.

[17] E. Yildirim, J. Kim, and T. Kosar, “How GridFTP pipelining, parallelism
and concurrency work: A guide for optimizing large dataset transfers,”
in SC Companion: High Performance Computing, Networking Storage
and Analysis, 2012, pp. 506–515.

[18] D. Tao, S. Di, Z. Chen, and F. Cappello, “In-depth exploration of single-
snapshot lossy compression techniques for n-body simulations,” in IEEE
International Conference on Big Data, 2017, pp. 486–493.

[19] X. Liang, H. Guo, S. Di, F. Cappello, M. Raj, C. Liu, K. Ono, Z. Chen,
and T. Peterka, “Toward feature-preserving 2D and 3D vector field
compression,” in IEEE Pacific Visualization Symposium, 2020, pp. 81–
90.

[20] X.-C. Wu, S. Di, F. Cappello, H. Finkel, Y. Alexeev, and F. T. Chong,
“Amplitude-aware lossy compression for quantum circuit simulation,”
2018. [Online]. Available: https://arxiv.org/abs/1811.05140

[21] A. M. Gok, S. Di, Y. Alexeev, D. Tao, V. Mironov, X. Liang, and F. Cap-
pello, “PaSTRI: Error-bounded lossy compression for two-electron in-
tegrals in quantum chemistry,” in IEEE International Conference on
Cluster Computing, 2018, pp. 1–11.

[22] M. Smelyanskiy, N. P. Sawaya, and A. Aspuru-Guzik, “qHiPSTER: the
quantum high performance software testing environment,” arXiv preprint
arXiv:1601.07195, 2016.

[23] F. Cappello, S. Di, S. Li, X. Liang, G. M. Ali, D. Tao, C. Yoon Hong,
X.-c. Wu, Y. Alexeev, and T. F. Chong, “Use cases of lossy compression
forfloating-point data in scientific datasets,” International Journal of
High Performance Computing Applications (IJHPCA), 2019.

[24] P. Ratanaworabhan, J. Ke, and M. Burtscher, “Fast lossless compression
of scientific floating-point data,” in Data Compression Conference
(DCC’06), 2006, pp. 133–142.

[25] K. Zhao, S. Di, M. Dmitriev, T.-L. D. Tonellot, Z. Chen, and F. Cappello,
“Optimizing error-bounded lossy compression for scientific data by
dynamic spline interpolation,” in IEEE 37th International Conference
on Data Engineering, 2021, pp. 1643–1654.

[26] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2674–2683, 2014.

[27] N. Sasaki, K. Sato, T. Endo, and S. Matsuoka, “Exploration of lossy
compression for application-level checkpoint/restart,” in IEEE Interna-
tional Parallel and Distributed Processing Symposium. IEEE, 2015,
pp. 914–922.

[28] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[29] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on Information Theory, vol. 23, no. 3,
pp. 337–343, 1977.

[30] J. Liu, S. Di, K. Zhao, S. Jin, D. Tao, X. Liang, Z. Chen, and F. Cappello,
“Exploring autoencoder-based error-bounded compression for scientific
data,” in IEEE International Conference on Cluster Computing, 2021,
pp. 294–306.

[31] X. Liang, B. Whitney, J. Chen, L. Wan, Q. Liu, D. Tao, J. Kress, D. Pug-
mire, M. Wolf, N. Podhorszki, and S. Klasky, “Mgard+: Optimizing
multilevel methods for error-bounded scientific data reduction,” 2020.

[32] X. Liang, K. Zhao, S. Di, S. Li, R. Underwood, A. M. Gok, J. Tian,
J. Deng, J. C. Calhoun, D. Tao, Z. Chen, and F. Cappello, “Sz3: A
modular framework for composing prediction-based error-bounded lossy
compressors,” IEEE Transactions on Big Data, pp. 1–14, 2022.

[33] J. Bresnahan, M. Link, R. Kettimuthu, D. Fraser, and I. T. Foster,
“Gridftp pipelining,” in TERAGRID 2007 CONFERENCE, 2007.

[34] S. Tuecke, R. Ananthakrishnan, K. Chard, M. Lidman, B. McCollam,
S. Rosen, and I. Foster, “Globus Auth: A research identity and access
management platform,” in IEEE 12th International Conference on e-
Science, 2016, pp. 203–212.

[35] X. Delaunay, A. Courtois, and F. Gouillon, “Evaluation of lossless and
lossy algorithms for the compression of scientific datasets in netcdf-
4 or hdf5 files,” Geoscientific Model Development, vol. 12, no. 9, pp.
4099–4113, 2019.

[36] D. Tao, S. Di, H. Guo, Z. Chen, and F. Cappello, “Z-checker: A
framework for assessing lossy compression of scientific data,” The
International Journal of High Performance Computing Applications,
vol. 33, no. 2, pp. 285–303, 2019.

[37] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” in 2018 IEEE International Conference
on Big Data (Big Data), 2018, pp. 438–447.

[38] J. Kay, C. Deser, A. Phillips, A. Mai, C. Hannay, G. Strand, J. Arblaster,
S. Bates, G. Danabasoglu, J. Edwards et al., “The community earth sys-
tem model (CESM), large ensemble project: A community resource for
studying climate change in the presence of internal climate variability,”
Bulletin of the American Meteorological Society, vol. 96, no. 8, pp.
1333–1349, 2015.

[39] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, K. Heitmann,
K. Kumaran, V. Vishwanath, T. Peterka, J. Insley et al., “HACC: extreme
scaling and performance across diverse architectures,” Communications
of the ACM, vol. 60, no. 1, pp. 97–104, 2016.

[40] R. T. Migration, online. [Online]. Available:
http://www.seismiccity.com/RTM.html

[41] S. Jin, S. Di, J. Tian, S. Byna, D. Tao, and F. Cappello, “Improving
prediction-based lossy compression dramatically via ratio-quality mod-
eling,” in IEEE 38th International Conference on Data Engineering,
2022, pp. 2494–2507.

[42] NYX simulation, https://amrex-astro.github.io/Nyx, online.
[43] Miranda, https://wci.llnl.gov/simulation/computer-codes/miranda.
[44] QMCPack, https://qmcpack.org/, online.
[45] Hurricane ISABELA Simulation Datasets,

http://vis.computer.org/vis2004contest/data.html.
[46] R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola, “Tthresh: Tensor

compression for multidimensional visual data,” IEEE Transaction on
Visualization and Computer Graphics, vol. 26, pp. 2891–2903, 2019.

11


