
Experiences with Evaluating System QoS and Channel

Performance on Media-On-Demand Systems �

Wonjun Lee Jaideep Srivastava

Dept. of Computer Sci. & Eng. Dept. of Computer Sci. & Eng.

Korea Universit y Universit yof Minnesota

Seoul, Republic of Korea Minneapolis, MN 55455 USA

Abstract

This paper presen ts the design and implementation of

a continuous media �le system, whic hhas been imple-

mented in the con text of a distributed m ultimediaap-

plication development environment that has been proto-

typed. T omake a performance analysis of �le systems

and distributed object services for continuous media pro-

visioning, we validate the performance analysis of �le sys-

tem on media-on-demand (MOD) systems against that of

a con ventional �le system through an experimental evalu-

ation. Keywords: Multimedia, Quality of Service,

Media-On-Demand System, Continuous Media, File

System.

1 Introduction

While the mechanisms provided by the Unix File Sys-

tem (UFS) have been suÆcient for most applications,

there are important classes of applications where it is

not been so. An increasingly important class of appli-

cations where UFS is not suitable are those requiring

storage and retrieval of continuous media (CM), i.e.

audio, video, animation, etc. [1]. F ollo wing are some

unmet �le system needs of continuous media: Place-

ment and Stor ageStructures. The key to designing

high performance �le systems to support CM requires

that we use information about (i) the inherent tempo-

�This work was supported by U.S. Army Researc h Lab

(ARL) number D A/DAKF11-98-9-0359 to the Univ ersityof

Minnesota.

ral nature of continuous media, and (ii) QoS oriented

nature of media access, to develop new solutions to

these problems.

The initial w orkin the area, e.g. [2], focused on

the principles behind con tinuousmedia storage and

retriev al, and led to the development of the incr emen-

tal retrieval model. A number of investigations, e.g.

[3, 4, 5, 6], ha ve dev eloped techniques for continuous

media access, and have carried out their evaluation,

usually by means of simulation. Similarly, work in the

area of �le placement includes [7], where di�erent ap-

proaches to storing continuous media data have been

proposed. In some cases simulation-based evaluation

has been performed. While some good incremental

retriev al models exist, and a number of techniques

for CM storage and access have been developed, there

is a serious dearth of actual �le system implementa-

tions which are suited for a broad range of multime-

dia applications. A number of e�orts ha vefocused

on developing I/O storage and management systems

for CM to ful�ll the needs of speci�c applications,

e.g. [8]. Conversely ,giv en the fact that under low

resource utilization whether the underlying system is

cognizant of an application's real-time needs or not

does not matter, there have been e�orts to use high-

performance general purpose �le systems to manage

CM data, as evidenced by the Tiger-Shark �le system

[9] which has shown good performance in some mul-

timedia applications. In our opinion this approach

su�ers from tw oproblems. First, it is not scalable

since keeping the load low means building the sys-

Proceedings of the 22 nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02)
0-7695-1588-6/02 $17.00 © 2002 IEEE

tem with very high capacity. Second, such a system

will have a seriously unacceptable price-performance

ratio.

Overall, w e believ ethat a continuous media �le

system must use information about the inherent na-

ture of continuous media in all its functions to ensure

both high performance and a good price-performance

ratio. Hence, it must be built on the principles of in-

cremental retriev al,which is emerging as the model

to capture the inherent nature of continuous media.

T o our knowledge, the �le systems that �t this crite-

ria are [10], where some principles of the incremental

retriev al model have been used, especially in the de-

sign of the admission control strategy. How ev er, one

issue that is still lacking from any study we have seen

is the evaluation of an y �le system from the view-

point of QoS metrics. After all, a continuous media

application's performance (and possibly correctness)

needs are expressed in terms of its QoS speci�cation,

and hence the underlying system's performance must

be measured in terms of how successful it is in attain-

ing the speci�ed QoS. In the multimedia netw orking

communit ythis is today the accepted w ay of evalu-

ating communication protocols for continuous media.

We believe that the �le system community must do

the same.

We ha vecompared the experimental behavior of

the Unix �le system, as instantiated in the Solaris

2.7 operating system, with that of the Presto �le sys-

tem. The experimental data used conformed to that

speci�ed for motion JPEG (MJPEG) video.

The structure of this paper is as follows: in section

2 w edescribe the design considerations and archi-

tecture of the Presto �le system. Section 3 provides

details of PFS implementation. The �rst part of sec-

tion 4 describes our experimental comparison of PFS

and UFS for basic �le operations, while the second

part does the same for continuous media access. In

section 5 we conclude the paper.

2 Design Considerations

T ohandle continuous media eÆciently, w eneed to

store and retriev e large amounts of multimedia in-

formation with continuous playback, pro viding user-

speci�ed QoS. The CM �le system should provide

larger data unit abstractions, suc h as vide o frame

and audio sample group, unlike conven tional �le sys-

tems, e.g. UFS, which provide only a byte-oriented

abstraction. A unit is a user-de�ned logical chunk of

data, e.g. a frame for video data and a sequence of

audio samples for audio data. Henceforth, the ab-

straction can support CM application's retrieval and

storage needs via units in a CM stream. In addition,

it should allow an application to randomly seek to a

unit within a stream.

Another design objective for the CM �le system is

to pro vide eÆcient I/O access to the disk. This objec-

tive is crucial for CM retrieval and storage where real-

time continuous delivery is required and where high

volume I/O bandwidth is required. T odo so, new

storage and access strategy should provide timely de-

livery to applications via optimizing accesses, bu�er

management, and interface with the I/O scheduler.

3 Implementation Details

PFS is implemented on a raw disk partition of UNIX

so as to by pass the UNIX bloc kbu�er cac he and

allow the imposition of customized access structures.

A PFS partition is divided into one or more extents,

and each extent consists of a number of units. A CM

stream is stored in an extent. Information about each

stream is stored in a structure referred to as the ino de.

A super block is used to maintain the formatting data

and extent map of free extents. The overview of disk

layout is shown in Figure 1.

The formatting information in the super block in-

cludes: (1) number of extents in partition, (2) size of

eac h extent in blocks, (3) size of each block in physical

sectors. The free extents in a partition are indexed

by a bitmap. A �rst �t algorithm is used to allocate

Proceedings of the 22 nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02)
0-7695-1588-6/02 $17.00 © 2002 IEEE

a free exten tto a stream. A command called Pfor-

mat is used to format the raw partition and create

the super block.

There is a unique inode assigned to eac h exten t.

Each inode is 128 bytes long, and includes the follow-

ing �elds: (1) name of a stream, (2) name of extent,

(3) n umber of units in the stream, (4) stream type.

An extent consists of a number of units. The unit

size is variable. Each exten tis divided in to tw o re-

gions. The �rst region is the index region, storing

the size and starting address of each unit. The other

region is the data region storing a sequence of units,

with each unit starting on a physical sector boundary.

4 MOD Server

We protot ypedsev eral versions of MOD serv er sys-

tems which support various net work protocols, and

integrated our continuous media �le system with the

MOD serv ers. T ypical MOD server system includes

a server and one or more clients, and may serv e

the clients concurrently. Figure 2 depicts the ar-

chitecture of an MOD server which plays out multi-

ple streamsto the requesting clien ts across the net-

w ork.The MOD server has four major components.

The Network Manager responds to clien ts' connec-

tion requests. The QoS Manager is responsible for

admission con troland I/O scheduling. Each Pr oxy

Server communicates with a client, receiving contin-

uous media stream operation requests and sending

the CM data by net w ork.Each I/O Manager reads

out CM data from disks for a proxy server. There are

as many proxy servers and I/O managers as clients.

Client has tw omain components, one Client N/W

Controller and one CM Player. We have conducted

performance analysis for our novel CM �le systems in

the MOD server system environments. Details about

the results will be present in section 5.

5 Performance Analysis

5.1 On Standard File Operations

We demonstrate the adv antages of PFS over UFS

based on experiments that use standard �le opera-

tions. The experiments w erecarried out on a Sun

Ultra Sparcstation with a SCSI disk. The focus of

our experiments w as toverify that for standard �le

operations the performance of PFS is comparable to

that of UFS.

The metrics w econsider in this section are disk

throughput, bu�er requirement and service cycle

length. Since w eare interested in the performance

of the disk system, it was important to ensure that

the �le reads w erenot serviced from the �le cache.

Hence, we used di�erent �les in each test, and chose

to use each �le only once to bypass the e�ects of sys-

tem I/O bu�ering. T o eliminate the e�ects of random

uctuations, w e repeat each operation several times

and use the average value or should it be minimum

value.

In both PFS and UFS, the relationship betw een

bu�er size(b) and data access time(t) is:

t = (1=ro)b+ to (1)

r = ro=(1 + roto=b) (2)

Here, t is the access time, r is data rate, bu�er size(b)

is the data size in a single read, ro is the possible

maximum data rate, and to is the constant overhead

for a single read. In Unix, ro depends solely on the

bu�er size. In PFS, ro depends on both the unit size

and the number of units in a single read.

Fig.3 shows the relationship betw een the data rate

and the unit size. The graph sho ws that PFS has

a higher maximum possible data rate. In PFS, data

rate increases with unit size, and the more number of

units per read, the higher the achievable data rate.

In UFS, our experimental observations are that when

the bu�er size is smaller than 10KB, the data rate in-

creases with the bu�er size. When the bu�er size is

larger than 10KB, the data rate remains constant.

When the unit size is small (below 8KB), UFS is

Proceedings of the 22 nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02)
0-7695-1588-6/02 $17.00 © 2002 IEEE

faster than PFS. When the unit size is above 10KB,

PFS is faster than UFS. In a CM Stream, w estore

a frame of CM data as a unit. UFS is optimal for

small frames while PFS is optimal for large frames.

For 640 by 480 JPEG frames, where the size of the

compressed frame is about 18KB, PFS has a higher

data rate than UFS. F romFig.3, w edetermine tw o

w aysto improve the throughout of PFS. One is to

group a number of frames in to a unit. The other is

to read out more units in a single read, called group

read. The data rate increases with group size.

When there are requests for multiple streams from

PFS, they compete for I/O bandwidth and other sys-

tem resources, and therefore require larger bu�ers to

handle the context switch overhead. Hence, to main-

tain a �xed data rate w eneed a longer service cy-

cle. UFS can support up to 16 concurrent JPEG

streams, eac h at the rate of 540KB/s. When the

number of concurrent streams is more than 16, the

required data rate is not satis�ed. The bu�er size of

each stream remains the same as the frame size while

the number of streams goes from 1 to 16. Under

the same conditions, PFS can support up to 23 con-

current JPEG streams, while the bu�er size of each

stream monotonically increases with the number of

streams. In PFS, when there are less than three con-

current streams, the bu�er is the same as frame size.

As more concurrent streams enter, we must increase

the bu�er size and do group read to meet the required

consumption rate.

Fig.4 shows the relationship betw eenthe number

of concurrent streams, and thelength of the service

cycle. In UFS, as the number of concurrent streams

increases, the length of the service cycle increases lin-

early . In PFS, when there is only one stream, the

length of the service cycle is very small. As the num-

ber of concurrent streams increases, the length of

the service cycle increases faster than that in UFS.

This shows that the overhead of resource conten tion

of concurrent streams in PFS is more than that in

UFS. This relationship betw eenthe number of con-

current streams and the length of service cycle is sim-

ilar to the relationship betw een thenumber concur-

ren t streams and the bu�er size. We can deduce it

from equation 1:

T > (sroto=(ro � sR) (3)

B > roRto=(ro � sR) (4)

Smax = ro=R (5)

Here, T is the length of the service cycle, B is the

bu�er size, Smax is the maximum number of concur-

ren t streams,s is the n umber of concurrent streams,

and R is the consumption rate. For a given n umber

of streams, the length of the service cycle for PFS is

longer than that for UFS, as shown in �gure 4. This

happens because PFS's approach to handling higher

w orkloadis to expand the length of the cycle, and

thereby increase the eÆciency of the I/O system by

reducing context switch overhead. This is not with-

out its drawback, since a larger bu�er is required by

PFS, compared to UFS, for a given workload. How-

ev er, as we can observe, this strategy is better overall

since it allows PFS to handle a larger range of work-

load, i.e. 23 streams, as compared to a maximum of

16 streams for UFS.

5.2 On QoS Metrics

This experiment is designed to measure the e�ect of

UFS and PFS approaches to �le management on drift

pro�les of streams, which specify the average and

burst ydeviation of schedules for frames from ideal

expected points in time. We measured the di�erence

betw een the ideal rendition time and the actual rendi-

tion time as a unit granule drift. The aggregate drift

(ADF: Accumulated Drift Factor) is the sum of unit

gran ule drifts over some interval, and the consecutive

drift is the sum of consecutive non zero drifts.

In our experiments, UFS is turned out not to be

w ell suitedto support perceivable continuity of CM

streams which are sensitiv eto drifts. Through this

experiment, w e can say that PFS preserv esmore

faithfully the characteristics of real-time applications

than UFS does (in Figure 5). When we increase the

Proceedings of the 22 nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02)
0-7695-1588-6/02 $17.00 © 2002 IEEE

number of concurrent streams (1 to 20), the ADF val-

ues are increased. In measuring drift factors for single

and/or multiple stream(s), w e get better thoughput

results (less loss) in PFS than in UFS. Comparing

single stream to multiple streams, the former situa-

tion leads to low er loss than the latter for both PFS

and UFS.

6 Conclusions

In the paper, w e present results from the experi-

mental ev aluation of a continuous media �le system,

which has been implemented in the context of a dis-

tributed multimedia application dev elopment en vi-

ronment. Our on-going w ork is dev elopingstorage

and access mechanisms that tak e advantage of QoS

speci�catinos to optmize system performance [11].

Putting eÆcient caching and bu�ering scheme in to

the current version of �le system will be another fu-

ture work.

7 Acknowledgments

The ideas implemented in PFS and performance

studies have bene�tted a lot by cooperation and dis-

cussion with a number of people. Speci�cally, w e

would like to thank Deepak Kencham of IBM Al-

maden and Difu Su of Yahoo USA, who mainly con-

tributed on the initial version of this work.

References

[1] R. Steinmetz and K. Nahrstedt, eds., Multime-

dia: Computing, Communications and Applica-

tions. New Jersey: Prentice Hall, 1995.

[2] H. Vin and P . Rangan, \EÆcient Storage

T echniques for Digital Continuous Multimedia,"

IEEE Trans. Knowledge and Data Engineering,

vol. 5, no. 4, pp. 564{573, 1993.

[3] H. V. P . Shenoy, \Cello: A Disk Sc heduling

F ramework for Next-Generation Operating Sys-

tems," in Pr oceedingsof ACM SIGMETRICS,

June 1998.

[4] R. T ewari, H. Vin, A. Dan, and D. Sitaram,

\Resource-based Caching for Web Serv ers,"

A CM Multimedia Systems Journal, 2001.

[5] A. Dan, D. Sitaram, and P. Shahabuddin, \Dy-

namic Batching P olicies for an On-Demand

Video Server," in Pr oceedings ACM Multimedia

94, pp. 15{24, ACM Press, October 1994.

[6] A. Reddy and J. Wyllie, \I/O Issues in a Multi-

media System," Computer, vol. 27, no. 3, pp. 69{

74, 1994.

[7] D. Kenchammana-hosekote and J. Sriv asta va,

\Retrieval T echniques for Compressed Video

Streams," in Pr oceedings of Multimedia Comput-

ing and Networking SPIE IS&T, January 1996.

[8] C. F ederighi and L. Row e, \The Design and

Implementation of the UCB Distributed Video-

On-Demand System," in Pr oc. IS&T/SPIE 1994

Int'l Symp. electronic Images: Science and Tech-

nolo gy, 1994.

[9] R. Haskin and F. Schmuck, \The Tiger Shark

File System," in COMPCON 96, 1996.

[10] C. Martin, P. S. Narayanan, B. Ozden, R. Ras-

togi, and A. Silberschatz, \The Fellini Multime-

dia Storage Server," in Multimedia Information

Sotr age and Management (S. M. Chung, ed.),

Kluw er Academic Publishers, 1996.

[11] W. Lee and J. Srivastava, \An Algebraic QoS-

based Resource Management Model for Com-

petitiv eMultimedia Applications," Multimedia

T oolsand Applications, Kluwer A cademicPub-

lishers, vol. 13, no. 2, 2001.

Proceedings of the 22 nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02)
0-7695-1588-6/02 $17.00 © 2002 IEEE

of extents

size of each
 extent

size of each
 block

unit size starting addr

 u n i t s

 s e q u e n c e o f

index

 region

data

region

i

n

o

d

e

e

x

t

e

n

t

super blocks
e x t e n t si n o d e s

list of free
 extents

inode name (stream name)

extent number

of units

encoding scheme (stream type)

filler
 # of extents

of inode entries

 =

Figure 1: Disk Layout in PFS

Figure 2: MOD Server Architecture

0

5

10

15

20

0 20 40 60 80 100 120 140

D
at

a
R

at
e

(M
B

/s
)

Unit Size (kB)

Effect of Unit Size over Data Rate

1 unit/read (PFS)
4 units/read (PFS)

16 units/read (PFS)
unit size = buffer size (UFS)

Figure 3: E�ect of Unit Size on Data Rate

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25

C
yc

le
 L

en
gt

h
(in

 m
s)

of Streams

Effect of # Streams over Cycle Length

unit size = 18KB, consuming data rate = 540KB/sec (PFS)
unit size = 18KB, consuming data rate = 540KB/sec (UFS)

Figure 4: E�ect of Number of Concurrent Streams

on Cycle Length

0

500

1000

1500

2000

0 2 4 6 8 10 12 14 16

A
D

F
 (

us
ec

)

Time Slot

Example of Drift Factors

1 stream (PFS)
2 streams (PFS)
5 streams (PFS)

10 streams (PFS)
20 streams (PFS)

1 stream (UFS)
5 streams (UFS)

Figure 5: Unit Sequencing Drift Factors

Proceedings of the 22 nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02)
0-7695-1588-6/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

