
Mobility of Context for Project Teams

Schahram Dustdar
Caramba Labs Software AG

Seidlgasse 21/25, 1030 Wien, Austria
dustdar@CarambaLabs.com

Abstract

In the last decade, bureaucratic organizational
hierarchies increasingly have been replaced with
flatter organizational forms, bringing together people
from different disciplines to form project teams within
and between organizations. Distributed project teams
often are self-configuring networks of mobile and
“fixed” people, devices, and applications. They are the
natural next step in the evolution of distributed com-
puting, after client-server, Web-based, and peer-to-
peer computing. A newly emerging requirement is to
facilitate not just mobility of content (i.e. to support a
multitude of devices and connectivity modes) to project
members, but also mobility of context (i.e. to provide
traceable and continuous support of relationships
between people, artifacts, and business processes). The
contribution of this paper is to present the design
goals, the architecture, and implementation of a system
aiming at supporting mobility of context for project
teams, enabling traceable and continuous support of
associations (relationships) between people, artifacts,
and business processes.

Keywords: Project teams, mobility of context,
Workflow, Groupware

1. Introduction

In the last decade, bureaucratic organizational
hierarchies increasingly have been replaced with flatter
organizational forms, bringing together people from
different disciplines to form project teams within
organizations. These teams are under heavy pressure to
increase time-to-market of their products or services
and lower their coordination costs. In addition to new
organizational forms within corporations, increasing
globalization of the economy and new Internet techno-
logies lead to groups with members scattered across or-
ganizational boundaries and in different time-zones

[5,14]. This requires efficient coordination among
members and systems, which needs support and inte-
gration of (legacy) applications, application servers,
directory services, and corporate databases.

Distributed project teams often are self-configuring
networks of mobile and “fixed” people, devices, and
applications. They are the natural next step in the
evolution of distributed computing, after client-server,
Web-based, and peer-to-peer computing. A newly
emerging requirement is to facilitate not just mobility
of content (i.e. to support a multitude of devices and
connectivity modes) to members, but also mobility of
context to distributed project teams. With mobility of
context we mean a traceable and continuous support of
associations (relationships) between people, artifacts,
and business processes. Context is composed of
information on the “who, when, how, and why”. In
order to illustrate the lack of context, consider an
“Explorer”-like view on a file system. This view allows
the person to see documents (artifacts) stored inside
folders. The name of such folders might reflect project
names themselves. The mentioned view on these docu-
ments does not contain further contextual information
on what a person (yourself, or others) actually have to
do (did) with it (e.g. create another document, send an
e-mail to customer, call partner organization, etc.). For
example if the person in the above example needs to
see who actually received a document stored in any
given (project) folder, he is required to manually
retrieve his e-mail box in order to find this information.
This simple example shows that relationships (links)
between artifacts, such as documents or database
information, and activities performed by persons are
usually not stored in groupware, project management
or workflow management systems. However this
linkage is of paramount importance for knowledge-
intense business processes of project teams in order to
provide contextual information on knowledge artifacts
for processes such as new product development, which
cannot be modeled using a traditional workflow ma-
nagement system.

Proceedings of the 22 nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02)
0-7695-1588-6/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on January 18, 2010 at 10:05 from IEEE Xplore. Restrictions apply.

The remainder of the paper is organized as follows.
The next section briefly discusses related work. In
section 3 the design goals and an architectural
overview are discussed. Section 4 presents the systems’
client-, administration-, and service components.
Finally, section 5 presents the conclusions and future
work.

2. Related Work

To our knowledge traditional groupware, workflow
management systems, or e-mail systems do not support
the requirements outlined above. Most groupware
systems follow a “workspace” metaphor, which allows
users to upload/download artifacts using files and
folder to organize their work. When e-mail is used as
the main medium for project teams (as in most cases),
data and associated information (such as attachments)
remain on central mail servers and/or personal inboxes
without any context information in which those email
communications were used (involved business
processes, performed activities, created artifacts as
described above). Enterprise groupware systems are
generally focused on enterprise-wide messaging and
discussion databases and do not support organizational
components and structures such as people and their
associated roles, groups, task, skills etc. This leads to
"organizationally unaware" systems treating all
messages alike (semantically) and without any
awareness of underlying business processes, which are
essential for efficient collaboration in project teams.
Workflow systems support the notion of processes
within an organization [1, 2, 3, 7, 8, 15, 16]. However,
they require to first model a business process (build
time) and then to enact this model (run time). This
leads to incredible inflexibility [9] for project teams. In
business "exceptions are the rule", therefore modeling a
process is often not possible for creative, innovative
project teams of knowledge workers such as in product
development or consulting teams.

Capturing the process by which knowledge is
collaboratively developed (knowledge creation process)
is as important as documenting the output of group
collaboration or personal work. In other words,
“results” must provide more than data and information
- they must also serve as containers for documenting
the “how we arrived” at the outcome. Today email is
used as the main mechanism for exchanging ideas,
concepts, and knowledge work in project teams.
However the missing mobility of context increasingly
attracts more attention.

The goal of this paper is to provide a brief over-
view of the design goals and an architectural overview
of Caramba [4, 10]. Software prototype development
began in 1997 and it evolved into a commercial

product, which has been launched in 2001. Caramba
manages all involved processes in knowledge work for
project teams: from creating ideas, via using enterprise
applications to support this work, up to coordinating
and making this processes visible and reusable both
within, and between organizations.

3. Design goals and architecture

The main design goal encompasses the support for
mobility of context. Therefore support for meta-
modeling the organizational (team) structure as well as
the ability to integrate business objects (e.g. DBMS-
tables) is essential. Secondly, traceable and continuous
support regarding the relationships between people,
artifacts, and business processes is of paramount
importance. Thirdly, different levels of corporate
integration with other information systems (e.g. SMTP-
server, Web Server, etc.) should be possible. Finally,
the system should allow outside project partners to be
integrated with the project team as tightly as possible,
allowing access to all information provided by a
CarambaSpace, if security policies allow. Various
access mechanisms such as using a web-browser, Java
client application, or mobile device have to be
provided.

In the following section we will provide an over-
view of architectural issues of Caramba [4, 10]. An in-
depth presentation of the architecture or the software
itself is beyond the scope and focus of this paper. The
software (middleware and client) is written in Java
based on Java SDK 1.2.2 for enhanced GUIs using the
Java Foundation Classes (JFC) and to support drag and
drop. Software architectures typically include the
description of components, connectors, and
configurations [12, 13]. For this it is important to
decompose a system into a well-defined set of
components that have clear responsibilities [11]. Since
architectures for project teams have to integrate with
various information systems installed in organizations,
we decided to strive for a middleware style rather than
a classical client-server style.

Figure 1 provides a high-level overview of suppor-
ted setup scenarios. The left part shows a simple
application scenario with one project team (and
therefore one CarambaSpace) using an embedded Java-
DBMS. Caramba services are hosted on one server.
Clients may access the project’s team-space using Java
client applications or via a built in HTML/XML portal.
In cases where tight integration with corporate
information systems and databases is required, the
administrator utilizes the Caramba meta-modeler and
relation wizard to integrate corporate DBMS and other

Proceedings of the 22 nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02)
0-7695-1588-6/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on January 18, 2010 at 10:05 from IEEE Xplore. Restrictions apply.

resources such as SMTP-Mail servers or company Web
Servers (see right hand side of Figure 1).

Figure 1. Integration scenarios

The following descriptions will point out the respective
architectural style used in a particular layer or
component. The Caramba software architecture [10] is
composed of multiple layers: middleware, client suite,
and a persistence store, as depicted in Figure 2. Objects
and services are accessed through the Transparent
Access Layer (TAL) from the CarambaSpace platform
(middleware). Depending on access mechanisms and
the requested services (e.g. via Java client with RMI
protocol or via Web browser with http), Caramba
provides a unique way to handle requests using a meta-
model framework to describe content and separating
presentation, logic, and data. This model permits high
flexibility, enables customization, and extensions as
well as the adoption of new devices or technologies.

The goal of this layer is to offer transparent access
to a CarambaSpace. The TAL utilizes various services
to transform, describe, manipulate, and observe objects.
All objects managed through a CarambaSpace are well
described using a meta-model description framework.
Objects can be customized in their structure (e.g.
adding columns to tables, adding relations to objects)
and their presentation by adopting their meta-model
description. Any changes are dynamically reflected by
client components. Based on the meta-model des-
cription framework, Caramba enables various options
to customize data and content as well as to integrate
data from different resources (e.g. corporate databases).
This layer also provides facilities for fine-grained
object notification services and the implementation of
customized services based on object observers.

The middleware however, does not manage states
and persistence of objects itself. Objects are stored,
manipulated, and retrieved via the Persistence Layer
(PEL). Caramba leverages and adopts standard Java
based technologies (e.g. JDBC, JNDI, HTTP, etc.) to
access and integrate data.

Figure 2. Conceptual Architecture

Figure 3 provides an overview of the client compo-
nents, their connection to the CarambaSpace as well as
the connection between a CarambaSpace to the
persistent data store (e.g. embedded Database or rela-
tional DBMS).

Figure 3. Caramba Overview

4. Components

Caramba’s administrator components allow customi-
zation and extension of Caramba. The administrator
toolset, as summarized in Table 1, comprises a set of
components, which allow modification of the default
meta-model (e.g. organizational model of project
teams) and integration of company-wide information
systems such as SMTP or Web server.

Proceedings of the 22 nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02)
0-7695-1588-6/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on January 18, 2010 at 10:05 from IEEE Xplore. Restrictions apply.

Table 1. Administration components

Meta-Model
Administrator

manage meta-models
(customization)

JDBC Wizard integrate data from different
datatabases

Relation Wizard describe relations between objects

Service
Administrator

administrate Caramba services

Mail Integration specify email integration and
forwarding

Web Server Web Server (can be exchanged by
custom web servers e.g. Apache,
Netscape, IIS, etc.)

Caramba offers a suite of software components for end-
users to support collaboration, coordination, and
cooperation for distributed project teams. Table 2
provides an overview of the client components.

Table 2. Client components

ActivityCenter manage work items and coordinate,
cooperate, communicate with others

ObjectCenter access, browse, and link objects

ProcessModeler model and view business processes
ActivityAnalyzer analyze and track work and project

progress
Notification
Center

register and manage object
notifications

Knowledge
Portal

access real time project data through
the web

The ActivityCenter is the main “collaboration hub” for
project team members. Here, project team members,
work on their work items, route them to colleagues, and
track the work item history if required. The
collaboration model used is communications oriented.
This means that Caramba users actively route work
items to other team members, integrate artifacts into the
system and link them with their activities. The
ActivityCenter allows continuous traceability of
business processes to team members, as depicted in
Figure 4.

Figure 4. ActivityCenter – View Context

The second important end-user component, Object-
Center, is depicted in Figure 5 and will be presented in
this section. The goal of this component is to provide a
mechanism to link (process) activities with artifacts, as
discussed previously. Based on the meta-model
discussed above, Caramba provides a set of organiza-
tional objects: Persons, Roles, Groups, Skills, Units,
Organization, Tasks, and Documents (i.e. Templates).
Utilizing these organizational constructs an administra-
tor is able to model any organizational structure, such
as hierarchical, flat, or matrix. Each object class con-
sists of attributes describing the object. The object class
Persons contains attributes about the Person such as
name, address etc. The object class Roles allows
definition of organizational roles such as “Head of IT”.
The object class Group defines project settings such as
“Product Team IT-Solutions”. Skills enable definition
of required skill sets such as “Certified Java
Developer”. Units describe permanent departments
such as “Marketing”. The ObjectCenter provides means
(by drag & drop) to link the rows of object classes with
each other.

It also enables project team members to view rela-
tionships between who (organizational constructs) is
performing which activities (Tasks) and using what
(artifacts, documents). In order to fulfill the second
design goal, namely to support the relationship between
people, artifacts, and processes, Caramba supports
modeling of business processes and their enactment by
implementing a workflow engine (Process Modeler),
utilizing the information presented in the section above
(ObjectCenter), using tasks and their associated organi-
zational constructs in directed graphs.

Figure 5. ObjectCenter

Proceedings of the 22 nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02)
0-7695-1588-6/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on January 18, 2010 at 10:05 from IEEE Xplore. Restrictions apply.

5. Conclusions and Future Work

This paper outlined some design goals and an imple-
mentation of a system supporting mobility of context
for project teams. The approach presented in this paper
enables project teams to link knowledge artifacts such
as documents (format independent) or database entries
to process activities performed by human actors. These
hyperlinks between artifacts and process activities
enacted by people is currently not implemented by
systems such as workflow management systems,
project management systems, or groupware systems.
We believe that supporting mobility of context is of
paramount importance for distributed project teams.
Our future work includes peer-to-peer modeling and
execution of process models [e.g. 6], integration of
distributed persistent data stores, and providing
Caramba-functionalities as web services.

References

[1] W.M.P. van der Aalst, and A. Kumar, “A reference
model for team-enabled workflow management
systems”, Data & Knowledge Engineering,
Elsevier, 38 (2001), pp. 335-363.

[2] G.A. Bolcer, “Magi: An Architecture for mobile
and disconnected Workflow”, IEEE Internet
Computing, May and June 2000, pp. 46 – 54.

[3] C. Bussler, “Enterprise-wide Workflow Manage-
ment”, IEEE Concurrency, 7(3), pp. 32-43.

[4] Caramba Labs Software AG (2002)
http://www.CarambaLabs.com

[5] F. Casati et al., “Developing e-Services for
composing e-services”, Proceedings CaiSE 2001,
Computer Science Lecture Notes, Springer Verlag,
2001, pp. 171-186.

[6] Q. Chen et al., “Peer-to-Peer Collaborative Internet
Business Servers”, HP-Labs Technical Working
Paper HPL-2001-14.

[7] N. Craven, and D.E. Mahling, “Goals and
Processes: A Task Basis for Projects and
Workflows”, Proceedings COOCS International
Conference, Milpitas, CA, USA, 1995.

[8] U. Dayal et al., “Business Process Coordination:
State of the Art, Trends, and Open Issues”,
Proceedings of the 27th VLDB Confererence, Roma,
Italy, 2001.

[9] C.A. Ellis et al., “Dynamic Change within
Workflow systems”, Proceedings COOCS
International Conference, Milpitas, CA, USA,
1995.

[10] A. Hausleitner, and S. Dustdar, “Caramba - Ein
Java basiertes Multimedia Koordinationssystem“,
In Erfahrungen mit Java. Projekte aus Industrie und

Hochschule. Silvano Maffeis, et al. (Eds.), dPunkt-
Verlag, Heidelberg 1999.

[11] D.L. Parnas, “On the criteria to be used in decom-
posing systems into modules”, Communications of
the ACM, 15(12), pp. 1053-1058.

[12] D.E. Perry, and A.L. Wolf, “Foundations for the
study of software architecture”, ACM SIGSOFT
Software Engineering Notes, 17 (4), 1992, pp. 40-
52.

[13] Shaw, M., and D. Garlan, Software architectures,
perspectives on an emerging discipline. Englewood
Cliffs, NJ: Prentice-Hall, 1996.

[14] J. Puustjärvi, and H. Laine, “Supporting
cooperative inter-organizational business trans-
actions”, Proceedings DEXA 2001, Computer
Science Lecture Notes, Springer Verlag, 2001, pp.
836-845.

[15] Schal, T., Workflow Management Systems for
Process Organizations. New York: Springer 1996.

[16] Workflow Management Coalition (WfMC), Work-
flow Management Specification Glossary,
http://www.wfmc.org

Proceedings of the 22 nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02)
0-7695-1588-6/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on January 18, 2010 at 10:05 from IEEE Xplore. Restrictions apply.

