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Abstract 

In many Internet scale replicated system, not all 
replicas can be dealt with in the same way, since some will 
be in greater demand than others.  In the case of weak 
consistency algorithms, we have observed that updating 
first replicas having most demand, a greater number of 
clients would gain access to updated content in a shorter 
period of time.  

In this work we have investigated the benefits that can 
be obtained by prioritizing replicas with greater demand, 
and considerable improvements have been achieved.  In 
zones of higher demand, the consistent state is reached up 
to six times quicker than with a normal weak consistency 
algorithm, without incurring the additional costs of the 
strong consistency. 

Keywords: Weak consistency, consistency algorithms, 
replication, distributed system. 

1. Introduction1 

There is a growing interest on Internet scale distributed 
systems where many potential clients may contact a single 
host to request a given service at almost the same time 
from several locations. The presence of replica servers 
may help to improve the situation because clients will be 
able to contact the nearest replica. A Replica is a host who 
provides exactly the same services as the principal host.  
In this paper we will use the terms server and replica in the 
same sense. 

Content replication between servers in a distributed 
system is justified by the need to reduce delay, to provide 
availability and to be scalable [11], to tolerate failure in 
the links, and also to withstand segmentation.  The 
algorithms currently available for replica updating can be 
broadly classified into two groups, according to their 
consistency: 

- Strong consistency, and 
- Weak consistency 
Strong consistency algorithms are costly, non-scalable 

on networks, not very reliable, generate considerable 
latency and a great deal of traffic. They are suitable for 
systems with a small number of replicas, in which it must 
                                                           
1 This work has been partially supported by the Mexican Ministry of Education 
(Secretaría de Educación Pública) under contract PROMEP-57, and Spanish 
MCyT project COSACO. 

be guaranteed that all the replicas are in a consistent state 
(i.e. all the replicas possess exactly the same content) 
before any transaction can be carried out (synchronous 
systems) [3, 14]. 

However, weak consistency algorithms [7, 13, 1] 
generate very little traffic, low latency, and are more 
scalable.  They do not sacrifice either availability or reply 
time in order to guarantee strong consistency, but only 
need to ensure that the replicas eventually converge to a 
consistent state in a finite, but not bounded, period of time. 
They are very useful in systems where it is necessary for 
all the replicas to be totally consistent in order for 
transactions to be carried out (systems that withstand a 
certain degree of asynchrony).  This is the case of Usenet 
news, or in computer-supported cooperative work systems. 

With the weak consistency algorithm [7], each server 
(replica) from time to time chooses a neighbour to start an 
update session. In an update session two servers mutually 
exchange summary vectors then they exchange some data 
to mutually update their contents. At the end of the session 
both servers will have the same mutually consistent 
content. These are called anti-entropy sessions: It is called 
an anti-entropy session because in each session between 
replicas, the total entropy in the system is reduced. In this 
paper it will be referred to simply as a “session”. 

The metric principle to be employed is how many 
sessions are necessary for a change brought about in a 
replica to be propagated to all the others. 

Golding [7] demonstrated that the neighbouring 
server’s random choice has the best performance (fewest 
number of sessions) for maintaining the consistency of the 
replicas in a peer-to-peer network. This gives rise to the 
fact that all the replicas are updated, no matter how much 
demand (number of requests per unit of time) they have, in 
such a way that a replica with low demand can be updated 
first, before another with much greater demand. 

In most distributed applications, some replicas tend to 
have more demand than others due to different factors, 
such as: 

- Geographical distribution 
- Number of clients, 
- Number of requests arising from more intense work 

among clients. 
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Fig. 1. Example of demand in a large distributed
system

Thus if we draw a graph of the distribution of the 
replicas in the X-Y plane, and their demand along the Z 
axis, we will have an image of hills and valleys in which 
the valleys, in our case, are the areas of greater demand 
and the replicas with least demand are on the hills (see Fig. 
1). 

This is analogous to the relativistic effect where mass 
causes space to curve, therefore objects in that curved 
space will have their paths attracted by massive objects. In 
our case, demand is analogous to mass. Therefore, updates 
are attracted or directed to nodes or regions with higher 
demand. 

An algorithm giving priority to the delivery of updates 
to replicas with higher demand will enable to satisfy 
requests to more clients with up-to-date content in less 
time. 

That is why replica demand must be taken into account 
when designing algorithms for maintaining consistency of 
replicated data. 

The rest of the paper is organized as follows. Section 2 
describes how our algorithm directs the propagation of 
updates to nodes with greater demand. Sections 3 and 4 
describe the dynamic situation when demand changes at 
the same time as updates are being propagated. Section V 
describes how this algorithm has been validated by 
simulation on several simple and complex topologies, 
including random topologies with topologic properties 
equivalent to the real Internet. The results indicate that the 
number of sessions to reach a global consistent state may 
be related to the diameter of the network instead of the 
number of nodes. Section 6 describes ongoing work to 
improve the efficiency of this protocol on topologies with 
several greater demand regions surrounded by low demand 
regions. Section 7 describes related work, and section 8 
gives some conclusions. 

2. Proposition 

The model of our distributed system consists of a 
number of nodes, N, that communicate via message 
passing. We assume a fully replicated system, i.e., all 
nodes must have exactly the same content. Every node is a 
server that gives services to local clients. Clients make 
requests to a server, and every service request is a “read” 
operation, a “write” operation, or both. When a client 
invokes a “write” operation in a server, this operation 
(change) must be propagated to all servers (replicas) in 
order to guarantee the consistency of the replicas. An 
update is a message that carries a “write” operation to 
replica in other neighbouring nodes. In this model, the 

demand of a server is measured as the number of service 
requests by their clients per time unit. From our model we 
are interested in an algorithm for consistency giving 
priority to nodes with high demand. 

Our proposition consists in all the servers selecting, at 
random time, the neighbour with whom they will begin a 
consistency session.  This choice must not be made at 
random order as in [7], but rather the neighbour with most 
demand must be chosen first.  If the neighbour selected 
has another neighbour with even greater demand the 
process will be repeated, which will cause the replica 
updates to literally flood the valleys (zones of greater 
demand). 

In order to describe this algorithm, we take a segment 
and locate within it five replicas that are on a slope, and 
which are suitable for this purpose. 

Fig. 2. Group of replicas with different demand

In Fig. 2 we have a group of replicas in which the 
position on the Z axis corresponds to their demand.  As Z 
tends to zero, demand increases, in such a way that the 
replica at the lowest part of the slope, or area of least 
energy, is the replica with greater demand. 

The following table shows a list of these replicas with 
their corresponding demand, expressed by the number of 
requests per unit of time: 

Replica  A B C D E 
Rate of demand (Z axis)  4 6 3 8 7 

In the baseline weak consistency algorithm, at random 
time, every node will execute the same algorithm. Let’s 
take B as an example: in order to initiate the updating 
process replica B selects a random neighbour (say B-C, 
which means that replica B selects replica C to initiate an 
anti-entropy session). Several things may occur: in the 
following we provide examples of two extreme cases: 
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1) The worst case (B-C, B-A, B-E, B-D): In time 1 
replicas B and C finish an update session; their content 
is now mutually consistent, so when this period of time 
comes to an end both replicas serve a total of nine 
(B:6+C:3) requests satisfied with updated content 
(Fig.3); next time B-A, then B-E, and finally B-D. 

2) The best case (B-D, B-E, B-A, B-C):  In time 1 
replicas B and D are able to serve fourteen requests 
satisfied with updated content (Fig.3). 
Furthermore, in the same time 1 replica D is able to 

distribute updated content to adjacent replicas in the 
lowest part of the valley, should these exist. 

While the random weak consistency algorithm in [7] 
gives random performance ranging between the worst and 
optimal case in Fig. 3, our algorithm works even better 
than the optimal case above. This is a consequence of two 
optimizations in our algorithm: (1) neighbours are elected 
orderly by demand instead of random order, and (2) 
messages are immediately propagated to the neighbour 
with highest demand instead of waiting for the next 
session, a random wait. 
 
2.1 Proposed algorithm. 
 

Our proposed algorithm (called fast consistency), 
described in terms of the example illustrated by fig. 2 and 
fig. 3, is as follows: 

Letters E, B and D represent the replicas. The algorithm 
starts after E has experienced a write operation. 

This algorithm has two parts. The first part, which is 
the weak consistency part that permits to bring updates to 
all replicas, where neighbours are selected in order of 
demand at each node. The second part, permits a fast 
update of replicas by prioritizing the servers with higher 
demand.  

/* weak consistency */   
1. After random time the replica E select the neighbour B 

(most demand). 
2. E Sends  to B a message to request for initiate a 

session.  
3. B receives the request from E. 
4. B sends to E its summary vector. 
5. E receives the summary vector from B. 
6. E sends its summary vector to B. 
7. Replica E determines if it has messages that B has not 

yet received, by seeing if some of its summary 
timestamps are greater than the corresponding ones its 
partner(replica B). 

8. E sends to B the messages that B has not seen before. 
9. B receives the summary vector from E. 
10. Replica B determines if it has messages that E has not 

yet received, by seeing if some of its summary 
timestamp are greater than the corresponding ones its 
partner (replica E). 

11. B sends to E the messages that E has not received. 
12. Replica B receives a new message from replica E (as a 

result of step 8). 

/* fast update: occurs as a result of a new update 
message, either coming from a client, or from an anti-
entropy session */ 

13. Immediately B sends to replica D a request for fast 
update. This request has information (id and 
timestamp) of new arrived messages to replica B. 
Note that in fast update sessions the summary vectors 

are not exchanged. 
14. Replica D receives the request of fast update. 
15. If D does not have the messages, answer with YES. 

Else answer with NO. 
16. B receives a message from D. 
17. If the answer of D is YES, B sends the message with 

that update. 
18. If the answer of D is NO, B sends nothing. 

3. Dynamic model 

In the previous model, it is assumed that the request 
demand conditions do not change with time, but what 
happens if in fact these conditions do change with time?  
In that case, the previous algorithm does not work. 

Let us see why: 
In Figure 4 we have four replicas, in time 1 replica B 

has a table where we find its neighbours with their 
respective demands, arranged according to these demands: 

Replica  Requests 
D  13 
A  2 
C  0 

Replication process: 
- Time 1 - B starts the update process with the replica 

with greatest demand (D). 
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- Time 2 - B starts the process with the following replica 
(A), which would correspond to it according to the 
table of neighbours. 
But for this time 2 in replica A, the amount of requests 

changed – falling from 2 to 0 (A’ in Fig.4), and replica C 
changed from 0 to 9 (C’ in Fig.4), so that if B followed the 
static algorithm it would not contribute to carrying 
consistency to the zones with greatest demand. 
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Fig.4. Requests at the nodes, and sessions

4. The dynamic algorithm 

Each replica maintains a table with its neighbours’ data.  
The table holds at least an identifying name and its 
demand (requests per unit of time).  Before any replication 
process is carried out, this table must be updated.  This 
updating provides us with knowledge pertaining to the 
replica appropriate for carrying out content updating, 
depending on the demand, and, as an added advantage, 
tells us if this replica is available (link and server both 
working). 

Example: 
We draw up a table with the replicas from Fig.4, with B 

neighbours’ vector arranged in decreasing order of 
demand. 

Time 1 2 3 
Sessions  B-D B-C’ B-A’ 

A A’  B version vector C   

- At time=1, replica B starts update with replica D (at 
that moment the one with greatest demand). 

- At time=2, replica C has greatest demand, and we 
symbolize it as C’ (Fig.4). If B knows about this, B 
starts a session with replica C’. 

- At time=3, only replica A’ remains, and with this 
replica content update is carried out. 

We assume that every node is periodically informed of 
the demand of their neighbours, in a way similar to IP 
routing algorithms. 

5. Validation 

To validate this proposition a simulator has been built 
using the NS [13] network simulator as a base, and the 
necessary agents and scripts are written on ns. 

For the choice of simulation conditions, we set as our 
aim that these conditions be representative of Internet [5, 
2], not forgetting how difficult it can be to take into 
account the characteristics of Internet for a simulation [6].  
It is for that reason we have chosen BRITE [10] to 
generate the topologies used in our simulations, since this 
software generates topologies that fulfil Internet power 
laws [9, 5]. 

Faloutsos et al. in [5] describe the following power law 
relationships (power laws are equations of the form y = 
xa): outdegree of node versus rank, number of nodes 
versus outdegree, number of node pairs within a 
neighborhood versus neighborhood size (in hops), and 
eigen values of the adjacency matrix versus rank. Medina 
et al. in [9] suggest two main factors in the formation of 
Internet topologies: (F1) preferential connectivity and (F2) 
incremental growth. F1 dictate the tendency of a new node 
to connect to those existing nodes that have higher 
outdegrees. F2 dictates that new nodes join the Internet in 
an incremental way. 

With BRITE we generate the random topologies, 
assigning to each replica, also in a random way, their 
respective demands.  The simulation begins by assuming a 
change on a randomly chosen replica, with the aim of 
measuring the number of sessions the algorithm uses to 
propagate this change, both in the replica with most 
demand and in those with less demand.  Simulations were 
carried out with 50 and 100 replicas, and experiments were 
repeated 10,000 times.  The results can be seen in figures 5 
and 6. 
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Fig. 5. CDF of number of sessions for 50 nodes 
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In both cases, with 50 or 100 replicas, we observe that 
the change arrives quickly to the replicas with most 
demand (unbroken line), causing these replicas to reach 
the state of consistency on an average of 1 session, in the 
case of 50 replicas, and also an average of 1 session in the 
case of 100 replicas.  On the other hand, the change takes 
on average 3.9261 sessions to reach all replicas, in the case 
of the 50 servers, and 4.78117 sessions in the case of the 
100 servers. 

The time it takes for the message to arrive to the server 
at the lowest point in the valley is in fact the propagation 
delay associated to the link, although for purposes of 
comparison in Figs. 5 and 6 it is expressed in average 
session times. 

The change takes on average 6.1499 sessions to reach 
all the replicas in the 50 replica case, and 6.982 sessions in 
the 100 replica case, using the pure weak consistency 
algorithm (Figs. 5 and 6).  As one may observe, our 
proposition not only substantially improves the areas of 
most demand, but also improves it in general for all the 
replicas. 

Similar results as shown in figures 5 and 6 have been 
obtained with simpler uniform topologies (linear, ring, 
grid), with different number of nodes. In figure 6 can be 
observed that as the number of nodes doubles, the number 
of sessions required to propagate a change to all replicas 
does not grow as fast. It seems that the number of sessions 
required to reach a global consistent state is related to the 
diameter of the network. 

As the mean number of sessions to reach a global 
consistent state is related to the diameter of the network 
and it does not change significantly with the number of 
nodes, the result seems to be applicable to the whole 
Internet with a huge number of hosts but a diameter [2] in 
the order of 20.  

6. Complex demand distribution 

As a consequence of the faster update of replicas with 
higher demand, in the longer term those replicas with 
lower or reduced demand will tend to have less updated 
(i.e. stale) content. This can lead to the appearance of 

clusters of highly consistent replicas (islands), surrounded 
by regions with less consistent content. 

Work under way is investigating how these islands can 
be characterized, which mechanisms can help to 
interconnect them, for instance a leader election algorithm 
for each island, with leaders becoming part of an island 
interconnection network. This will help to ensure that all 
updates will reach very fast to any region with high 
demand, avoiding that regions of low or null demand 
would slow down the propagation of updates. 

7. Related work 

There are some proposals that set forth the necessity for 
the replicas to be adapted to customer requirements, so in 
this section we briefly describe some of the work dealing 
with this area of study. 

Richard Lenz [8] proposes ASPECT (Application 
Oriented Specification of Consistency Terms), which 
enables us to specify weak consistency requirements from 
the point of view of the application according to the “need 
to know” principle, which states that “data only have to be 
made available where they are needed and only as current 
and consistent as required by the applications that access 
these data”.  It proposes the use of two dimensions to 
specify the replica consistency requirements, one spatial 
and one temporal; the spatial dimension describes the 
degree of consistency or quality of data of a particular 
copy.  The temporal dimension specifies when this quality 
of data is required.  As we may observe, this proposition is 
only a specification. 

Petersen et al. in [13] describe the Bayou anti-entropy 
protocol, which facilitates the propagation of replicas by 
means of weak consistency.  They pose, furthermore, the 
possibility of providing a variety of policies for where and 
when the updating may be propagated. 

The question is also raised of furnishing four types of 
policy in the anti-entropy protocol: Policies for when to 
reconcile; policies for selecting with which replicas to 
reconcile, policies for deciding how aggressively to 
truncate the write-log, and policies for selecting a server 
from which to create new replicas. 

- Policies for when to carry out reconciliation: Potential 
policies could be periodic reconciliation, manually 
initiated reconciliation, or those initiated by the system. 

- Policies for selecting with which server the anti-
entropy session can be started may depend on many 
factors: what other replicas are attainable, for example; 
characteristics of the network connections using these 
replicas. 

- Policies for selecting how aggressively to truncate the 
write-log enable us to negotiate storage and network 
resources necessary in an anti-entropy session.  Truncating 
the write-log very aggressively can give rise to very long 
anti-entropy sessions among some servers due to the need 
to transfer complete databases. 

- When various servers are available for creating a new 
replica, quantities to be considered must be identified, in 
addition to other characteristics of these replicas, how out 
of time they are, band width of connections, and how 
complete their write-logs are. 
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This proposition enumerates some interesting policies.  
However, it is no more than this – an outline of possible 
policies, none of which have been researched in detail, 
neither from the point of view of implantation nor 
performance. 

Brun-Cotan and Makpangou [4]: This article presents 
an architecture and a run-time for “adaptable replicated 
objects”. Different applications require different contracts 
concerning the consistency of replicas, or a different 
negotiation between performance and consistency.  The 
architecture proposed structures a replicated object into 
three component classes: access objects, replicas, and 
consistency managers.  Together with the access object, 
the consistency manager are the components responsible 
for maintaining consistency in each object, depending on 
application needs; that is to say, the application for a 
particular activity may require strong consistency, and in 
other cases weak consistency. 

This architecture is conceived for the design of 
distributed applications, and its advantage is the existence 
of a contract that specifies the consistency of the objects 
replicated, in which the degree of required consistency is 
defined, whether it be strong or weak. 

8. Conclusions 

This algorithm ensures rapid content update 
propagation towards replicas located in the zones of least 
energy (greatest demand).  Those replicas having none –or 
very few– requests will also be updated, but at a normal 
speed, so that in a finite, but not bounded, time they will 
be consistent.  However, replicas having the greatest 
number of requests will have contents that will be rapidly 
updated. 

Our algorithm is quite simple; it requires few additional 
bytes in the exchange of messages between replicas, and 
thus a greater number of clients/customers/users can be 
satisfied in the first sessions.  The algorithm is scalable, 
does not cause traffic overload, and also increases 
replication speed. 

The worst case would be when all the replicas possess 
the same demand; in such a situation the algorithm 
behaves like a normal weak consistency algorithm. 
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