
A Demand based Algorithm for Rapid Updating of Replicas

Jesús Acosta-Elias, Leandro Navarro-Moldes
Polytechnic University of Catalonia, Spain

{jacosta, leandro}@ac.upc.es

Abstract

In many Internet scale replicated system, not all
replicas can be dealt with in the same way, since some will
be in greater demand than others. In the case of weak
consistency algorithms, we have observed that updating
first replicas having most demand, a greater number of
clients would gain access to updated content in a shorter
period of time.

In this work we have investigated the benefits that can
be obtained by prioritizing replicas with greater demand,
and considerable improvements have been achieved. In
zones of higher demand, the consistent state is reached up
to six times quicker than with a normal weak consistency
algorithm, without incurring the additional costs of the
strong consistency.

Keywords: Weak consistency, consistency algorithms,
replication, distributed system.

1. Introduction1

There is a growing interest on Internet scale distributed
systems where many potential clients may contact a single
host to request a given service at almost the same time
from several locations. The presence of replica servers
may help to improve the situation because clients will be
able to contact the nearest replica. A Replica is a host who
provides exactly the same services as the principal host.
In this paper we will use the terms server and replica in the
same sense.

Content replication between servers in a distributed
system is justified by the need to reduce delay, to provide
availability and to be scalable [11], to tolerate failure in
the links, and also to withstand segmentation. The
algorithms currently available for replica updating can be
broadly classified into two groups, according to their
consistency:

- Strong consistency, and
- Weak consistency
Strong consistency algorithms are costly, non-scalable

on networks, not very reliable, generate considerable
latency and a great deal of traffic. They are suitable for
systems with a small number of replicas, in which it must

1 This work has been partially supported by the Mexican Ministry of Education
(Secretaría de Educación Pública) under contract PROMEP-57, and Spanish
MCyT project COSACO.

be guaranteed that all the replicas are in a consistent state
(i.e. all the replicas possess exactly the same content)
before any transaction can be carried out (synchronous
systems) [3, 14].

However, weak consistency algorithms [7, 13, 1]
generate very little traffic, low latency, and are more
scalable. They do not sacrifice either availability or reply
time in order to guarantee strong consistency, but only
need to ensure that the replicas eventually converge to a
consistent state in a finite, but not bounded, period of time.
They are very useful in systems where it is necessary for
all the replicas to be totally consistent in order for
transactions to be carried out (systems that withstand a
certain degree of asynchrony). This is the case of Usenet
news, or in computer-supported cooperative work systems.

With the weak consistency algorithm [7], each server
(replica) from time to time chooses a neighbour to start an
update session. In an update session two servers mutually
exchange summary vectors then they exchange some data
to mutually update their contents. At the end of the session
both servers will have the same mutually consistent
content. These are called anti-entropy sessions: It is called
an anti-entropy session because in each session between
replicas, the total entropy in the system is reduced. In this
paper it will be referred to simply as a “session”.

The metric principle to be employed is how many
sessions are necessary for a change brought about in a
replica to be propagated to all the others.

Golding [7] demonstrated that the neighbouring
server’s random choice has the best performance (fewest
number of sessions) for maintaining the consistency of the
replicas in a peer-to-peer network. This gives rise to the
fact that all the replicas are updated, no matter how much
demand (number of requests per unit of time) they have, in
such a way that a replica with low demand can be updated
first, before another with much greater demand.

In most distributed applications, some replicas tend to
have more demand than others due to different factors,
such as:

- Geographical distribution
- Number of clients,
- Number of requests arising from more intense work

among clients.

Proceedings of the 22 nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02)
0-7695-1588-6/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 08:12 from IEEE Xplore. Restrictions apply.

Fig. 1. Example of demand in a large distributed
system

Thus if we draw a graph of the distribution of the
replicas in the X-Y plane, and their demand along the Z
axis, we will have an image of hills and valleys in which
the valleys, in our case, are the areas of greater demand
and the replicas with least demand are on the hills (see Fig.
1).

This is analogous to the relativistic effect where mass
causes space to curve, therefore objects in that curved
space will have their paths attracted by massive objects. In
our case, demand is analogous to mass. Therefore, updates
are attracted or directed to nodes or regions with higher
demand.

An algorithm giving priority to the delivery of updates
to replicas with higher demand will enable to satisfy
requests to more clients with up-to-date content in less
time.

That is why replica demand must be taken into account
when designing algorithms for maintaining consistency of
replicated data.

The rest of the paper is organized as follows. Section 2
describes how our algorithm directs the propagation of
updates to nodes with greater demand. Sections 3 and 4
describe the dynamic situation when demand changes at
the same time as updates are being propagated. Section V
describes how this algorithm has been validated by
simulation on several simple and complex topologies,
including random topologies with topologic properties
equivalent to the real Internet. The results indicate that the
number of sessions to reach a global consistent state may
be related to the diameter of the network instead of the
number of nodes. Section 6 describes ongoing work to
improve the efficiency of this protocol on topologies with
several greater demand regions surrounded by low demand
regions. Section 7 describes related work, and section 8
gives some conclusions.

2. Proposition

The model of our distributed system consists of a
number of nodes, N, that communicate via message
passing. We assume a fully replicated system, i.e., all
nodes must have exactly the same content. Every node is a
server that gives services to local clients. Clients make
requests to a server, and every service request is a “read”
operation, a “write” operation, or both. When a client
invokes a “write” operation in a server, this operation
(change) must be propagated to all servers (replicas) in
order to guarantee the consistency of the replicas. An
update is a message that carries a “write” operation to
replica in other neighbouring nodes. In this model, the

demand of a server is measured as the number of service
requests by their clients per time unit. From our model we
are interested in an algorithm for consistency giving
priority to nodes with high demand.

Our proposition consists in all the servers selecting, at
random time, the neighbour with whom they will begin a
consistency session. This choice must not be made at
random order as in [7], but rather the neighbour with most
demand must be chosen first. If the neighbour selected
has another neighbour with even greater demand the
process will be repeated, which will cause the replica
updates to literally flood the valleys (zones of greater
demand).

In order to describe this algorithm, we take a segment
and locate within it five replicas that are on a slope, and
which are suitable for this purpose.

Fig. 2. Group of replicas with different demand

In Fig. 2 we have a group of replicas in which the
position on the Z axis corresponds to their demand. As Z
tends to zero, demand increases, in such a way that the
replica at the lowest part of the slope, or area of least
energy, is the replica with greater demand.

The following table shows a list of these replicas with
their corresponding demand, expressed by the number of
requests per unit of time:

Replica A B C D E
Rate of demand (Z axis) 4 6 3 8 7

In the baseline weak consistency algorithm, at random
time, every node will execute the same algorithm. Let’s
take B as an example: in order to initiate the updating
process replica B selects a random neighbour (say B-C,
which means that replica B selects replica C to initiate an
anti-entropy session). Several things may occur: in the
following we provide examples of two extreme cases:

Proceedings of the 22 nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02)
0-7695-1588-6/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 08:12 from IEEE Xplore. Restrictions apply.

0

5

10

15

20

25

30

1 2 3 4

worst case
optimal case

Number of requests with consistent content

Number of sessions

Fig. 3. Number of requests satisfied with consistent
content as time goes on (number of sessions or time

units)

1) The worst case (B-C, B-A, B-E, B-D): In time 1
replicas B and C finish an update session; their content
is now mutually consistent, so when this period of time
comes to an end both replicas serve a total of nine
(B:6+C:3) requests satisfied with updated content
(Fig.3); next time B-A, then B-E, and finally B-D.

2) The best case (B-D, B-E, B-A, B-C): In time 1
replicas B and D are able to serve fourteen requests
satisfied with updated content (Fig.3).
Furthermore, in the same time 1 replica D is able to

distribute updated content to adjacent replicas in the
lowest part of the valley, should these exist.

While the random weak consistency algorithm in [7]
gives random performance ranging between the worst and
optimal case in Fig. 3, our algorithm works even better
than the optimal case above. This is a consequence of two
optimizations in our algorithm: (1) neighbours are elected
orderly by demand instead of random order, and (2)
messages are immediately propagated to the neighbour
with highest demand instead of waiting for the next
session, a random wait.

2.1 Proposed algorithm.

Our proposed algorithm (called fast consistency),
described in terms of the example illustrated by fig. 2 and
fig. 3, is as follows:

Letters E, B and D represent the replicas. The algorithm
starts after E has experienced a write operation.

This algorithm has two parts. The first part, which is
the weak consistency part that permits to bring updates to
all replicas, where neighbours are selected in order of
demand at each node. The second part, permits a fast
update of replicas by prioritizing the servers with higher
demand.

/* weak consistency */
1. After random time the replica E select the neighbour B

(most demand).
2. E Sends to B a message to request for initiate a

session.
3. B receives the request from E.
4. B sends to E its summary vector.
5. E receives the summary vector from B.
6. E sends its summary vector to B.
7. Replica E determines if it has messages that B has not

yet received, by seeing if some of its summary
timestamps are greater than the corresponding ones its
partner(replica B).

8. E sends to B the messages that B has not seen before.
9. B receives the summary vector from E.
10. Replica B determines if it has messages that E has not

yet received, by seeing if some of its summary
timestamp are greater than the corresponding ones its
partner (replica E).

11. B sends to E the messages that E has not received.
12. Replica B receives a new message from replica E (as a

result of step 8).

/* fast update: occurs as a result of a new update
message, either coming from a client, or from an anti-
entropy session */

13. Immediately B sends to replica D a request for fast
update. This request has information (id and
timestamp) of new arrived messages to replica B.
Note that in fast update sessions the summary vectors

are not exchanged.
14. Replica D receives the request of fast update.
15. If D does not have the messages, answer with YES.

Else answer with NO.
16. B receives a message from D.
17. If the answer of D is YES, B sends the message with

that update.
18. If the answer of D is NO, B sends nothing.

3. Dynamic model

In the previous model, it is assumed that the request
demand conditions do not change with time, but what
happens if in fact these conditions do change with time?
In that case, the previous algorithm does not work.

Let us see why:
In Figure 4 we have four replicas, in time 1 replica B

has a table where we find its neighbours with their
respective demands, arranged according to these demands:

Replica Requests
D 13
A 2
C 0

Replication process:
- Time 1 - B starts the update process with the replica

with greatest demand (D).

Proceedings of the 22 nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02)
0-7695-1588-6/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 08:12 from IEEE Xplore. Restrictions apply.

- Time 2 - B starts the process with the following replica
(A), which would correspond to it according to the
table of neighbours.
But for this time 2 in replica A, the amount of requests

changed – falling from 2 to 0 (A’ in Fig.4), and replica C
changed from 0 to 9 (C’ in Fig.4), so that if B followed the
static algorithm it would not contribute to carrying
consistency to the zones with greatest demand.

A

B

D

A’

D
em

an
d

C

C’

0

2

6

9

13

t=1 t=2

t=3A

B

D

A’

D
em

an
d

CC

C’C’

0

2

6

9

13

t=1 t=2

t=3

Fig.4. Requests at the nodes, and sessions

4. The dynamic algorithm

Each replica maintains a table with its neighbours’ data.
The table holds at least an identifying name and its
demand (requests per unit of time). Before any replication
process is carried out, this table must be updated. This
updating provides us with knowledge pertaining to the
replica appropriate for carrying out content updating,
depending on the demand, and, as an added advantage,
tells us if this replica is available (link and server both
working).

Example:
We draw up a table with the replicas from Fig.4, with B

neighbours’ vector arranged in decreasing order of
demand.

Time 1 2 3
Sessions B-D B-C’ B-A’

A A’ B version vector C

- At time=1, replica B starts update with replica D (at
that moment the one with greatest demand).

- At time=2, replica C has greatest demand, and we
symbolize it as C’ (Fig.4). If B knows about this, B
starts a session with replica C’.

- At time=3, only replica A’ remains, and with this
replica content update is carried out.

We assume that every node is periodically informed of
the demand of their neighbours, in a way similar to IP
routing algorithms.

5. Validation

To validate this proposition a simulator has been built
using the NS [13] network simulator as a base, and the
necessary agents and scripts are written on ns.

For the choice of simulation conditions, we set as our
aim that these conditions be representative of Internet [5,
2], not forgetting how difficult it can be to take into
account the characteristics of Internet for a simulation [6].
It is for that reason we have chosen BRITE [10] to
generate the topologies used in our simulations, since this
software generates topologies that fulfil Internet power
laws [9, 5].

Faloutsos et al. in [5] describe the following power law
relationships (power laws are equations of the form y =
xa): outdegree of node versus rank, number of nodes
versus outdegree, number of node pairs within a
neighborhood versus neighborhood size (in hops), and
eigen values of the adjacency matrix versus rank. Medina
et al. in [9] suggest two main factors in the formation of
Internet topologies: (F1) preferential connectivity and (F2)
incremental growth. F1 dictate the tendency of a new node
to connect to those existing nodes that have higher
outdegrees. F2 dictates that new nodes join the Internet in
an incremental way.

With BRITE we generate the random topologies,
assigning to each replica, also in a random way, their
respective demands. The simulation begins by assuming a
change on a randomly chosen replica, with the aim of
measuring the number of sessions the algorithm uses to
propagate this change, both in the replica with most
demand and in those with less demand. Simulations were
carried out with 50 and 100 replicas, and experiments were
repeated 10,000 times. The results can be seen in figures 5
and 6.

50 Nodes

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10, 11,

Sessions

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

Fast Consistency

Consistency high
demand
Weak consistency

Fig. 5. CDF of number of sessions for 50 nodes

Proceedings of the 22 nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02)
0-7695-1588-6/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 08:12 from IEEE Xplore. Restrictions apply.

100 Nodes

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10, 11,

Sessions

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

Fast Consistency

Consistency high
demand
Weak consistency

Fig. 6. CDF of number of sessions for 100 nodes

In both cases, with 50 or 100 replicas, we observe that
the change arrives quickly to the replicas with most
demand (unbroken line), causing these replicas to reach
the state of consistency on an average of 1 session, in the
case of 50 replicas, and also an average of 1 session in the
case of 100 replicas. On the other hand, the change takes
on average 3.9261 sessions to reach all replicas, in the case
of the 50 servers, and 4.78117 sessions in the case of the
100 servers.

The time it takes for the message to arrive to the server
at the lowest point in the valley is in fact the propagation
delay associated to the link, although for purposes of
comparison in Figs. 5 and 6 it is expressed in average
session times.

The change takes on average 6.1499 sessions to reach
all the replicas in the 50 replica case, and 6.982 sessions in
the 100 replica case, using the pure weak consistency
algorithm (Figs. 5 and 6). As one may observe, our
proposition not only substantially improves the areas of
most demand, but also improves it in general for all the
replicas.

Similar results as shown in figures 5 and 6 have been
obtained with simpler uniform topologies (linear, ring,
grid), with different number of nodes. In figure 6 can be
observed that as the number of nodes doubles, the number
of sessions required to propagate a change to all replicas
does not grow as fast. It seems that the number of sessions
required to reach a global consistent state is related to the
diameter of the network.

As the mean number of sessions to reach a global
consistent state is related to the diameter of the network
and it does not change significantly with the number of
nodes, the result seems to be applicable to the whole
Internet with a huge number of hosts but a diameter [2] in
the order of 20.

6. Complex demand distribution

As a consequence of the faster update of replicas with
higher demand, in the longer term those replicas with
lower or reduced demand will tend to have less updated
(i.e. stale) content. This can lead to the appearance of

clusters of highly consistent replicas (islands), surrounded
by regions with less consistent content.

Work under way is investigating how these islands can
be characterized, which mechanisms can help to
interconnect them, for instance a leader election algorithm
for each island, with leaders becoming part of an island
interconnection network. This will help to ensure that all
updates will reach very fast to any region with high
demand, avoiding that regions of low or null demand
would slow down the propagation of updates.

7. Related work

There are some proposals that set forth the necessity for
the replicas to be adapted to customer requirements, so in
this section we briefly describe some of the work dealing
with this area of study.

Richard Lenz [8] proposes ASPECT (Application
Oriented Specification of Consistency Terms), which
enables us to specify weak consistency requirements from
the point of view of the application according to the “need
to know” principle, which states that “data only have to be
made available where they are needed and only as current
and consistent as required by the applications that access
these data”. It proposes the use of two dimensions to
specify the replica consistency requirements, one spatial
and one temporal; the spatial dimension describes the
degree of consistency or quality of data of a particular
copy. The temporal dimension specifies when this quality
of data is required. As we may observe, this proposition is
only a specification.

Petersen et al. in [13] describe the Bayou anti-entropy
protocol, which facilitates the propagation of replicas by
means of weak consistency. They pose, furthermore, the
possibility of providing a variety of policies for where and
when the updating may be propagated.

The question is also raised of furnishing four types of
policy in the anti-entropy protocol: Policies for when to
reconcile; policies for selecting with which replicas to
reconcile, policies for deciding how aggressively to
truncate the write-log, and policies for selecting a server
from which to create new replicas.

- Policies for when to carry out reconciliation: Potential
policies could be periodic reconciliation, manually
initiated reconciliation, or those initiated by the system.

- Policies for selecting with which server the anti-
entropy session can be started may depend on many
factors: what other replicas are attainable, for example;
characteristics of the network connections using these
replicas.

- Policies for selecting how aggressively to truncate the
write-log enable us to negotiate storage and network
resources necessary in an anti-entropy session. Truncating
the write-log very aggressively can give rise to very long
anti-entropy sessions among some servers due to the need
to transfer complete databases.

- When various servers are available for creating a new
replica, quantities to be considered must be identified, in
addition to other characteristics of these replicas, how out
of time they are, band width of connections, and how
complete their write-logs are.

Proceedings of the 22 nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02)
0-7695-1588-6/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 08:12 from IEEE Xplore. Restrictions apply.

This proposition enumerates some interesting policies.
However, it is no more than this – an outline of possible
policies, none of which have been researched in detail,
neither from the point of view of implantation nor
performance.

Brun-Cotan and Makpangou [4]: This article presents
an architecture and a run-time for “adaptable replicated
objects”. Different applications require different contracts
concerning the consistency of replicas, or a different
negotiation between performance and consistency. The
architecture proposed structures a replicated object into
three component classes: access objects, replicas, and
consistency managers. Together with the access object,
the consistency manager are the components responsible
for maintaining consistency in each object, depending on
application needs; that is to say, the application for a
particular activity may require strong consistency, and in
other cases weak consistency.

This architecture is conceived for the design of
distributed applications, and its advantage is the existence
of a contract that specifies the consistency of the objects
replicated, in which the degree of required consistency is
defined, whether it be strong or weak.

8. Conclusions

This algorithm ensures rapid content update
propagation towards replicas located in the zones of least
energy (greatest demand). Those replicas having none –or
very few– requests will also be updated, but at a normal
speed, so that in a finite, but not bounded, time they will
be consistent. However, replicas having the greatest
number of requests will have contents that will be rapidly
updated.

Our algorithm is quite simple; it requires few additional
bytes in the exchange of messages between replicas, and
thus a greater number of clients/customers/users can be
satisfied in the first sessions. The algorithm is scalable,
does not cause traffic overload, and also increases
replication speed.

The worst case would be when all the replicas possess
the same demand; in such a situation the algorithm
behaves like a normal weak consistency algorithm.

9. References
[1] A. Adya, “Weak Consistency: A Generalized Theory and

Optimistic Implementations for Distributed Transactions”,
PhD thesis Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer
Science, March 1999.

[2] R. Albert, H. Jeong, and A.-L.Barabási, “Diameter of the
World-Wide Web”, Nature, page 130, September 1999

[3] K. P. Birman, “The process group approach to reliable
distributed computing”, Communications of ACM,
Decembre 1993/Vol. 36, No. 12

[4] G. Brun-Cota, M. Makpangou, “Adaptable Replicated
Objects in Distributed Enviroments”, Research Report 2593,
INRIA, May 1995.

[5] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On Power-
Law Relationships of the Internet Topology”, ACM
SIGCOMM, Cambridge, MA, September 1999

[6] S. Floyd, and V. Paxson, “Dificulties in Simulating the
Internet”, IEEE/ACM Transactions on Networking, Vol
9,no. 4, August 2001.

[7] R. A. Golding, “Weak-Consistency Group Communication
and Membership”, PhD thesis, University of California,
Santa Cruz, Computer and Information Sciences Technical
Report UCSC-CRL-92-52, December 1992.

[8] R. Lenz, “Adaptive distributed data management with weak
consistent replicated data”, ACM Symposium on Applied
Computing, February 1996

[9] A. Medina, I. Matta, and J. Byers, “On the Origin of Power
Laws in Internet Topologies”, ACM Computer
Communication Review, pages 160-163, April 2000.

[10] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE:
Universal Topology Generation from a User’s Perspective”,

[11] B. C. Neuman, “Scale in Distributed Systems. In Readings
in Distributed Computing Systems”, IEEE Computer
Society Press, 1994

[12] The Network Simulator: http://www.isi.edu/nsnam/ns/
[13] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer,

and Demers, “Flexible Update Propagation for Weakly
Consistent Replication”, Proceedings of the 16th ACM
Symposium on Operating Systems Principles (SOSP-16),
Saint Malo, France, October 5-8, 1997, pages 288-301.

[14] V. Duvvuri, P. Shenoy and R. Tewari, “Adaptative Leases:
A Strong Consistency Mechanism for the World Wide
Web”, IEEE INFOCOM 2000, pages 834-843.

Proceedings of the 22 nd International Conference on Distributed Computing Systems Workshops (ICDCSW’02)
0-7695-1588-6/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 13, 2008 at 08:12 from IEEE Xplore. Restrictions apply.

