
Computation of Minimal Uniform Transmission Power in Ad Hoc Wireless
Networks �

Qing Dai and Jie Wu
Department of Computer Science and Engineering

Florida Atlantic University
Boca Raton, FL 33431
fqdai, jieg@cse.fau.edu

Abstract

Power conservation is a critical issue for ad hoc wire-
less networks. The main objective of the paper is to find the
minimum uniform transmission power of an ad hoc wire-
less network, where each node uses the same transmission
power, while maintaining network connectivity. Three dif-
ferent algorithms, binary search, Prim’s MST and its ex-
tension are developed to solve the problem, and their per-
formance is compared by simulation study together with
Kruskal’s minimum spanning tree (MST), a known solu-
tion proposed by Ramanathan and Rosales-Hain for topol-
ogy control by transmission power adjustment. Our results
show that Prim’s MST outperforms both Kruskal’s MST and
binary search. The performance between Prim’s MST im-
plemented with binary heap and Fibonacci heap is fairly
close.

Keywords: ad hoc wireless network, graph connectivity,
minimum spanning tree, power control, transmission power

1 Introduction

An ad hoc wireless network is an infrastructureless net-
work. The end nodes establish connections by themselves
without a base station, and communicate with each other in
a multi-hop manner. Each node, typically a mobile comput-
ing device, is powered by battery. The limit of battery life
places a constraint on the power consumption. It is desir-
able for routing algorithms to select route and transmission
power that optimize energy efficiency when possible. In
the routing of the ad hoc wireless network, it has been pro-
posed that the transmission power required to support a link
between two nodes is

Pij � r�

�The work was supported in part by a grant from Motorola Inc., and
NSF grant CCR 9900646, and grant ANI 10073737.

where r is the distance between node i and node j, and � is
between � and �. The transmission power cannot be reduced
without limit, since the transmission range of a node will be
shortened along with the reduction of transmission power.
When the transmission power is too low, the network could
suffer from partition.

The topology of an ad hoc network depends on several
uncontrollable factors such as host mobility, interference,
and on several controllable ones such as antenna orientation
and transmission power. This paper deals with adjusting the
controllable parameters to create desired topology to meet
certain criteria. Specifically, our objective is to minimize a
uniform transmission power while maintaining the network
connectivity at the same time.

There are different alternatives in choosing the metrics
for transmission power. Both the power over single nodes
and the total power over all nodes could be used [3, 4, 5, 6].
In this paper, power over single node is used, because we
believe it is more practical. If, to obtain a lower overall
power, certain nodes must transmit at an extra high power
level, this situation might not be acceptable in some cases.
Moreover, it is assumed that each node uses the identical
transmission power and therefore reaches the same trans-
mission range. The unit disk graph G�V�E� is typically
used to model ad hoc wireless networks under this situa-
tion, where two nodes are connected when their distance is
within the transmission range. Throughout the paper, we
consider ad hoc wireless networks in which the node loca-
tions are fixed, or are snapshot of the network at a partic-
ular time frame. The problem of focus is to develop algo-
rithms that find the minimum uniform transmission range
that keeps the network connected, assuming global infor-
mation of node location, link state information, and fixed
network topology.

To find this minimum uniform transmission range, we
propose three different algorithms, binary search, Prim’s
minimum spanning tree (MST), and its extension with Fi-

1

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

MinRange-Kruskal
1 minRange� �
2 sort all edges in a non-decreasing order
3 initialize n clusters, one per node
4 while numberOfClusters � �
5 for each �u� v� in the sorted order
6 do if cluster�u� �� cluster�v�
7 merge cluster�u� with cluster�v�
8 minRange� distance�u� v�
9 return minRange

Figure 1. Algorithm I: compute minRange by
Kruskal’s MST.

bonacci heap implementation. The performance of the
three algorithm as well as a well-known solution based on
Kruskal’s MST by Ramanathan and Rosales-Hain [3] are
evaluated by computing the minimum uniform transmission
range, minRange, in simulation study. A network of n
nodes, which are randomly distributed over a region of size
���, is generated. Each node has multiple transceivers, and
can thus support any multicast sessions within its transmis-
sion range. A graph is constructed according to the node
location and the transmission range information; that is, an
edge between nodes u and v is added to the graph if u and
v are within the transmission range of each other. The per-
formance of different algorithms to find the minRange is
compared. Our simulation results show that Prim’s MST
and its extension outperform Kruskal’s MST and binary
search under the given conditions.

This paper is organized as follows: Section 2 proposes
three algorithms, Algorithm II, III and IV. Kruskal’s MST
by Ramanthan and Rosales-Hain is also reviewed (Algo-
rithm I). Section 3 shows simulation results. Section 4 con-
cludes this paper and discusses some future work.

2 Algorithms

Three algorithms are proposed to solve the problem: Al-
gorithm II uses the binary search technique, Algorithms III
and IV are Prim’s MST with either binary heap or Fibonacci
heap implementation. Ramanathan and Rosales-Hain’s al-
gorithm based on Kruskal’s MSG is also reviewed, pre-
sented as Algorithm I.

The notations used in this section are as follows: in an
area of size � � �, the number of nodes is noted as n. D
is the largest possible distance between any two nodes in
this area, or Diameter, which is

p
� �. In the undirected

graph representation of the area, V represents the number
of vertices, which is equal to n, and E is the number of
edges. An edge connecting nodes u and v is noted as �u� v�.

MinRange-BinarySearch
1 min� ��max� p

� �
2 while min � max� �
3 curRange� b�min�max���c
4 G� generateUnitDiskGraph�curRange�
5 if G is connected
6 max� curRange
7 else
8 min� curRange
9 return minRange� max

Figure 2. Algorithm II: compute minRange by
binary search.

2.1 Algorithm I: Kruskal’s Minimum Spanning
Tree (MST)

Algorithm I is proposed by Ramanathan and Rosales-
Hain [3]. An MST was constructed using Kruskal’s algo-
rithm [1]. Briefly, each node is initialized as a separate
connected component. Edges are sorted first, and then tra-
versed in a non-decreasing order. An edge is added to the
MST whenever it connects two connected components, un-
til all nodes are included in a single connected component.
The last edge added to MST, which is the largest edge in
Kruskal’s MST, will be our minimum uniform range of the
network (see Figure 1). The proof of correctness was pro-
vided in the same paper [3].

The construction of MST takesO�E lgE�, which will be
O�V � lgV �� for a complete graph. The traversal of MST
takes only linear time O�V � before all nodes belong to a
single connected component. Therefore, the overall asymp-
totical complexity of Algorithm I is O�V � lgV �.

In this algorithm, all edges in the graph are sorted first,
which costs O�E lgE�. In reality, the transmission range
can be determined without going through all the edges (in
the sorted order). Therefore, some efforts in the sorting pro-
cess could be wasted.

2.2 Algorithm II: Binary Search

Algorithm II uses the brute force approach. Ranging
from 0 to the longest possible transmission range, the diam-
eter D of the area, we use binary search to find the lowest
transmission range that keeps the network connected. For
each curRange tested, a unit disk graph is generated, where
an edge �u� v� is added to the graph if the distance between
u and v is less than curRange. The value of curRange is
then either decreased or increased depending on whether the
resultant unit disk graph is connected or not (see Figure 2).

In this algorithm, it is important to decide when the

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

MinRange-Prim
1 unreachedNodes� V �G�
2 for each u � unreachedNodes

3 do key�u���
4 key�root�� �
5 parent�root�� NIL
6 while unreachedNodes �� �
7 do u� extractMin�unreachedNodes�
8 for each v � Ad j�u�
9 do if v � unreachedNodes and

distance�u� v� � key�v�
10 then parent�v�� u

11 key�v�� distance�u� v�
12 traverse the MST, find the longest edge minRange
13 return minRange.

Figure 3. Algorithm III: Prim’s Minimum Span-
ning Tree.

binary search is completed, because theoretically, the
curRange adjustment could continue forever. We decide
to use integer distance, and terminate the searching process
whenever the upper and lower boundary differs by less than
1 (max�min � �). This generally gives good performance
in practice. Though the minRange obtained should be
fairly close, it might not be the ‘ultimate’ minimum trans-
mission range value, since the computation depends on the
granularity of D. Note that, the precise minRange can be
obtained with a slight modification. We can sort all edges
by distance first, then perform binary search on the array
of edge weights. This modification achieves precision at
the cost of higher complexity, since the cost of sorting is
O�E lgE�, and is not adopted in this paper.

The complexity of this approach can be calculated as fol-
lows: each connectivity checking costs O�V � E�, with
either depth-first search or breadth-first search. The over-
all complexity of the algorithm is O��V � E� lgD�, or
O�V � lgD� at the most. lgD indicates how many times
we need to perform connectivity check, which depends on
the area size. For an area of fixed size, lgD can be treated
as a constant.

2.3 Algorithms III and IV: Prim’s MST

Algorithms III and IV are modifications of Algorithm I,
both involving MST construction. In both Algorithms III
and IV, a modified Prim’s algorithm [1] is used in building
the MST (see Figure 3). Prim’s MST starts with an arbi-
trary root and constructs a single tree, until it spans all the
vertices. At each step, an edge of smallest possible distance
that reaches a non-tree node is added, and at any stage, all

r r�
�
�

r

�
�

�rPPPr

r

u
p pr

vd
�
�
��
r��

�r

x
p p p p p p p p p p pr

y

d�

�
�
���

path p

p

p

p

p

p

p

p

p

Figure 4. Proof of Theorem 1.

nodes in Prim’s MST forms a single tree. To facilitate the
MST contruction process, a key for each node is maintained
to represent its distance to the tree, and whenever a new
node is included, the key value of its direct non-tree neigh-
bors are updated. After the MST is constructed, the tree is
traversed and the maximum edge is the minimum uniform
range (see Theorem 1 and its proof).

It is interesting to note that the traditional minimum
spanning tree algorithm can be applied to different prob-
lems. The original MST algorithms minimize the the total
weight of the tree. In our problem, the objective is to min-
imize a single uniform transmission range that keeps the
network connected. In another word, it is the largest edge
in the spanning tree that is minimized. The following the-
orem shows that the largest edge selected in Prim’s MST
algorithm is the minimum uniform transmission range.

Theorem 1 The longest edge in Prim’s MST is the mini-
mum uniform transmission range.

Proof: Suppose the longest edge in Prim’s MST is �u� v�
with d � distance�u� v� (see Figure 4). And suppose to the
contrary that d is not minimum, then there must exist a path
p to connect u and v, and on this path, each of the edges
is less than d. By the time �u� v� is being added to change
the MST from Ti to Ti�� � Ti � f�u� v�g, assume vertex
u is in the MST, and v is not, without loss of generality. If
v is chosen to be included to the MST, then it must have
the smallest key among all vertices currently not in the tree.
Meanwhile, if p exists, then there must exist an edge �x� y�
with d� � distance�x� y� on path p, where x is in the tree,
and y is not. (In extreme cases, x could be u, or y could be
v, but not both). d� is less than d, because on path p, each
edge is less than d. Therefore, y should have a smaller key
than v. According to Prim’s algorithm, y should be added
to the MST instead of v. This is contrary to the result of
Prim’s algorithm, where v is added. Therefore, this path p,
in which every edge is smaller than d, does not exist, and d
is the mimimum. �

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000

E
xe

cu
tio

n
tim

e
(m

s)

Number of nodes

area = 4000X4000

(a)

Kruskal
Prim

Prim+Fib
Binary

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000

E
xe

cu
tio

n
tim

e
(m

s)

Number of nodes

area = 8000X8000

(b)

Kruskal
Prim

Prim+Fib
Binary

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000

E
xe

cu
tio

n
tim

e
(m

s)

Number of nodes

area = 16000X16000

(c)

Kruskal
Prim

Prim+Fib
Binary

Figure 5. Simulation results. Number of
nodes from 25 to 1000, in an area of ���������
(a), ����� ���� (b), ������ ����� (c).

Algorithm III uses a binary-heap implementation, with
a complexity of O�E lgV �, which will be O�V � lgV � in
worst case, and is asymptotically the same to that of Algo-
rithm II. Because Prim’s algorithm has a Fibonacci heap im-
plementation, which can speed up to run in O�E�V lgV �,
or O�V �� for a complete graph [1], Algorithm IV takes ad-
vantage of this property. It is the same algorithm as Algo-
rithm III, but uses the Fibonacci heap implementation. Fi-
bonacci heap is a data structure based on binomial heaps. It
is more relaxed so that work to maintain the structure can be
delayed until it is convenient to perform, therefore allowing
for improved asymptotic bounds[1]. Both Algorithms III
and IV are implemented and their performance is compared
through simulation study.

3 Simulation and Discussion

A network of n nodes, which are randomly distributed
over an area of size � � �, is generated. We compute the
minimum transmission range using all four different algo-
rithms described in the previous section, and record their
execution time. The first set of simulation uses the same
node numbers, from n � 	� to ����, but in different sizes
of area, l � ����, ���� and �����, respectively.

Our results show that both Kruskal’s and Prim’s MST
outperform the binary search (see Figure 5). Prim’s MST
has a better performance compared to Kruskal’s MST. Be-
tween the two Prim’s implementations using binary-heap
and Fibonacci heap, there is no significant difference. It
might be possible that the node number is not large enough
to show the difference between them. Similar results are
observed with the same node numbers in an area of �����
���� and ������ �����.

To further study the effect of node number on the per-
formance, simulation with larger numbers of nodes, up
to 3300, is performed (see Figure 6). In this simulation,
Prim’s MST still outperforms both Kruskal’s MST and bi-
nary search. The Fibonacci-heap implementation of Prim’s
MST does seem to outperform the binary-heap implemen-
tation, although they are fairly close to each other.

In the future, it would be interesting to see whether bi-
nary search could outperform Kruskal’s MST (Algorithm I),
or even Prim’s MST with binary heap implementation (Al-
gorithm III). Theoretically, the complexity of binary search
is O�V � E� lgD, which is close to O�V �� if D is con-
sidered constant, in contrast to the complexity of Kruskal’s
MST, which will be O�V � lgV � in the worst case. When
V is small and D is large, the effect of lgD is greater
than lgV . But when n is extremely large and D is rel-
atively small, binary search should eventually outperform
Kruskal’s MST. Although at this point, the n might be too
large to have any practical value.

The above simulation studies provide us with the basic

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

0

10000

20000

30000

40000

50000

60000

0 500 1000 1500 2000 2500 3000

E
xe

cu
tio

n
tim

e
(m

s)

Number of nodes

area = 8000X8000

(a)

Kruskal
Prim

Prim+Fib
Binary

0

10000

20000

30000

40000

50000

60000

0 500 1000 1500 2000 2500 3000

E
xe

cu
tio

n
tim

e
(m

s)

Number of nodes

area = 16000X16000

(b)

Kruskal
Prim

Prim+Fib
Binary

Figure 6. Simulation results. Number of nodes from 100 to 3300, distributed in ���� � ���� (a) or
������ ����� area (b).

understandings of the relative performance between differ-
ent algorithms to find the minimum uniform transmission
range in ad hoc wireless networks. Their practical perfor-
mance versus theoretical complexity also helps us in mak-
ing decisions such as which algorithm to choose under a
specific network situation with certain node number and
area size.

4 Conclusion

In this paper, minimum spanning tree algorithms from
classic graph theory have been applied to solve energy effi-
cient routing problem in ad hoc wireless networks. From
our simulation result, it seems that for node number up
to 3000, modified Prim’s algorithm has better performance
than both binary search and Kruskal’s MST. The perfor-
mance between the two Prim’s implementations is fairly
close, with the Fibonacci heap implementation slightly out-
performing the binary-heap implementation.

In our future study, first we plan to increase the num-
ber of nodes further, and to examine the performance of
different algorithms. Meanwhile, mobility and directional
antenna will also be taken into consideration in the future
model.

References

[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, In-
troduction to Algorithms, McGraw-Hill, 1990.

[2] J. Gomez, A. T. Campbell, M. Naghshineh, and C.
Bisdikian, Power-aware Routing in Wireless Packet
Networks, Proceedings of Sixth IEEE International

Workshop on Mobile Multimedia Communications,
p380, 1999.

[3] R. Ramanathan, and R. Rosales-Hain, Topology Con-
trol of Multihop Wireless Networks Using Transmit
Power Adjustment, Proceedings of International Con-
ference on Computer Communications, p404-413,
Mar 2000.

[4] S. Singh, M. Woo, and C. S. Raghavendra, Power-
aware Routing in Mobile Ad Hoc Networks, Proceed-
ings of MobiCom’98. Oct., 1998.

[5] C. K. Toh, Maximum Battery Life Routing to Support
Ubiquitous Mobile Computing in Wireless Ad Hoc
Networks, IEEE Communications Magazine, 39, 6,
p138-147, June 2001.

[6] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides,
On the Construction of Energy-efficient Broadcast and
Multicast Trees in Wireless Networks, IEEE Infocom,
p585-594, 2000.

[7] J. Wu, F. Dai, M. Gao, and I. Stojmenovic, On Cal-
culating Power-aware Connected Dominating Sets for
Efficient Routing in Ad Hoc Wireless Networks, Jour-
nal of Communications and Networks, Vol 4, Number
1, p59-70, March 2002.

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

