
Jelly: A Dynamic Hierarchical P2P Overlay Network
with Load Balance and Locality

Richard Hsiao and Sheng-De Wang
Department of Electrical Engineering

National Taiwan University, Taipei 106, TAIWAN

Abstract

P2P systems based on Distributed hash table (DHT)
such as CAN, Chord, Pastry, and Tapestry, use uniform
hash functions to ensure load balance in each participant
nodes. But the evenly distributed behavior in the virtual
space destroys the locality between participant nodes. The
topology-based hierarchical overlay network like Grapes,
exploits the physical distance information among the nodes
to construct a two-layered hierarchy, highly improves the
locality, but damages the load balance property in original
DHTs. In this paper, we propose a dynamic P2P overlay
infrastructure, called Jelly. It can achieve both the load
balancing and locality properties. Its design is based on
the hierarchical overlay and uses the DHT as its routing
algorithm. Because the load balancing issue in a
hierarchical overlay is originated from whether the virtual
hierarchy is balanced or not, Jelly uses a node joining
mechanism as a fine-tuning tool and a dynamic checking
mechanism as a coarse-tuning tool to balance the
hierarchy. We also find that the average routing hops is a
practical metric to evaluate the network size, and it is
useful for Jelly’s dynamic mechanism.

1. Introduction
In recent years, peer-to-peer (P2P) systems have

been the burgeoning research topic in large
distributed system. Gnutella [1] and Napster [2] are
the most famous peer-to–peer file sharing systems
among these, but both of them have the scalability
problem. To address this problem, distributed hash
tables (DHT) have became an fundamental part to
build peer-to-peer overlay networks , CAN [3] ,
Chord [4] , Pastry [5] , Tapestry [6] are well-known
works of these infrastructures. Many applications are
layered above DHTs, such as file sharing systems [7]
[8] [9], event notification services [10] [11], and
application-layer multicast [12] [13] [14]. Although
each of them has different location and routing
algorithms, all of them have the same feature, using
consistent hashing (like SHA-1) to let the participant
nodes and objects distributed uniformly in its virtual
space; in general condition, these systems can
achieve fairly good load balancing property .

But the primitive DHT schemes have a
significant disadvantage that they may violate the
locality property. During the locating and routing
process, the messages choose the next hop to a host
regardless of the physical topology information.
This produces inefficient effects in response time
and overall physical path length for lookup service.

To address this problem, the DHTs should take
into consideration of the relative physical position
among the participant nodes. All of these systems

have designed some similar approaches like [18], to
exploit locality by measuring proximity metric like
round trip time (RTT) or the IP level hops. This
improvement assures the next hop selection is the
relatively closer node on the underlying network that
matches the routing condition, but the physical
distance between the nodes looking for the object and
the nodes storing that object could be still long.
Grapes [15] provide the hierarchical virtual network
infrastructure using physical topology information. It
has two-layered overlay network, the upper layer
called super-network, the lower layer called
sub-network; in both layers, any DHTs routing
algorithm can be used. Each sub-network has a leader
joining the super-network routing and managing the
sub-network. The physically nearby nodes construct
the sub-network, and during each super-network
query, the leader caches the object in its sub-network.
Finally, a node can find the object in its sub-network
with high probability, because the physical distance
of any node pairs in sub-network is short, and thus
this infrastructure can greatly reduce the lookup
distance.

Although hierarchical overlay network like
Grapes can highly improve the locality property of
DHTs, it does not have the load balancing property. If
DHT can provide load balance, then each leader in
super-network is assigned to nearly the same load.
After the lower-layered mapping, the load of each
node in the entire system will no longer balance; the
larger of the sub-network’s size is, the lighter of the
load will be assigned to its subnodes. Grapes does not
provide any mechanism to adjust the size of
sub-network, as a result of its node joining algorithm,
producing some extremely large sub-network and a
significant amount of sub-network with relatively
few subnodes.

To address both the load balancing and locality
problems, we propose Jelly, a dynamic hierarchical
overlay network. Our main goal is to construct and
maintain the well-balanced two-layered overlay
network (the distribution of each sub-network’s size
within a given range), assure each participant node be
assigned to similar load. Jelly’s node joining
mechanism is similar to Grapes. The difference is a
newly-joined node not only checks the physical
distance between each leader on the path in the
inserting process and itself is shorter than the
threshold or not, but also considers the size of the
sub-network that each leader manages. If the size is
larger than the given threshold, it is not appropriate to
add one more node to this sub-network, because this
may deteriorate the unbalance of entire hierarchy.
Therefore, only when the newly-joined node finds a

Proceedings of the 24th International Conference on Distributed Computing Systems Workshops (ICDCSW’04)

0-7695-2087-1/04 $20.00 © 2004 IEEE

leader on the path in its inserting process, which is
closer to the distance threshold and the size of its
sub-network is smaller than the size threshold, then it
joins to the sub-network of that leader; if there exists
no such leader on the path in its inserting process to
the super-network, then it will become a new leader
without subnodes.

Another important topic in Jelly’s design is how
to maintain the balanced size of each sub-network.
Peer-to-peer networks are a volatile environment,
nodes joining and leaving frequently. This behavior
makes the hierarchy more unbalanced, and the node
joining mechanism solely is not sufficient to alleviate
the unbalance. To let the hierarchy return to balanced
state resiliently, Jelly provides a dynamic checking
mechanism. Each leader periodically compares the
size of its own sub-network to the average size of
sub-network in the entire system or the size of
super-network; if its size below the given allowable
lower limit, it takes the sub-network merge process,
which merges with another nearby and relatively
small sub-network to form a larger one. In the
simulation results, we will show that applying both
the node joining and dynamic checking mechanism is
can maintain the load balance.

Because Jelly is a fully decentralize system, it is
impossible for leaders to calculate the amount of
subnodes in its sub-network exactly, so we need a
practical metric to evaluate the size of network. It is
well known from [3][4][5][6][21] that every DHT has
a monotonic increasing relationship between the
number of nodes in overlay networks and the average
routing path hops. Because the average routing hops
within a sub-network is easy to obtain from the query
messages through its leader, its tight relationship with
the number of subnodes makes it be an efficient and
simple metric to evaluate the size of sub-network. So
even in the fully decentralize environment, we can
provide a suitable metric to meet the requirement of
the node join and dynamic checking mechanisms of
Jelly.

The rest of this paper is organized as follows:
Section 2 describes related work, Section 3 describes
the fundamental hierarchical overlay network, Section
4 discusses the Jelly’s design and properties, and
Section 5 presents the simulation results, and
concludes the paper in Section 6.

2. Related Work
In this paper, we assume that the consistent

hashing implemented by original DHTs can produce
good load balancing property; under this mapping
mechanism, each participant node has the same load.
This assumption is nearly matching the real condition
with high probability, but it is still possible to result in
unbalanced load distribution. Ananth Rao et al [19]
proposed a scheme based on “virtual servers”, every
node in the system periodically check its own load, if
it is overloaded, it re-arrange load with some “light”
node. John Byers et al [20] suggested the “power of
two choices” paradigm. In the object mapping
process, a object uses more than one hash function
mapping to a set of alternative nodes, and places it in

the node of the least loads. Both of the above work
can improve the load balancing property in DHTs
significantly.

Both the Brocade [16] and SkipNet [17] are
building an alternative overlay networks to address
the locality problem in DHTs. In Brocade, they
proposed a secondary overlay to be layered on the top
of the original DHTs systems, and exploits knowledge
of underlying network characteristics. The supernodes
with high bandwidth and better processing power
construct the secondary overlay. Each local node
which wants to send wide-area messages first connect
to the nearby supernode, then uses the second layer as
a shortcut to the destination, this can greatly reduce
the physical routing distance. Although its
infrastructure is similar to our hierarchical overlay
networks, not every participant node can be the
supernode in Brocade, so it does not have a fully
self-organizing mechanism. In SkipNet, they
proposed an overlay network that can provide
“content locality”: limit the object to be placed in a
given organization; and “path locality”: guarantee the
message which the source and destination nodes
within the same organization will never be
routed outside the organization. It realizes this
property by organizing data primarily by
lexicographic key ordering. It can not provide the
load balance of entire system, but has a “constrained
load balancing “property; in which object is evenly
distributed in a defined subset of the nodes in the
system.

Grapes [15] had proposed a self organizing
topology-based hierarchical virtual network, our
fundamental hierarchical overlay is based on Grapes,
and we will describe its working principle in next
section. Grapes can greatly improve the locality
property from original DHTs, but it does not consider
the load unbalancing effect due to the hierarchical
overlay.

3. The Fundamental Hierarchical Overlay
 In this section, we present the backbone
architecture of our system, and this concept is first
proposed by Grapes [15]. This overlay has two layers,
the nodes physically near each other construct the
sub-network, and the super-network is composed of
the leaders of each sub-network. Both of the virtual
networks can use any original DHTs (CAN, Chord,
Pastry, Tapestry) as the locating and routing
algorithm, and every subnode keeps a field recording
its leader.
 We assume that the newly-joined node can
obtain one already existed node in the system, and
then it uses this node as bootstrap node to insert into
super-network. The inserting process is similar as
original DHTs, but the newly-joined node checks the
physical distance to each leader on its inserting path
in super-network successively. If it meets a leader
physically closer to the threshold, then it inserts into
the sub-network of that leader and completes the
inserting process. If no such leader on the path, it
inserts into super-network, and become the leader of
a new sub-network without any subnodes.

Proceedings of the 24th International Conference on Distributed Computing Systems Workshops (ICDCSW’04)

0-7695-2087-1/04 $20.00 © 2004 IEEE

While a node inserts object into the system, it
first inserts the object into its own sub-network by the
hashed key of that object, then it request the leader of
its sub-network to insert the object into
super-network; its own leader finds the associated
leader in the super-network’s virtual space by the
hashed key of that object. Finally, that leader inserts
the object into the corresponding position in its
sub-network, completes the inserting process of that
object.
 While one node looks for an object, it first
searches the sub-network by the key of that object. If
it fails, then it searches the super-network through its
leader. After it finds the object outside its
sub-network, it caches the object in the
corresponding position in its sub-network.
Consequently, every node will find the object in its
sub-network with high probability.
 When a leader fails, its own subnodes will aware
this immediately during the routing process. Once a
subnode discovers, it advertises the leader failing
information to other subnodes in this sub-network,
then the spare leader becomes the new leader and
notices the rest of subnodes with leader-changing.
The spare leader is selected from the subnodes; it
maintains the leader’s neighbor information in the
super-network. So the spare leader can easily takes
over the position of the ex-leader, and its original
position is transferred to one of its neighbor in
sub-network.

Figure 1: Compare three different situation of the
hierarchical overlay. (a) Unbalanced hierarchy (b)
Perfectly-balanced hierarchy (c) Partially-balanced
hierarchy

4. The Design of Jelly
From the previous section, we have known that

the topology-based hierarchical overlay is an
appropriate approach to improve the locality property
in peer-to-peer systems, but it does not preserve the
inherent load balancing property of original DHTs.
Here we make an assumption that, by the hashing
scheme of original DHTs, all objects in the system
distributed in the virtual space evenly. So if we wish
to preserve the load balancing property, we should
keep the hierarchical overlay balanced, and making
the size of virtual space assigned to each node the

same. Namely, the same load in each node. In Figure
1, we sketch three different possible states of
hierarchy overlay; each state has 25 subnodes in
entire system. In (a)’s hierarchy, the size of each
sub-network differs greatly. As a result, the loading of
the only subnode in the second sub-network (from
the left side) will be nine times more than the
subnodes in the third sub-network, and we should
avoid the occurrence of such unbalanced hierarchy.
Both (b) and (c) can maintain the load balance of
each subnode in the entire system, because the size of
each sub-network is almost equal, and (c) is sufficient
to meet our requirement. But in (b) the size of the
super-network is the same as the size of each
sub-network, and (c) is not, this characteristic in (b)
lets it roughly has n leaders in super-network and

n subnodes in each sub-network with totally n
nodes in the system. If the original routing algorithm
guarantees O(log n) hops, (b) can guarantee
O(log n) hops , greatly reduced the logical hops in
the routing path. In Jelly, we can keep the
partially-balanced hierarchy in (c) or the
perfectly-balanced hierarchy in (b) easily, the only
difference of these two keeping approaches is the
system size metric, and we will discuss it next.

4.1 The Size Metric
 The size metric is a key concept to construct and
maintain the balanced hierarchy of Jelly. But in the
fully decentralize environment, no single node has
the capacity to exactly calculate the number of nodes
in any subset of the systems, so we must find an
alternative approach to evaluate the network size
approximately.

In [3][4][5][6][21], the analyses show that the
routing hops are bounded by some functions that
increase with the number of nodes N. In Chord, the
bound is)(log2 NO , CAN is)(/1 dNO for a given
dimension d, and Pastry is))((log2 NO b for a given
base b. And the simulation and experimental results
in these papers also indicate that the average routing
hops in each DHTs is monotonically increasing with
the number of nodes. That is to say, if the average
routing hops in one overlay network is more than
another one, then its network size is larger than
another with high probability. This explicit
characteristic in DHTs inspires us to use the average
routing hops as a metric to evaluate the network size.

To obtain the average routing hops, we just need
adding a field in querying message to record the
number of hops. While messages traverse to next
node, the field will be added by one. Here we
examine the revised lookup process in the
hierarchical overlay step by step: If the source node
cannot find the object in its sub-network, it will send
the querying message to its leader. In this step, the
leader can obtain the previous routing hops in
sub-network, then the message will be routed to the
leader of the destination sub-network, and this leader
can obtain the routing hops in super-network. Finally,
the messages will be routed to the destination
subnode, and it can also send the hops record in its
sub-network to its leader. So during a querying

5 1 9 2 8
5

5
5

5
5

8
8

9

(a)

 : Sub-network, the number
inside indicates its size.

: Leader

(b) (c)

Proceedings of the 24th International Conference on Distributed Computing Systems Workshops (ICDCSW’04)

0-7695-2087-1/04 $20.00 © 2004 IEEE

process, the leaders can get three routing hops
information at most, and one information at least
(routed inside the sub-network).
 To evaluate the average routing hops, leaders
need not to keep the hops information for a whole
period. Considering the space usage and volatile
behavior in peer-to-peer system, leaders just need to
record a reasonable quantity of recent hop
information, and it is sufficient to evaluate the
“current” network size.
 We list all the notations and definitions of
Jelly’s system size parameters in Figure 2, they are all
related to the system size metric, so the notations of
them all starts with “S”, to indicate the size. Jelly has
two different system size metric, one is the size of
super-network (#super) for perfectly-balanced
hierarchy, the other is the average size of sub-network
(#avgsub) for partially-balanced hierarchy. #super
and the size of each sub-network (#sub) are easy to
evaluate by the average hops by previous discussion.
To evaluate #avgsub, leaders must obtain other
leaders’ #sub information. It is simple to satisfy this
requirement by an additional message field of routing
process in super-network. Every source leader
appends its #sub, and consequently, each leader in
routing path can gather others’ hop information. Keep
the current list, now it is easy to evaluate the #avgsub.

Notation Definition

Sthreshold_ join The size threshold in node joining

Slow_dc The lower size limit in dynamic checking

Sthreshold_sc The size threshold in selecting candidate

Sup_merge The upper size limit in merging

Figure 2: Notations and definitions of the Jelly’s
system size parameters

node.Join(bootstrapnode)
 nodeID1=Hashing(node);
 leader=bootstrapnode.leader;

 suitableleader=null;// is a container to fill the

leaders of suitable joining sub-networks

 while(the super-network routing not finished)

 d=Relativedistance(node, leader);
 s=leader.#sub;
 // sm is the system size metric

 sm=leader.#avgsub; // or sm=leader.#super

 if (d < distancethreshold AND s < sm ×
Sthreshold_ join)

 suitableleader.add(leader);
 else
 leader=leader.Nexthop(nodeID1);

 end while;
 if(suitableleader is null) //cannot find the suitable

leader

 joins supernetwork with nodeID1;
 else
 minleader=Choosemin(suitableleader);

 // choose the leader with minimum sub-network

size to join

 nodeID2=Hashing(node);

 joins minleader’s subnetwork with nodeID2;

Figure 3: The pseudocode of Jelly’s node Join
algorithm

4.2 Node Joining Mechanism
Node joining mechanism in Jelly is not only a

constructing scheme for balanced hierarchy, but can
also be regarded as a fine-tuning mechanism for
maintaining balanced hierarchy. Figure 3 shows the
Join algorithm, the algorithm is similar to the one in
original hierarchy overlay that we discussed earlier. It
needs checking the physical distance information to
join the relatively closer sub-network. The two
significant differences are that we add a new size
checking condition to assure the joining process will
not make the size of that sub-network larger than
Sthreshold_join× system size metric. The other chance
is that we examine all the leaders in the routing path, not
only single suitable leader, and pick the suitable leader of
the smallest size as the leader of the newly-joining nodes.
These two changes in joining process can reduce the
amount of sub-networks with extremely large and
small size. Another interesting point in Join algorithm
is that the system size metric obtained from leaders
can be #super or #avgsub, by which balanced
hierarchy we want to construct, and this principle is
the same for the following operations in Jelly.

4.3 Dynamic Checking Mechanism
 It is not enough for only relying on node joining
mechanism to balance the size of each sub-network;
we need a more aggressive approach to let
sub-networks actively adjust their size. Namely,
splitting their sub-network or merging with other
sub-network. But the splitting operation will cause
relatively much smaller sub-networks in the system,
and this condition let one AS has many sub-networks.
It will gain less benefit of the locality in hierarchical
overlay. So we only consider sub-network merge in
Jelly.
 And this aggressive approach is Jelly’s dynamic
checking mechanism. Every leader of the
sub-network periodically compares the #sub that it
evaluates from the hops information in its
sub-network with Slow_dc. If its #sub is smaller than
Slow_dc, it will start the Sub-network Merge process,
merging its sub-network with other one.
 The periodicity of checking can be adjusted to
reflect the volatility of the changing networks, if a
leader finds its #sub varying slightly from the recent
checks, it can increase the period for future checking
to reduce its processing loading; on the contrary, if it
finds its #sub varying greatly from the recent checks,
it should check more frequently to reflect the volatile
environment.

The Sub-network Merge process will cause the
redistribution of the virtual space of sub-network, so
we should alter the routing table of these subnodes.

Proceedings of the 24th International Conference on Distributed Computing Systems Workshops (ICDCSW’04)

0-7695-2087-1/04 $20.00 © 2004 IEEE

Fortunately, it will not complicate and just takes
moderate bandwidth usages. If we use CAN
algorithm, it can maintain the original relative
position, and scales the coordinate in one dimension
to fit the modified virtual space. The only nodes that
need to alter its neighbor set are the ones which are
adjacent to the merging “plane”, the leader must
notify these nodes that some neighbors should add to
their neighbor sets. The majority of subnodes need
not to change. In Chord’s case, the remaining
consecutive ring space makes the finger table
partially correct, all we need to do is informing the
nodes in the cutting edge (heads and tails) to correct
their successors. Once the successors are corrected,
the new sub-network can function correctly, and the
stabilization process in Chord will update all the
finger pointers in parallel. Regardless which DHTs
algorithm we use, we just keep the original useful
routing information and modify some parts of them.
This modifying process is far more efficient than
reinserting the subnodes to sub-network one by one.

4.4 Sub-network Merge
 In the merging process, the leader of the
sub-network which wants to merge with one
“suitable” sub-network must have a feasible scheme
to find the “suitable” sub-network. So each leader
maintains a candidate list to store the suitable
sub-networks’ leaders; one leader can easily measure
the physical distance form itself to these leaders, and
then the information of physical distance and #sub
of other leaders decide whether they are suitable
merging candidates of that leader. We let the
distance threshold be an invariant in all the
operations, to assure the strong bond locality. To
save the bandwidth usage and reflect the volatile
environment, one leader does not need to measure
the physical distance every time when a new
message comes. It can apply variable measuring
period, just like the dynamic checking mechanism
we discussed earlier. If one leader measure that a
leader is physically closer than the threshold and
#sub of that leader is lower than Sthreshold_sc
multiplied by the system size metric, then it is a
suitable merging partner, and the leader will put it in
the candidate list. The candidate list only keeps
some recent entries, and all entries be sorted by
candidate leader’s #sub increasingly. The top entry
in the list is the most suitable merging candidate by
current information for future merging.
 Once a leader starts the Sub-network Merge
process, it first proceeded the FindMergingPartner
algorithm (shown in Figure 4) to find the exact
leader and its sub-network for merging. The
algorithm first picks the top entry of its candidate
list, it is the best candidate, and the leader will send
a message to this candidate. If it is alive, it sends a
message back appending its #sub, the leader uses
this information to calculate the merged size. If the
merged size is smaller than Sup_merge× system size
metric, this candidate leader and its sub-network are
the exact partner of merging process. If this
candidate is not alive or fails the size checking, the

algorithm will pick the second, the third……..
suitable candidate to repeat the same procedure
described above. If all the entries in candidate list
are not suitable partner, the leader will increase
Sthreshold_sc to loosen the restriction of selecting
candidate, and the infinite loop in the algorithm will
do this progressively until it finds the partner.

While the leader find its merging partner, its
subnodes and itself will merge into this partner’s
sub-network to become the new subnodes. It takes a
leaving process in super-network to inform one
corresponding leader and its sub-network taking
over its original loads. After the Sub-network Split
process, the overall hierarchy will be much balanced
and system still preserves the locality property.

leader.FindMergingPartner()
 while()// start infinite loop

 while(leader.Candidatelist NOT NULL)

 // pop the fittest candidate leader of list

 c =leader.Candidatelist.firstelement;
 // check the candidate is alive or not

 if (c is alive)
 s =leader.#sub+c.#sub;
 // the total size after merging can not be too large

 if (ts < Sup_merge× leader.#avgsub)
 // return the partner of merging process

 return c;

 end inner while;
 // if can not find the partner

 increase Sthreshold_sc;

 wait a short period of time;
 end outer while;

Figure 4: The pseudocode of FindMergingPartner
algorithm

5. Simulations
Now we present some simulation results to

evaluate the load balancing and locality performance
in the Jelly design. In both super-network and
sub-network routing, we used CAN [3] algorithm
with dimension 3 and more uniform partitioning
scheme.

To simulate the real world network
environment, we selected BRITE [22] topology
generator to generate 1000 Autonomous Systems
(ASs), and used the heavy-tailed policy to place
these ASs, observing the power-law distribution. We
assumed that there are 10000 nodes in each AS. In
each time of our experiment, we randomly picked
100 ASs of these 1000 ASs, and a given percentage
of nodes in each AS to join the system.
 Before the experiment, we had set the distance
threshold and the system size parameters listed in
Figure 2, we fixed the distance threshold to be 100,
the Sthreshold_join and the Sup_merge all 1.26, the
Slow_dc and Sthreshold_sc 0.79. The reason for
setting the system size parameters in these values is
based on the CAN algorithm, the average routing

Proceedings of the 24th International Conference on Distributed Computing Systems Workshops (ICDCSW’04)

0-7695-2087-1/04 $20.00 © 2004 IEEE

hops grows as dn /1 ; n represents the number of
nodes, and d is the dimension of virtual space, here
is 3. All the system size parameters are the upper
limits or the lower limits of average path hops. So
we set the upper limits 26.12 3/1 = , means double
the size; the lower limits 79.0)2/1(3/1 = , means half
the size.
 First, we evaluated the load balancing
performance by examining the volume of each
node’s zone in virtual space. Because we assume the
uniform hashing can distribute the objects evenly in
the coordinate space, so the volume of each node’s
zone represents the load stored on that node. Here
we defined V, the average volume calculated from
dividing entire coordinate space by the number of
nodes in the system. We had experimented seven
tests and the results was shown in Figure 5. In all the
joining tests, the entire system had 16384 nodes, and
we left 8192 nodes for the leaving tests, and inserted
adequate amounts of querying messages during each
1000 joining or leaving messages in all Jelly’s tests
to let the leaders gather enough path hops
information.

Figure 5: Comparing the loading distribution
among the seven tests

 In the Perfectly Balanced test, we joined 16384
nodes into 128 sub-networks to make each
sub-network have the same size. Due to the CAN
algorithm, the percentage of the nodes assigned to the
volume equal V is not 100%, but about 85%. The
largest volume is 4V and the smallest volume is V/4.
We can regard it as the ideal case. In the Grapes Join
test, only 32% of nodes with volume V, and has
significant percentage of nodes over 8V and under
V/8, the load distribution is so uneven in Grapes. In
test 3 and 4, we used only the node joining
mechanism in 4.2. Although the percentage of V has
only a little improvement, the percentage over and
under the limits is significantly reduced. Due to the
size checking scheme in the node joining mechanism
avoids producing the sub-network with extremely

large size, and the little effort we paid in
super-network joining makes the extremely small
size sub-networks relatively few. And from the
figure, we noticed the effects of choosing #avgsub
or #super as the system size metric are similar. In
test 5, we used both the node join scheme and
dynamic sub-network merge scheme described in
4.3 and 4.4. Due to dynamically merge the smaller
sub-networks, the heaviest load dropped to 4V, and
74% of the nodes are assigned to the zones with
volume V. This experimental result shows that Jelly
can produce good load balancing property with the
joining process.
 In the leaving test, we randomly chose half
the nodes leaving successively to examine the
performance of the dynamic checking mechanism
in Jelly. From the Grapes Leave test, we noticed
the leaving process deteriorates the load balance,
due to lack of self-adjusted mechanism. And
because of the high performance of Jelly’s dynamic
checking mechanism, in test 7, the loading
distribution is almost the same with test 5. This
showed that Jelly can dynamically adjust its
hierarchy to reflect the variation in networks, and
preserve the good load balancing property in
original DHT.

Figure 6: Comparing the load diversity in Jelly with
Grapes

Figure 7: Comparing object lookup physical path
length in Jelly with CAN
 Figure 6 presents the load diversity property by
examining the factor of maximum load divided by
minimum load, while the total system size scaled from
5000 to 30000 nodes. By this experiment, we conclude
that the good load balancing property can be preserved in

0

10

20

30

40

50

60

70

80

90

100

1.
P

er
fe

ct
ly

 B
al

an
ce

d

2.
G

ra
pe

s
Jo

in

3.
Je

ll
y

Jo
in

 O
nl

y(
#s

up
er

)

4.
Je

ll
y

Jo
in

 O
nl

y(
#a

vg
su

b)

5.
Je

ll
y

Jo
in

 w
it

h
M

er
ge

6.
G

ra
pe

s
L

ea
ve

7.
Je

ll
y

L
ea

ve

P
e

rc
e

n
ta

g
e

 o
f

n
o

d
e

s

over 8V

4V

2V

V

V/2

V/4

under V/8

0

2000

4000

6000

8000

10000

12000

14000

5000 10000 15000 20000 25000 30000

Number of nodes

P
a

th
 le

n
g

th

Jelly

CAN

0

50

100

150

200

250

300

5000 10000 15000 20000 25000 30000

Number of nodes

M
a

x
im

u
m

 lo
a

d
 /

 M
in

im
u

m
 lo

a
d

Jelly

Grapes

Proceedings of the 24th International Conference on Distributed Computing Systems Workshops (ICDCSW’04)

0-7695-2087-1/04 $20.00 © 2004 IEEE

hJelly, even the system scales to relatively large size.
Contrarily, in Grapes, the load distribution will be
more diverse as the larger system size, due to the fully
static constructing scheme.
 Figure 7 presents the locality property of Jelly.
To display the replicate scheme of hierarchical
overlay network in limited simulation environment,
we assumed the entire system stores 500 kinds of
objects. In each system size condition, every node
randomly picked an object from the 500 kinds to
lookup. Due to the replications in sub-network, the
path length in Jelly is much shorter than the physical
path length in CAN, and scales well as the original
hierarchical overlay, achieving good locality property.

6. Conclusion

Load balance and locality are two important
issues in the design of current peer-to-peer systems.
Jelly applies topology-based hierarchical overlay
network as its fundamental infrastructure to improve
the locality property of DHTs. We design a node join
mechanism as a fine-tuning tool, and a dynamic
checking mechanism as a coarse-tuning tool to
balance the size of each sub-network, making the
system can exploit the load balancing characteristic
in DHTs. Our simulation results have demonstrated
that Jelly is a scalable peer-to-peer overlay network
with load balancing and locality properties.

 In this paper, we regard the distance threshold
as the invariant in the node joining and sub-network
merging process to ensure the locality. In the future
work, we consider designing an adaptive distance
threshold mechanism, and constructing and
maintaining a more flexible hierarchy to
accommodate ever changing network environment.

7. References

[1]Gnutella http://www.gnutella.com
[2]Napster http://www.napster.com
[3]S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Schenker, “A Scalable Content-Addressable Network,” In
Proceedings of SIGCOMM 2001, ACM.
[4]I. Stoica, R. Morris, D. Karger, M F. Kaashoek and
H.Balakrkshnan, “Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications,” In Proceedings of
SIGCOMM 2001, ACM.
[5]A. Rowstron and P. Druschel, “Pastry: Scalable
Distributed Object Location and Routing for Large-scale
Peer-to-peer Systems,” In Proceedings of IFIP/ACM
Middleware 2001.
[6]B. Y. Zhao, J. D. Kuibiatowicz, and A. D. Joseph,
“Tapestry: An Infrastructures for Fault-tolerant Wide-area
Location and Routing,” Tech. Rep.UCB/CSD-01-1141, UC
Berkeley, EECS, 2001.
[7]F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I.
Stoica, “Wide-area cooperative storage with CFS,” In
Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP ’01), 2001.
[8]P. Druschel and A. Rowstron, “Past: Persistent and
anonymous storage in a peer-to-peer networking
environment,” In Proceedings of the 8th IEEE Workshop
on Hot Topics in Operating Systems (HotOS 2001), 2001.
[9]J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P.
Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,

W. Weimer, C. Wells, B. Zhao, “OceanStore: An
Architecture for Global-Scale Persistent Storage,” In
Proceedings of ACM ASPLOS, 2000.
[10]A. Rowstron, A. M. Kermarrec, M. Castro, and P.
Druschel, “Scribe: The design of a large-scale event
notification infrastructure,” In Proceedings of the Third
International Workshop on Networked Group
Communication, 2001.
[11]L. F Cabrera, M. B. Jones, and M. Theimer, “Herald:
Achieving a global event notification service,” In
Proceedings of the 8th IEEE Workshop on Hot Topics in
Operating Systems (HotOS 2001), 2001.
[12]Y. H. Chu, S. G. Rao, and H. Zhang, “ A case for end
system multicast,” In Proceedings of ACM SIGMETRICS
2000, 2000.
[13]S. Ratnasamy, M. Handley, R. Karp, and S. Shenker,
“Application level multicast using content-addressable
networks,” In Proceedings of the Third International
Workshop on Networked Group Communication, 2001.
[14]S. Zhuang, B. Zhao, A. D. Joseph, R. H. Katz, and J.
Kubiatowicz, “Bayeux: An architecture for wide-area,
fault-tolerant data dissemination,” In Proceedings of
NOSS-DAV’01, 2001.
[15]K. Shin, S. Lee, G.. Lim, H. Yoon, and J. S. Ma,
“Grapes: Topology-based Hierarchical Virtual Network for
Peer-to-peer Lookup Services,” In Proceedings of the
International Conference on Parallel Processing
Workshops (ICPPW’ 02), 2002.
[16]B.Y. Zhao, Y. Duan, and L. Huang,” Brocade:
Landmark Routing on Overlay Networks,” In Proceedings
of the 1st International Workshop on Peer-to Peer Systems,
2002.
[17]N. J.A. Harvey, M. B. Jones, S. Saroiu, M. Theimer,
A.Wolman, “SkipNet: A Scalable Overlay Network with
Practical Locality Properties,” In Proceedings of 4th
USITS, 2003.
[18]M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron,
“Exploiting network proximity in peer-to-peer overlay
networks,” presented at International Workshop on Future
Directions in Distributed Computing (FuDiCo), 2002.
[19]J. Byers, J.Considine, and M. Mitzenmacher, “Simple
Load Balancing for Distributed Hash Tables,” In
Proceedings of the 2nd International Workshop on
Peer-to-Peer Systems, 2003.
[20]A. Rao, K. Lakshminarayanan, S. Surana, R. Karp and
Ion Stoica, “Load Balancing in Structured P2P Systems,”
In Proceedings of the 2nd International Workshop on
Peer-to Peer Systems, 2003.
[21]M. Kelaskar, V. Matossian, P. Mehra, D. Paul, and M.
Parashar, “A Study of Discovery Mechanisms for
Peer-to-Peer Applications,” In Proceedings of the 2nd
IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGRID’ 02), 2002.
[22]A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite:
Univeral Topology Generation from a User’s Perspective,”
Tech. Report BUCS-TR-2001-003, Boston University,
2001.

Proceedings of the 24th International Conference on Distributed Computing Systems Workshops (ICDCSW’04)

0-7695-2087-1/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

