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Abstract 

P2P systems based on Distributed hash table (DHT) 
such as CAN, Chord, Pastry, and Tapestry, use uniform 
hash functions to ensure load balance in each participant 
nodes. But the evenly distributed behavior in the virtual 
space destroys the locality between participant nodes. The 
topology-based hierarchical overlay network like Grapes, 
exploits the physical distance information among the nodes 
to construct a two-layered hierarchy, highly improves the 
locality, but damages the load balance property in original 
DHTs. In this paper, we propose a dynamic P2P overlay 
infrastructure, called Jelly. It can achieve both the load 
balancing and locality properties. Its design is based on 
the hierarchical overlay and uses the DHT as its routing 
algorithm. Because the load balancing issue in a 
hierarchical overlay is originated from whether the virtual 
hierarchy is balanced or not, Jelly uses a node joining 
mechanism as a fine-tuning tool and a dynamic checking 
mechanism as a coarse-tuning tool to balance the 
hierarchy. We also find that the average routing hops is a 
practical metric to evaluate the network size, and it is 
useful for Jelly’s dynamic mechanism. 

1. Introduction 
In recent years, peer-to-peer (P2P) systems have 

been the burgeoning research topic in large 
distributed system. Gnutella [1] and Napster [2] are 
the most famous peer-to–peer file sharing systems 
among these, but both of them have the scalability 
problem. To address this problem, distributed hash 
tables (DHT) have became an fundamental part to 
build peer-to-peer overlay networks , CAN [3] , 
Chord [4] , Pastry [5] , Tapestry [6] are well-known 
works of these infrastructures. Many applications are 
layered above DHTs, such as file sharing systems [7] 
[8] [9], event notification services [10] [11], and 
application-layer multicast [12] [13] [14]. Although 
each of them has different location and routing 
algorithms, all of them have the same feature, using 
consistent hashing (like SHA-1) to let the participant 
nodes and objects distributed uniformly in its virtual 
space; in general condition, these systems can 
achieve fairly good load balancing property . 

But the primitive DHT schemes have a 
significant disadvantage that they may violate the 
locality property. During the locating and routing 
process, the messages choose the next hop to a host 
regardless of the physical topology information. 
This produces inefficient effects in response time 
and overall physical path length for lookup service. 

To address this problem, the DHTs should take 
into consideration of the relative physical position 
among the participant nodes. All of these systems 

have designed some similar approaches like [18], to 
exploit locality by measuring proximity metric like 
round trip time (RTT) or the IP level hops. This 
improvement assures the next hop selection is the 
relatively closer node on the underlying network that 
matches the routing condition, but the physical 
distance between the nodes looking for the object and 
the nodes storing that object could be still long. 
Grapes [15] provide the hierarchical virtual network 
infrastructure using physical topology information. It 
has two-layered overlay network, the upper layer 
called super-network, the lower layer called 
sub-network; in both layers, any DHTs routing 
algorithm can be used. Each sub-network has a leader 
joining the super-network routing and managing the 
sub-network. The physically nearby nodes construct 
the sub-network, and during each super-network 
query, the leader caches the object in its sub-network. 
Finally, a node can find the object in its sub-network 
with high probability, because the physical distance 
of any node pairs in sub-network is short, and thus 
this infrastructure can greatly reduce the lookup 
distance. 

Although hierarchical overlay network like 
Grapes can highly improve the locality property of 
DHTs, it does not have the load balancing property. If 
DHT can provide load balance, then each leader in 
super-network is assigned to nearly the same load. 
After the lower-layered mapping, the load of each 
node in the entire system will no longer balance; the 
larger of the sub-network’s size is, the lighter of the 
load will be assigned to its subnodes. Grapes does not 
provide any mechanism to adjust the size of 
sub-network, as a result of its node joining algorithm, 
producing some extremely large sub-network and a 
significant amount of sub-network with relatively 
few subnodes. 

To address both the load balancing and locality 
problems, we propose Jelly, a dynamic hierarchical 
overlay network. Our main goal is to construct and 
maintain the well-balanced two-layered overlay 
network (the distribution of each sub-network’s size 
within a given range), assure each participant node be 
assigned to similar load. Jelly’s node joining 
mechanism is similar to Grapes. The difference is a 
newly-joined node not only checks the physical 
distance between each leader on the path in the 
inserting process and itself is shorter than the 
threshold or not, but also considers the size of the 
sub-network that each leader manages. If the size is 
larger than the given threshold, it is not appropriate to 
add one more node to this sub-network, because this 
may deteriorate the unbalance of entire hierarchy. 
Therefore, only when the newly-joined node finds a 
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leader on the path in its inserting process, which is 
closer to the distance threshold and the size of its 
sub-network is smaller than the size threshold, then it 
joins to the sub-network of that leader; if there exists 
no such leader on the path in its inserting process to 
the super-network, then it will become a new leader 
without subnodes. 

Another important topic in Jelly’s design is how 
to maintain the balanced size of each sub-network. 
Peer-to-peer networks are a volatile environment, 
nodes joining and leaving frequently. This behavior 
makes the hierarchy more unbalanced, and the node 
joining mechanism solely is not sufficient to alleviate 
the unbalance. To let the hierarchy return to balanced 
state resiliently, Jelly provides a dynamic checking 
mechanism. Each leader periodically compares the 
size of its own sub-network to the average size of 
sub-network in the entire system or the size of 
super-network; if its size below the given allowable 
lower limit, it takes the sub-network merge process, 
which merges with another nearby and relatively 
small sub-network to form a larger one. In the 
simulation results, we will show that applying both 
the node joining and dynamic checking mechanism is 
can maintain the load balance. 

Because Jelly is a fully decentralize system, it is 
impossible for leaders to calculate the amount of 
subnodes in its sub-network exactly, so we need a 
practical metric to evaluate the size of network. It is 
well known from [3][4][5][6][21] that every DHT has 
a monotonic increasing relationship between the 
number of nodes in overlay networks and the average 
routing path hops. Because the average routing hops 
within a sub-network is easy to obtain from the query 
messages through its leader, its tight relationship with 
the number of subnodes makes it be an efficient and 
simple metric to evaluate the size of sub-network. So 
even in the fully decentralize environment, we can 
provide a suitable metric to meet the requirement of 
the node join and dynamic checking mechanisms of 
Jelly.  

The rest of this paper is organized as follows: 
Section 2 describes related work, Section 3 describes 
the fundamental hierarchical overlay network, Section 
4 discusses the Jelly’s design and properties, and 
Section 5 presents the simulation results, and 
concludes the paper in Section 6. 

2. Related Work 
In this paper, we assume that the consistent 

hashing implemented by original DHTs can produce 
good load balancing property; under this mapping 
mechanism, each participant node has the same load. 
This assumption is nearly matching the real condition 
with high probability, but it is still possible to result in 
unbalanced load distribution. Ananth Rao et al [19] 
proposed a scheme based on “virtual servers”, every 
node in the system periodically check its own load, if 
it is overloaded, it re-arrange load with some “light” 
node. John Byers et al [20] suggested the “power of 
two choices” paradigm. In the object mapping 
process, a object uses more than one hash function 
mapping to a set of alternative nodes, and places it in 

the node of the least loads. Both of the above work 
can improve the load balancing property in DHTs 
significantly.  

Both the Brocade [16] and SkipNet [17] are 
building an alternative overlay networks to address 
the locality problem in DHTs. In Brocade, they 
proposed a secondary overlay to be layered on the top 
of the original DHTs systems, and exploits knowledge 
of underlying network characteristics. The supernodes 
with high bandwidth and better processing power 
construct the secondary overlay. Each local node 
which wants to send wide-area messages first connect 
to the nearby supernode, then uses the second layer as 
a shortcut to the destination, this can greatly reduce 
the physical routing distance. Although its 
infrastructure is similar to our hierarchical overlay 
networks, not every participant node can be the 
supernode in Brocade, so it does not have a fully 
self-organizing mechanism. In SkipNet, they 
proposed an overlay network that can provide 
“content locality”: limit the object to be placed in a 
given organization; and “path locality”: guarantee the 
message which the source and destination nodes 
within the same organization will never      be 
routed outside the organization. It realizes this
property by organizing data primarily by 
lexicographic key ordering. It can not provide the 
load balance of entire system, but has a “constrained 
load balancing “property; in which object is evenly 
distributed in a defined subset of the nodes in the 
system. 

Grapes [15] had proposed a self organizing 
topology-based hierarchical virtual network, our 
fundamental hierarchical overlay is based on Grapes, 
and we will describe its working principle in next 
section. Grapes can greatly improve the locality 
property from original DHTs, but it does not consider 
the load unbalancing effect due to the hierarchical 
overlay. 

3. The Fundamental Hierarchical Overlay 
    In this section, we present the backbone 
architecture of our system, and this concept is first 
proposed by Grapes [15]. This overlay has two layers, 
the nodes physically near each other construct the 
sub-network, and the super-network is composed of 
the leaders of each sub-network. Both of the virtual 
networks can use any original DHTs (CAN, Chord, 
Pastry, Tapestry) as the locating and routing 
algorithm, and every subnode keeps a field recording 
its leader. 
     We assume that the newly-joined node can 
obtain one already existed node in the system, and 
then it uses this node as bootstrap node to insert into 
super-network. The inserting process is similar as 
original DHTs, but the newly-joined node checks the 
physical distance to each leader on its inserting path 
in super-network successively. If it meets a leader 
physically closer to the threshold, then it inserts into 
the sub-network of that leader and completes the 
inserting process. If no such leader on the path, it 
inserts into super-network, and become the leader of 
a new sub-network without any subnodes. 
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While a node inserts object into the system, it 
first inserts the object into its own sub-network by the 
hashed key of that object, then it request the leader of 
its sub-network to insert the object into 
super-network; its own leader finds the associated 
leader in the super-network’s virtual space by the 
hashed key of that object. Finally, that leader inserts 
the object into the corresponding position in its 
sub-network, completes the inserting process of that 
object. 
    While one node looks for an object, it first 
searches the sub-network by the key of that object. If 
it fails, then it searches the super-network through its 
leader. After it finds the object outside its 
sub-network, it caches the object in the 
corresponding position in its sub-network. 
Consequently, every node will find the object in its 
sub-network with high probability. 
    When a leader fails, its own subnodes will aware 
this immediately during the routing process. Once a 
subnode discovers, it advertises the leader failing 
information to other subnodes in this sub-network, 
then the spare leader becomes the new leader and 
notices the rest of subnodes with leader-changing. 
The spare leader is selected from the subnodes; it 
maintains the leader’s neighbor information in the 
super-network. So the spare leader can easily takes 
over the position of the ex-leader, and its original 
position is transferred to one of its neighbor in 
sub-network. 

Figure 1: Compare three different situation of the 
hierarchical overlay. (a) Unbalanced hierarchy (b) 
Perfectly-balanced hierarchy (c) Partially-balanced 
hierarchy 

4. The Design of Jelly 
From the previous section, we have known that 

the topology-based hierarchical overlay is an 
appropriate approach to improve the locality property 
in peer-to-peer systems, but it does not preserve the 
inherent load balancing property of original DHTs. 
Here we make an assumption that, by the hashing 
scheme of original DHTs, all objects in the system 
distributed in the virtual space evenly. So if we wish 
to preserve the load balancing property, we should 
keep the hierarchical overlay balanced, and making 
the size of virtual space assigned to each node the 

same. Namely, the same load in each node. In Figure 
1, we sketch three different possible states of 
hierarchy overlay; each state has 25 subnodes in 
entire system. In (a)’s hierarchy, the size of each 
sub-network differs greatly. As a result, the loading of 
the only subnode in the second sub-network (from 
the left side) will be nine times more than the 
subnodes in the third sub-network, and we should 
avoid the occurrence of such unbalanced hierarchy. 
Both (b) and (c) can maintain the load balance of 
each subnode in the entire system, because the size of 
each sub-network is almost equal, and (c) is sufficient 
to meet our requirement. But in (b) the size of the 
super-network is the same as the size of each 
sub-network, and (c) is not, this characteristic in (b) 
lets it roughly has n  leaders in super-network and 

n  subnodes in each sub-network with totally n 
nodes in the system. If the original routing algorithm 
guarantees O(log n) hops, (b) can guarantee 
O(log n ) hops , greatly reduced the logical hops in 
the routing path. In Jelly, we can keep the 
partially-balanced hierarchy in (c) or the 
perfectly-balanced hierarchy in (b) easily, the only 
difference of these two keeping approaches is the 
system size metric, and we will discuss it next. 

4.1 The Size Metric 
    The size metric is a key concept to construct and 
maintain the balanced hierarchy of Jelly. But in the 
fully decentralize environment, no single node has 
the capacity to exactly calculate the number of nodes 
in any subset of the systems, so we must find an 
alternative approach to evaluate the network size 
approximately. 

In [3][4][5][6][21], the analyses show that the 
routing hops are bounded by some functions that 
increase with the number of nodes N. In Chord, the 
bound is )(log2 NO , CAN is )( /1 dNO  for a given 
dimension d, and Pastry is ))((log2 NO b  for a given 
base b. And the simulation and experimental results 
in these papers also indicate that the average routing 
hops in each DHTs is monotonically increasing with 
the number of nodes. That is to say, if the average 
routing hops in one overlay network is more than 
another one, then its network size is larger than 
another with high probability. This explicit 
characteristic in DHTs inspires us to use the average 
routing hops as a metric to evaluate the network size. 

To obtain the average routing hops, we just need 
adding a field in querying message to record the 
number of hops. While messages traverse to next 
node, the field will be added by one. Here we 
examine the revised lookup process in the 
hierarchical overlay step by step: If the source node 
cannot find the object in its sub-network, it will send 
the querying message to its leader. In this step, the 
leader can obtain the previous routing hops in 
sub-network, then the message will be routed to the 
leader of the destination sub-network, and this leader 
can obtain the routing hops in super-network. Finally, 
the messages will be routed to the destination 
subnode, and it can also send the hops record in its 
sub-network to its leader. So during a querying 
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process, the leaders can get three routing hops 
information at most, and one information at least 
(routed inside the sub-network). 
    To evaluate the average routing hops, leaders 
need not to keep the hops information for a whole 
period. Considering the space usage and volatile 
behavior in peer-to-peer system, leaders just need to 
record a reasonable quantity of recent hop 
information, and it is sufficient to evaluate the 
“current” network size. 
     We list all the notations and definitions of 
Jelly’s system size parameters in Figure 2, they are all 
related to the system size metric, so the notations of 
them all starts with “S”, to indicate the size. Jelly has 
two different system size metric, one is the size of 
super-network (#super) for perfectly-balanced 
hierarchy, the other is the average size of sub-network 
(#avgsub) for partially-balanced hierarchy. #super
and the size of each sub-network (#sub) are easy to 
evaluate by the average hops by previous discussion. 
To evaluate #avgsub, leaders must obtain other 
leaders’ #sub information. It is simple to satisfy this 
requirement by an additional message field of routing 
process in super-network. Every source leader 
appends its #sub, and consequently, each leader in 
routing path can gather others’ hop information. Keep 
the current list, now it is easy to evaluate the #avgsub.

Notation Definition 

Sthreshold_ join The size threshold in node joining 

Slow_dc The lower size limit in dynamic checking

Sthreshold_sc The size threshold in selecting candidate

Sup_merge The upper size limit in merging 

Figure 2: Notations and definitions of the Jelly’s 
system size parameters 

node.Join(bootstrapnode) 
  nodeID1=Hashing(node); 
  leader=bootstrapnode.leader; 

  suitableleader=null;// is a container to fill the 

leaders of suitable joining sub-networks 

  while(the super-network routing not finished) 

     d=Relativedistance(node, leader); 
     s=leader.#sub;
     // sm is the system size metric 

     sm=leader.#avgsub; // or sm=leader.#super 

     if ( d < distancethreshold AND s < sm ×
Sthreshold_ join)

         suitableleader.add( leader ); 
     else 
         leader=leader.Nexthop(nodeID1); 

  end while; 
  if(suitableleader is null) //cannot find the suitable 

leader 

     joins supernetwork with nodeID1; 
  else 
     minleader=Choosemin(suitableleader);  

     // choose the leader with minimum sub-network 

size to join

     nodeID2=Hashing(node); 

     joins minleader’s subnetwork with nodeID2; 

Figure 3: The pseudocode of Jelly’s node Join
algorithm 

4.2 Node Joining Mechanism 
Node joining mechanism in Jelly is not only a 

constructing scheme for balanced hierarchy, but can 
also be regarded as a fine-tuning mechanism for 
maintaining balanced hierarchy. Figure 3 shows the 
Join algorithm, the algorithm is similar to the one in 
original hierarchy overlay that we discussed earlier. It 
needs checking the physical distance information to 
join the relatively closer sub-network. The two 
significant differences are that we add a new size 
checking condition to assure the joining process will 
not make the size of that sub-network larger than 
Sthreshold_join× system size metric. The other chance 
is that we examine all the leaders in the routing path, not 
only single suitable leader, and pick the suitable leader of 
the smallest size as the leader of the newly-joining nodes. 
These two changes in joining process can reduce the 
amount of sub-networks with extremely large and 
small size. Another interesting point in Join algorithm 
is that the system size metric obtained from leaders 
can be #super or #avgsub, by which balanced 
hierarchy we want to construct, and this principle is 
the same for the following operations in Jelly. 

4.3 Dynamic Checking Mechanism
    It is not enough for only relying on node joining 
mechanism to balance the size of each sub-network; 
we need a more aggressive approach to let 
sub-networks actively adjust their size. Namely, 
splitting their sub-network or merging with other 
sub-network. But the splitting operation will cause 
relatively much smaller sub-networks in the system, 
and this condition let one AS has many sub-networks. 
It will gain less benefit of the locality in hierarchical 
overlay. So we only consider sub-network merge in 
Jelly. 
    And this aggressive approach is Jelly’s dynamic 
checking mechanism. Every leader of the 
sub-network periodically compares the #sub that it 
evaluates from the hops information in its 
sub-network with Slow_dc. If its #sub is smaller than 
Slow_dc, it will start the Sub-network Merge process, 
merging its sub-network with other one. 
    The periodicity of checking can be adjusted to 
reflect the volatility of the changing networks, if a 
leader finds its #sub varying slightly from the recent 
checks, it can increase the period for future checking 
to reduce its processing loading; on the contrary, if it 
finds its #sub varying greatly from the recent checks, 
it should check more frequently to reflect the volatile 
environment. 

The Sub-network Merge process will cause the 
redistribution of the virtual space of sub-network, so 
we should alter the routing table of these subnodes. 
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Fortunately, it will not complicate and just takes 
moderate bandwidth usages. If we use CAN 
algorithm, it can maintain the original relative 
position, and scales the coordinate in one dimension 
to fit the modified virtual space. The only nodes that 
need to alter its neighbor set are the ones which are 
adjacent to the merging “plane”, the leader must 
notify these nodes that some neighbors should add to 
their neighbor sets. The majority of subnodes need 
not to change. In Chord’s case, the remaining 
consecutive ring space makes the finger table 
partially correct, all we need to do is informing the 
nodes in the cutting edge (heads and tails) to correct 
their successors. Once the successors are corrected, 
the new sub-network can function correctly, and the 
stabilization process in Chord will update all the 
finger pointers in parallel. Regardless which DHTs 
algorithm we use, we just keep the original useful 
routing information and modify some parts of them. 
This modifying process is far more efficient than 
reinserting the subnodes to sub-network one by one.        

4.4 Sub-network Merge 
    In the merging process, the leader of the 
sub-network which wants to merge with one 
“suitable” sub-network must have a feasible scheme 
to find the “suitable” sub-network. So each leader 
maintains a candidate list to store the suitable 
sub-networks’ leaders; one leader can easily measure 
the physical distance form itself to these leaders, and 
then the information of physical distance and #sub
of other leaders decide whether they are suitable 
merging candidates of that leader. We let the 
distance threshold be an invariant in all the 
operations, to assure the strong bond locality. To 
save the bandwidth usage and reflect the volatile 
environment, one leader does not need to measure 
the physical distance every time when a new 
message comes. It can apply variable measuring 
period, just like the dynamic checking mechanism 
we discussed earlier. If one leader measure that a 
leader is physically closer than the threshold and 
#sub of that leader is lower than Sthreshold_sc
multiplied by the system size metric, then it is a 
suitable merging partner, and the leader will put it in 
the candidate list. The candidate list only keeps 
some recent entries, and all entries be sorted by 
candidate leader’s #sub increasingly. The top entry 
in the list is the most suitable merging candidate by 
current information for future merging. 
    Once a leader starts the Sub-network Merge 
process, it first proceeded the FindMergingPartner
algorithm (shown in Figure 4) to find the exact 
leader and its sub-network for merging. The 
algorithm first picks the top entry of its candidate 
list, it is the best candidate, and the leader will send 
a message to this candidate. If it is alive, it sends a 
message back appending its #sub, the leader uses 
this information to calculate the merged size. If the 
merged size is smaller than Sup_merge× system size 
metric, this candidate leader and its sub-network are 
the exact partner of merging process. If this 
candidate is not alive or fails the size checking, the 

algorithm will pick the second, the third…….. 
suitable candidate to repeat the same procedure 
described above. If all the entries in candidate list 
are not suitable partner, the leader will increase 
Sthreshold_sc to loosen the restriction of selecting 
candidate, and the infinite loop in the algorithm will 
do this progressively until it finds the partner. 

While the leader find its merging partner, its 
subnodes and itself will merge into this partner’s 
sub-network to become the new subnodes. It takes a 
leaving process in super-network to inform one 
corresponding leader and its sub-network taking 
over its original loads. After the Sub-network Split 
process, the overall hierarchy will be much balanced 
and system still preserves the locality property. 

leader.FindMergingPartner( ) 
  while( )// start infinite loop 

    while(leader.Candidatelist NOT NULL) 

      // pop the fittest candidate leader of list 

      c =leader.Candidatelist.firstelement; 
      // check the candidate is alive or not 

      if (c is alive) 
        s =leader.#sub+c.#sub;
        // the total size after merging can not be too large 

        if (ts < Sup_merge× leader.#avgsub)
          // return the partner of merging process 

          return c; 

     end inner while; 
     // if can not find the partner 

     increase Sthreshold_sc;

     wait a short period of time; 
   end outer while;  

Figure 4: The pseudocode of FindMergingPartner
algorithm 

5. Simulations 
Now we present some simulation results to 

evaluate the load balancing and locality performance 
in the Jelly design. In both super-network and 
sub-network routing, we used CAN [3] algorithm 
with dimension 3 and more uniform partitioning 
scheme. 

To simulate the real world network 
environment, we selected BRITE [22] topology 
generator to generate 1000 Autonomous Systems 
(ASs), and used the heavy-tailed policy to place 
these ASs, observing the power-law distribution. We 
assumed that there are 10000 nodes in each AS. In 
each time of our experiment, we randomly picked 
100 ASs of these 1000 ASs, and a given percentage 
of nodes in each AS to join the system.  
    Before the experiment, we had set the distance 
threshold and the system size parameters listed in 
Figure 2, we fixed the distance threshold to be 100, 
the Sthreshold_join and the Sup_merge all 1.26, the 
Slow_dc and Sthreshold_sc 0.79. The reason for 
setting the system size parameters in these values is 
based on the CAN algorithm, the average routing 
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hops grows as dn /1 ; n represents the number of 
nodes, and d is the dimension of virtual space, here 
is 3. All the system size parameters are the upper 
limits or the lower limits of average path hops. So 
we set the upper limits 26.12 3/1 = , means double 
the size; the lower limits 79.0)2/1( 3/1 = , means half 
the size. 
    First, we evaluated the load balancing 
performance by examining the volume of each 
node’s zone in virtual space. Because we assume the 
uniform hashing can distribute the objects evenly in 
the coordinate space, so the volume of each node’s 
zone represents the load stored on that node. Here 
we defined V, the average volume calculated from 
dividing entire coordinate space by the number of 
nodes in the system. We had experimented seven 
tests and the results was shown in Figure 5. In all the 
joining tests, the entire system had 16384 nodes, and 
we left 8192 nodes for the leaving tests, and inserted 
adequate amounts of querying messages during each 
1000 joining or leaving messages in all Jelly’s tests 
to let the leaders gather enough path hops 
information.  

Figure 5: Comparing the loading distribution 
among the seven tests 

    In the Perfectly Balanced test, we joined 16384 
nodes into 128 sub-networks to make each 
sub-network have the same size. Due to the CAN 
algorithm, the percentage of the nodes assigned to the 
volume equal V is not 100%, but about 85%. The 
largest volume is 4V and the smallest volume is V/4. 
We can regard it as the ideal case. In the Grapes Join 
test, only 32% of nodes with volume V, and has 
significant percentage of nodes over 8V and under 
V/8, the load distribution is so uneven in Grapes. In 
test 3 and 4, we used only the node joining 
mechanism in 4.2. Although the percentage of V has 
only a little improvement, the percentage over and 
under the limits is significantly reduced. Due to the 
size checking scheme in the node joining mechanism 
avoids producing the sub-network with extremely 

large size, and the little effort we paid in 
super-network joining makes the extremely small 
size sub-networks relatively few. And from the 
figure, we noticed the effects of choosing #avgsub
or #super as the system size metric are similar. In 
test 5, we used both the node join scheme and 
dynamic sub-network merge scheme described in 
4.3 and 4.4. Due to dynamically merge the smaller 
sub-networks, the heaviest load dropped to 4V, and 
74% of the nodes are assigned to the zones with 
volume V. This experimental result shows that Jelly 
can produce good load balancing property with the 
joining process. 
    In the leaving test, we randomly chose half 
the nodes leaving successively to examine the 
performance of the dynamic checking mechanism 
in Jelly. From the Grapes Leave test, we noticed 
the leaving process deteriorates the load balance, 
due to lack of self-adjusted mechanism. And 
because of the high performance of Jelly’s dynamic 
checking mechanism, in test 7, the loading 
distribution is almost the same with test 5. This 
showed that Jelly can dynamically adjust its 
hierarchy to reflect the variation in networks, and 
preserve the good load balancing property in 
original DHT. 

Figure 6: Comparing the load diversity in Jelly with 
Grapes 

Figure 7: Comparing object lookup physical path 
length in Jelly with CAN 
    Figure 6 presents the load diversity property by 
examining the factor of maximum load divided by 
minimum load, while the total system size scaled from 
5000 to 30000 nodes. By this experiment, we conclude 
that the good load balancing property can be preserved in 
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hJelly, even the system scales to relatively large size. 
Contrarily, in Grapes, the load distribution will be 
more diverse as the larger system size, due to the fully 
static constructing scheme. 
    Figure 7 presents the locality property of Jelly. 
To display the replicate scheme of hierarchical 
overlay network in limited simulation environment, 
we assumed the entire system stores 500 kinds of 
objects. In each system size condition, every node 
randomly picked an object from the 500 kinds to 
lookup. Due to the replications in sub-network, the 
path length in Jelly is much shorter than the physical 
path length in CAN, and scales well as the original 
hierarchical overlay, achieving good locality property. 

6. Conclusion

Load balance and locality are two important 
issues in the design of current peer-to-peer systems. 
Jelly applies topology-based hierarchical overlay 
network as its fundamental infrastructure to improve 
the locality property of DHTs. We design a node join 
mechanism as a fine-tuning tool, and a dynamic 
checking mechanism as a coarse-tuning tool to 
balance the size of each sub-network, making the 
system can exploit the load balancing characteristic 
in DHTs. Our simulation results have demonstrated 
that Jelly is a scalable peer-to-peer overlay network 
with load balancing and locality properties.     

    In this paper, we regard the distance threshold 
as the invariant in the node joining and sub-network 
merging process to ensure the locality. In the future 
work, we consider designing an adaptive distance 
threshold mechanism, and constructing and 
maintaining a more flexible hierarchy to 
accommodate ever changing network environment. 
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