
On the Benefits of Non-Canonical Filtering in Publish/Subscribe Systems

Sven Bittner & Annika Hinze
University of Waikato

Hamilton, New Zealand
{s.bittner, a.hinze}@cs.waikato.ac.nz

Abstract

Current matching approaches in pub/sub systems only
allow conjunctive subscriptions. Arbitrary subscriptions
have to be transformed into canonical expressions, e.g.,
DNFs, and need to be treated as several conjunctive sub-
scriptions. This technique is known from database sys-
tems and allows us to apply more efficient filtering algo-
rithms. Since pub/sub systems are the contrary to tradi-
tional database systems, it is questionable if filtering several
canonical subscriptions is the most efficient and scalable
way of dealing with arbitrary subscriptions. In this paper
we show that our filtering approach supporting arbitrary
Boolean subscriptions is more scalable and efficient than
current matching algorithms requiring transformations of
subscriptions into DNFs.

1. Introduction

Most matching algorithms in pub/sub systems exclu-
sively measure quality in terms of efficiency. Hence, they
only support very limited subscription languages, i.e., sub-
scriptions are defined as conjunctions of attribute-operator-
value triples (predicates). Restricting the expressiveness of
subscriptions in that way allows for the application of ef-
ficient matching algorithms. These algorithms do not have
to take into account the various combinations of predicates,
they only have to determine fulfilled predicates and test if
the number of matching predicates equals the total number
of predicates of a subscription (this is known as the counting
algorithm [15, 17]).

For more sophisticated subscriptions (i.e., subscriptions
involving arbitrary Boolean combinations of predicates)
current approaches require transforming subscription defi-
nitions into disjunctive normal forms (DNFs) and treating
each disjunction as a separate subscription [8, 14]. Hence,
we can apply fast matching algorithms that only support
conjunctive predicates. However, this approach has the
drawback of limiting existing scalability restrictions even

further: Filtering algorithms are designed as pure main
memory solutions, hence their scalability depends on avail-
able resources. Boolean expressions transformed into DNFs
are exponential in size (worst case) compared to their orig-
inal expressions. Thus, after transformations already lim-
ited memory resources are even more utilised. Conse-
quently, it is very questionable if such transformations into
canonical expressions have even advantages for routine em-
ployment, i.e., conventional machines do not have proces-
sors fast enough nor main memories large enough for cur-
rent (i.e. canonical) matching approaches. In typical real
world situations we will find peer-to-peer networks of less
equipped machines, such as laptops and mobile devices to
perform event filtering. Thus, filtering of general subscrip-
tions in practice is still an open problem.

Our approach is to allow arbitrary Boolean subscriptions
in pub/sub systems and to obtain filtering using indexes and
these explicitly defined subscriptions. Thus, we improve the
scalability of pub/sub systems and allow efficient event fil-
tering on other machines than designated servers with “in-
exhaustible” resources. In detail the contributions of this
paper are:

1. We present a novel matching algorithm applicable to
pub/sub systems (Sect. 3)

2. We show that our approach is more space efficient and
thus scalable than current matching algorithms (theo-
retically in Sect. 2 and practically Sect. 4)

3. We show that filtering original subscriptions is more
time efficient than filtering subscriptions transformed
into DNFs (theoretically in Sect. 2 and practically in
Sect. 4)

The remainder of this paper is structured as follows. In
Sect. 2 we give a short overview of state-of-the-art matching
algorithms and reasons why they use conjunctive subscrip-
tions only. The essentials of our new filtering approach are
presented in Sect. 3. Section 4 describes experiments show-
ing the advantages of our non-transforming attempt over a

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

transforming algorithm. Finally, some of the future work is
presented in Sect. 5 as well as the conclusion of this paper.

2. Event filtering algorithms

Nearly all filtering approaches in general purpose
pub/sub systems only support conjunctive subscriptions
(e.g. Gryphon [1, 3], Le Subscribe [8], SIENA [5] and
the approaches in [2, 9, 10, 14]). Thus, arbitrary Boolean
subscriptions need to be converted to canonical expres-
sions [7, 10, 14] to allow for their matching. Then, these al-
gorithms treat disjunctions as several subscriptions [8, 14].
This results in heavy memory consumption, since Boolean
subscriptions transformed into DNFs are exponential in size
compared to their original expressions. In [6] disjunctions
of conjunctive predicates are allowed in subscriptions. In-
deed this is an improvement of solely conjunctive subscrip-
tions, but arbitrary Boolean subscriptions still have to be
transformed into the supported canonical form and are not
polynomial in size compared to their original expressions.

The motivation for these current approaches with re-
stricted subscriptions is to achieve very fast event filtering to
obtain notifications in a short delay [8] assuming designated
filtering servers equipped with fast processors and tremen-
dous main memories. Unfortunately, the improvement of
efficiency comes with a restriction of the expressiveness of
subscriptions. To balance this behaviour, techniques known
from database systems have to be applied, i.e., arbitrary
Boolean subscriptions are required to be transformed into
canonical expressions. However, it remains questionable
if this technique should be used in the context of pub/sub
systems. We claim it is a more promising option to filter
on general subscriptions and show it practically in Sect. 4.
In the following section we firstly present current filtering
algorithms. Secondly, we show the impact of canonical
expressions in these approaches on filtering efficiency and
scalability.

2.1. Brief overview of filtering approaches

We examine filtering algorithms for pub/sub systems ac-
cording to three quality measures: We firstly have a look
on time efficiency, i.e., the performance of an algorithm for
its processable problem size. Secondly, we focus on space
efficiency, i.e., how cautious main memory resources are
used by algorithms. Our last important quality measure is
scalability, i.e., with which performance growing problem
sizes are handled by an algorithm. In current pub/sub sys-
tems space efficiency directly influences scalability, since
algorithms are designed as main memory solutions. Hence,
their processable problem sizes depend on resource usage,
i.e., space efficiency.

Current filtering algorithms in pub/sub systems can gen-
erally be classified into three categories applying

• no index structures, e.g. [4, 16]

• one-dimensional index structures, e.g. [8, 10, 15, 17]

• multi-dimensional indexes, e.g. [1, 9]

A popular notification service applying no indexes for filter-
ing is Elvin [16]. Prominent examples of one-dimensional
algorithms are the counting algorithm [15, 17] and Hanson’s
approach [8, 10], both exploiting the restriction to con-
junctive subscriptions for efficiency improvements. Popular
multi-dimensional algorithms are tree-based, such as the ap-
proaches from Gough [9] and Aguilera [1]. There traversing
a matching tree results in obtaining all matching subscrip-
tions, since only conjunctive subscriptions can be used.

Applying indexes means to evaluate each attribute only
once, i.e., all predicates of subscriptions involving a certain
attribute are tested using an index. Without indexes several
evaluations per attribute are performed, i.e., the predicates
are tested independently. Matching times in case of non-
index filtering grow linearly with the number of subscrip-
tions and have a strong gradient which makes this approach
inapplicable for practical solutions with time constraints tar-
geting large subscription quantities. However, non-index
approaches mostly allow non-canonical expressions in sub-
scriptions, such as Elvin [16] and [4], resulting in more ex-
pressive subscription languages.

Exploiting indexes results in faster filtering [11, 16].
One-dimensional index structures need two steps to deter-
mine matching subscriptions, multi-dimensional ones allow
filtering in one step. Furthermore, matching using multi-
dimensional indexes allows for the evaluation of required
predicates only, i.e., evaluated predicates depend on already
fulfilled ones. Applying one-dimensional indexes instead
means to evaluate predicates of attributes independently
from previous matching steps. Hence, regarding time ef-
ficiency multi-dimensional indexes are a better choice than
one-dimensional ones [11].

In addition to time efficiency we also have to have a look
at space efficiency of algorithms. Assuming that algorithms
in all three categories have to store subscriptions, applying
no indexes shows the best space efficiency. Storage of sub-
scriptions is always required if a more sophisticated sub-
scription language than conjunctions only is supported by a
system. Furthermore, to efficiently support unsubscriptions
we require an association between subscriptions and pred-
icates, e.g., by storing lists of predicates of subscriptions.
Since current indexing algorithms assume conjunctive sub-
scriptions they do not need to store subscriptions explicitly,
but only require an association list as mentioned before.

Generally, one-dimensional indexes have advantages in
respect to space efficiency over multi-dimensional ones, be-

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

cause one-dimensional indexes store predicates only once.
Multi-dimensional ones might index predicates several
times depending on other predicates of their subscriptions.

According to our reasoning in the beginning of this sec-
tion out of space efficiencies of main memory algorithms
we can derive scalability characteristics. Thus, concerning
scalability we should prefer non-indexing approaches over
algorithms exploiting one-dimensional indexes. Worst scal-
ability is achieved if applying multi-dimensional indexes.

Concluding, when dealing with restricted resources ap-
plying one-dimensional indexes is the best option, since
they require far less memory than multi-dimensional ones
and show much better time efficiency than non-index ap-
proaches [11, 16]. Indeed, one-dimensional indexes are
slower than multi-dimensional techniques, but this can be
neglected out of scalability reasons which we have to look
at in practical use. Non-indexing approaches should be
avoided due to their characteristic to evaluate all subscrip-
tions for each event.

2.2. On the usage of canonical expressions

The practice of query rewriting into canonical forms is
adopted from database systems. For database queries, it
is fundamental to transform restrictions on result sets into
canonical expressions: Queries are transformed to have a
common starting point for all queries to perform query op-
timisation [12]. Then, after a transformation into canon-
ical expressions, queries are simplified by applying var-
ious transformation rules. When using DNFs each ele-
ment within the disjunction is handled and optimised sepa-
rately [13]. Finally, access plans are created and the cheap-
est one is executed [12]. These query rewriting and ex-
ecution techniques are chosen because the main costs in
databases are caused by accessing and combining a huge
amount of data over several tables and columns. Hence,
time efficient query execution depends on how efficiently
data is accessed, which in turn, depends on physical data
storage. Thus, regarding main memory usage it is not cru-
cial if queries are transformed to improve performance: A
database system can deal with the problem of expanded
memory usage because of the small quantity of queries eval-
uated at one time.

Pub/sub systems are the contrary to traditional databases:
They deal with huge amounts of subscriptions and data oc-
curs in form of event messages. Because of this converse
problem definition we argue that it is not sufficient to ap-
ply solutions from database systems to pub/sub. Current
research has addressed these differences in regard to filter-
ing by developing algorithms better applicable to pub/sub
systems [2, 15].

The problem still persists regarding internal representa-
tion and processing of subscriptions in pub/sub systems. It

is very questionable if the best strategies are either trans-
forming all subscriptions (which are really numerous in
contrast to queries in database systems) into canonical ex-
pressions (e.g. [7, 10, 14]) requiring more than polynomial
space in worst case or solely focusing on very restricted sub-
scriptions (e.g. [5, 6, 8, 15]) and leaving transformations to
users. Unlike in database systems, in pub/sub systems this
means to multiply memory problems. Furthermore, current
matching approaches do not optimise subscriptions, which
is a main reason for query transformations in database sys-
tems.

Besides this, filtering over canonical expressions means
to execute redundant computations. Consider, e.g., the
counting algorithm after the registration of non-canonical
subscriptions with unique predicates (the pub/sub system
either transforms itself or requires a transformation by
users): If one unique predicate is fulfilled we have to in-
crease a counter for several subscriptions in the predicate
matching step (this is because after a transformation predi-
cates are part of several conjunctive subscriptions). Further-
more, the subscription matching step works on a multiple
of the number of original registered subscriptions. Hence, a
large extend of performed computations are redundant and
a direct result of canonical transformations. This also holds
if users have to transform their subscriptions themselves.

However, the advantage of transforming into canoni-
cal expressions in pub/sub systems or the neglect of ar-
bitrary Boolean subscriptions is to circumvent evaluations
of Boolean expressions. Subscription matching can be ob-
tained by simply counting the number of fulfilled predicates
per subscription and comparing this value to the total num-
ber of predicates. Consequently, algorithms become faster
and easier to implement. Up to now it was questionable
if these latter advantages outbalance the former mentioned
disadvantages in practice. Section 4 presents an answer to
this question, but beforehand we present an essential detail
in the next section: our matching approach.

3. Non-canonical filtering

This section introduces our filtering approach for non-
canonical subscriptions. This algorithm overcomes existing
expressiveness restrictions in conjunctive subscriptions and
allows for the direct filtering of arbitrary Boolean subscrip-
tions. Furthermore, it prevents scalability constraints due to
the avoidance of transforming Boolean subscriptions into
canonical forms.

3.1. Subscription representation

We define a subscription s as an arbitrary Boolean ex-
pression with predicates p as variables using Boolean oper-
ators AND, OR and NOT. Predicates p are filters in form of

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

attribute-operator-value triples and might be shared among
different subscriptions. Each subscription may have an ar-
bitrary number of predicates regarding any attribute of an
event. Both predicates p and subscriptions s can be uniquely
identified by their identifiers id(p) and id(s), respectively.
An event e matches a subscription s if the Boolean expres-
sion of s evaluates to true. Thereby the variables of this
expression are represented by the results of the respective
predicates of s applied to e.

Internally, subscriptions are compiled into subscription
trees representing their Boolean expression and their pred-
icates, i.e., inner nodes are marked with Boolean operators
and leaf nodes represent predicates. Binary operators are
treated as n-ary ones due to compacting subscription trees.
Predicates p are represented by their identifiers id(p) in-
stead of their filter operations. A simplified example of a
subscription tree is illustrated in Fig. 1 for the subscription
s = (a > 10∨a ≤ 5∨b = 1)∧(c ≤ 20∨c = 30∨d = 5). To
register this subscription s in canonical approaches, s has to
be transformed into DNF. Thus, s results in 9 disjunctions
that are required to be treated separately.

d=5

AND

OR OR

a>10 a<=5 b=1 c<=20 c=30

Figure 1. Example of a subscription tree.

Internally we store predicate identifiers id(p) in leaf
nodes in contrast to predicates p themselves as shown in
Fig. 1. For predicates we utilise indexes to allow for a fast
determination of all predicates matching an event. This fil-
tering process is described in detail in the next section. Sub-
scription trees are encoded to decrease memory usage. The
memory address of a subscription is denoted by loc(s).

3.2. Event filtering

The process of event filtering involves four major data
structures that are shown in Fig. 2: We utilise one-
dimensional indexes, a predicate subscription association
table storing (id(p), {id(s)}) tuples, a subscription location
table containing (id(s), loc(s)) tuples and subscription trees
to store subscriptions themselves.

In the first step of event filtering (predicate matching)
all predicates matching an event e are determined, i.e., all
predicates evaluating to true if applied to e. This is accom-
plished by the application of one-dimensional index struc-
tures such as hash tables or B+ trees. These indexes are
applied based on operators used in predicates, e.g., point

predicates utilise hash tables, for range predicates we de-
ploy B+ trees. This first part of filtering is illustrated in the
upper part of Fig. 2. The output of predicate matching is a
list of identifiers {id(p)} of matching predicates.

...

Hash Index

id(p) 1 79

2,3

loc(s)

id(s) 32

...

70

...

Value

...

B+ Tree Index

{id(p)}Indexes

Predicate
Subscription
Association
Table

Subscription
Location
Table

{id(s)}

...

Subscription
Trees

...

{id(p)}

{id(s)}

{id(p)}

Value

70

...

...

Figure 2. Overview of data structures involved
in the filtering process.

The second step of event filtering (subscription match-
ing) is depicted in the lower parts of Fig. 2 and works as fol-
lows: We firstly determine all candidate subscriptions, i.e.,
subscriptions including at least one of the matching predi-
cates obtained in step one. This is achieved by the help of
the predicate subscription association table (cf. Fig. 2) re-
sulting in a list of subscription identifiers {id(s)}. Secondly,
we utilise the subscription location table to obtain memory
addresses loc(s) of subscription trees of candidate subscrip-
tions s. Thirdly, we evaluate the Boolean expressions of all
candidate subscriptions (the values of variables, i.e., match-
ing predicates, have already been obtained in step one and
are known in step two). Finally, all subscribers with sub-
scription trees evaluating to true are notified.

Hence, predicates are only evaluated in predicate match-
ing. Subscription matching evaluates Boolean expressions
of candidate subscriptions with information obtained in step
one. Several optimisations could be applied to the pro-
cess of subscription matching presented here (e.g. reorder-
ing subscription trees or a general space optimisation); their
impact remains to be investigated.

Our approach does not multiply memory usage by trans-
forming subscriptions into canonical expressions. But un-
like current algorithms, we explicitly store subscriptions

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

and thus require memory for their storage. Several match-
ing approaches neglect the storage of subscriptions, e.g.,
the counting algorithm only stores the number of predi-
cates each subscription consists of. This entails complica-
tions when supporting unsubscriptions as already outlined
in Sect. 2.11.

3.3. Prototype

We implemented a prototype of our filtering approach.
Subscriptions are encoded in a basic and thus not the most
space efficient way (in practical employment we should fur-
ther improve this aspect). We only encode them on a byte
level, e.g., to encode a Boolean operator we require one
byte, also the number of children for inner nodes is encoded
by one byte. Furthermore, the width of children is stored
using two bytes each and predicate identifiers require four
bytes. Improvements to this approach are left to future work
here.

Besides this “waste” of memory in our prototype we
want to compare the behaviour of our algorithm to a mem-
ory friendly implementation of the counting algorithm [2]
without the support of unsubscriptions. Thus, we require a
predicate bit vector, a hit vector, a subscription-predicate
count vector and a predicate subscription association ta-
ble2. According to [2] we assume a maximum of 256 pred-
icates per subscription and use 1 byte per entry in hit and
subscription-predicate count vector.

We also implemented a variation of the counting algo-
rithm: In subscription matching we do not compare the
whole hit vector and subscription-predicate count vector.
Instead, in the beginning of step two for matching pred-
icates we record all subscriptions they belong to. After-
wards, we only compare the entries of these subscriptions
in hit vector and subscription-predicate count vector. Thus,
our variation of the counting algorithm rather depends on
the number of matching predicates than on the total number
of subscriptions.

We choose the counting algorithm for our comparison
because it easy to implement, requires no additional statis-
tical information and makes no further assumptions about
subscriptions and events, such as [8]. Space efficiency of [8]
shows only slight differences to the counting algorithm.
Thus, in respect to scalability the results of out experiments
also hold for the algorithm presented in [8]. We are aware
that the counting algorithm is not the most efficient filter-
ing solution, but our implementation variation improves the

1If we do not use data structures to determine all predicates that belong
to each subscription we have to access the whole predicate subscription
association table to find the predicates of a subscription.

2We choose an implementation similar to the list-based one in [2] to
require as little memory as possible and thus improve the memory usage
of the algorithm. Since we know the number of subscriptions per predicate
we use arrays instead of a subscription list.

time efficiency of the counting algorithm in a similar man-
ner as [8], since only candidate subscriptions are considered
in subscription matching.

4. Experiments

In this section we describe a first practical evaluation of
our non-canonical matching algorithm. We have run sev-
eral experiments to show the impact of transformations into
canonical expressions. In these experiments we compare
our filtering algorithm to the two variants of the counting
algorithm presented in the last section. We only need to
compare the second phases (subscription matching) of the
algorithms, since the first phases use the same indexes in the
same way in both approaches resulting in the same compu-
tation times for predicate matching.

We avoid the usage of shared predicates in order to di-
rectly observe the influence of increasing numbers of sub-
scriptions on both time and space efficiency. We do not as-
sume high predicate redundancy, i.e., domains are supposed
to have relatively large sizes and subscribers are interested
in different events. Our subscriptions are non-DNF expres-
sions and are characterised by their numbers of predicates
|p|. If they are transformed into DNFs to be usable by the

counting algorithm one original subscription results in 2
|p|
2

subscriptions with |p|
2 predicates each. The other test and

test system parameters are shown in Table 1. We have run
our experiments several times in order to obtain variances
under 1 %. Hence, it is not required to present variances in
our results.

The experiments and their results presented in this pa-
per are an initial comparison of our non-canonical filtering
approach to recent canonical filtering attempts. Thus, our
examination does not allow for an all-embracing analysis
of our approach but gives a first demonstration of its useful-
ness and advantages and shows the impact of transforma-
tions into canonical expressions.

Parameter Value

CPU speed 1.8 GHz

Total machine memory 512 MB

Number of subscriptions 2,000 – 5,000,000

Number of original (unique)

predicates per subscription 6 to 10

Number of subscriptions per

subscription after transformation 8 to 32

Used Boolean operators AND, OR

Matching predicates per event 5,000 – 10,000

Table 1. Parameters in experiments.

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

0.00

0.04

0.08

0.12

0.16

0.20

5.04.54.03.53.02.521.510.50

T
im

e
U

ni
ts

 (
in

 S
ec

on
ds

)

Number of Subscriptions (in Millions)

non-canonical
counting variant
counting

(a) 6 predicates, 5000 fulfilled ones.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

4.03.53.02.521.510.50

T
im

e
U

ni
ts

 (
in

 S
ec

on
ds

)

Number of Subscriptions (in Millions)

non-canonical
counting variant

counting

(b) 8 predicates, 5000 fulfilled ones.

0.00

0.04

0.08

0.12

0.16

0.20

2.521.510.50

T
im

e
U

ni
ts

 (
in

 S
ec

on
ds

)

Number of Subscriptions (in Millions)

non-canonical
counting variant

counting

(c) 10 predicates, 5000 fulfilled ones.

0.00

0.04

0.08

0.12

0.16

0.20

5.04.54.03.53.02.521.510.50

T
im

e
U

ni
ts

 (
in

 S
ec

on
ds

)

Number of Subscriptions (in Millions)

non-canonical
counting variant
counting

(d) 6 predicates, 10000 fulfilled ones.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

4.03.53.02.521.510.50

T
im

e
U

ni
ts

 (
in

 S
ec

on
ds

)

Number of Subscriptions (in Millions)

non-canonical
counting variant

counting

(e) 8 predicates, 10000 fulfilled ones.

0.00

0.04

0.08

0.12

0.16

0.20

2.521.510.50

T
im

e
U

ni
ts

 (
in

 S
ec

on
ds

)

Number of Subscriptions (in Millions)

non-canonical
counting variant

counting

(f) 10 predicates, 10000 fulfilled ones.

Figure 3. Results using 6 to 10 predicates with varying numbers of fulfilled predicates.

4.1. Experimental results

Our experimental results are shown in Fig. 3. Abscissae
show an increasing number of subscriptions (in millions),
ordinates present matching times (in seconds) for subscrip-
tion matching per event with the given number of fulfilled
predicates per event.

The matching time of the counting algorithm increases
linearly with the number of registered subscriptions. This
observation is consistent with other works [2, 8] and re-
sults out of the fact that the number of matching predi-
cates has to be compared to the total number of predicates
for all registered subscriptions. Furthermore, if less sub-
scriptions are created by transformations the counting algo-
rithm shows better scalability (Fig. 3(a) and Fig. 3(d) com-
pared to Fig. 3(c) and Fig. 3(f), respectively). Sharp bends
in the curves denote the point when available main mem-
ory resources are exhausted and the operating system starts
page swapping, e.g., from approx. 1,600,000 subscriptions
in Fig. 3(b). For small subscription numbers (e.g. up to
700,000 subscriptions in Fig. 3(d)) the counting algorithm
behaves most efficient compared to other approaches due to
the small number of required comparisons.

The variant of the counting algorithm does not behave
linearly with the number of subscriptions. This is because
not all subscriptions have to be evaluated in subscription
matching. Hence, the variant behaves better than the origi-
nal counting algorithm in cases of large quantities of sub-

scriptions. Small numbers of subscriptions require more
overhead for creating a list of candidate subscriptions than
saved computation costs for comparisons of the numbers of
fulfilled predicates for non-candidate subscriptions. How-
ever, the scalability of the variant is restricted in the same
way as the one from the original counting algorithm: Trans-
formations (required due to the support of conjunctive sub-
scriptions only) result in the same large number of regis-
tered subscriptions, i.e., approx. 700,000 original subscrip-
tions fill available main memory resources when using 10
predicates (Fig. 3(c) and Fig. 3(f)).

Our non-canonical approach shows several advantages.
On the one hand it shows much better scalability than trans-
forming algorithms (in case of 10 predicates in Fig. 3 it eas-
ily handles more than 4 times as many subscriptions). On
the other hand it shows better performance than the count-
ing approach in all cases except for small subscription quan-
tities. And it always achieves better time efficiency than
the implemented variant of the counting algorithm. Here it
becomes obvious that the overhead of redundant computa-
tions after transformations in the counting approach is enor-
mous compared to the overhead of evaluating Boolean sub-
scriptions in our approach (as argued in Sect. 2.2). Due to
the increasing overhead after transformations the difference
in time efficiency between our approach and the variant of
the counting algorithm becomes larger in cases of growing
numbers of transformed subscriptions (cf. Fig. 3(d) over
Fig. 3(e) to Fig. 3(f)). In cases of increasing subscription

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

numbers our algorithm shows only slightly decreasing time
efficiency. Its performance (as well as the one from the
variant of the counting algorithm) is more dependent on the
number of fulfilled predicates per subscription than the per-
formance from the original counting approach. This results
out of the different handling of non-candidate subscriptions.

Concluding, our experiments show that

1. Transformations into DNFs radically drop the scalabil-
ity properties of an event filtering algorithm

2. The Filtering of several conjunctive subscriptions in-
stead of arbitrary Boolean ones decreases efficiency

The scalability decrease of transformations arises from the
increasing problem size, i.e., subscription numbers. This
overhead cannot be outbalanced by cutting down the com-
plexity of each subscription, i.e., to allow only conjunctive
subscriptions (this effect becomes even more apparent if
supporting unsubscriptions, cf. Sect. 3.2). Decreased effi-
ciency characteristics are caused by the overhead of redun-
dant computations that are required due to transformations
(cf. Sect 2.2).

5. Conclusion and future work

In this paper we have investigated the impact of the
transformation of subscriptions on efficiency and scalabil-
ity of filtering algorithms. We firstly analysed motivations
of current approaches to either perform transformations or
solely support conjunctive subscriptions and leave the tasks
of transformations to users. Secondly, we argued that non-
transforming algorithms behave better. Then, we presented
our matching approach treating subscriptions as they are
without a generation of canonical expressions. Finally, we
compared our algorithm to two variants of the counting ap-
proach.

In experiments, we have shown the advanced scalabil-
ity properties of our approach compared to algorithms re-
quiring transformations. We also found that our approach
outbalances the efficiency properties of other algorithms
in case of non-canonical subscriptions. These two advan-
tages of our approach are based on less overhead for fil-
tering of arbitrary Boolean subscriptions compared to addi-
tional computation costs after transforming such subscrip-
tions into canonical expressions.

In the future we want to theoretically investigate mem-
ory consumptions of different filtering algorithms. Addi-
tionally, we will perform experiments with more general
subscriptions using an improved encoding and analyse the
influence of various system and subscription parameters on
efficiency and scalability. A further step is the development
of filtering strategies exploiting other resources than main
memory.

References

[1] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and
T. D. Chandra. Matching Events in a Content-Based Sub-
scription System. In Proceedings of PODC ’99, pages 53–
61, Atlanta, USA, May 4–6 1999.

[2] G. Ashayer, H. A. Jacobsen, and H. Leung. Predicate Match-
ing and Subscription Matching in Publish/Subscribe Sys-
tems. In Proceedings of ICDCSW ’02, Austria, July 2002.

[3] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E.
Strom, and D. C. Sturman. An Efficient Multicast Protocol
for Content-based Publish-Subscribe Systems. In Proceed-
ings of ICDCS ’99, Austin, USA, May 31–June 4 1999.

[4] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith. Ef-
ficient Filtering in Publish-Subscribe Systems using Binary
Decision Diagrams. In Proceedings of ICSE 2001, pages
443–452, Toronto, Canada, May 12–19 2001.

[5] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
Evaluation of a Wide-Area Event Notification Service. ACM
Transactions on Computer Systems, 19(3):332–383, 2001.

[6] A. Carzaniga and A. L. Wolf. Forwarding in a Content-
Based Network. In Proceedings of SIGCOMM ’03, pages
163–174, Karlsruhe, Germany, March 24–26 2003.

[7] J. Chen, D. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A
Scalable Continuous Query System for Internet Databases.
In Proceedings of SIGMOD 2000, USA, May 2000.

[8] F. Fabret, A. Jacobsen, F. Llirbat, J. Pereira, K. Ross, and
D. Shasha. Filtering Algorithms and Implementation for
Very Fast Publish/Subscribe Systems. In Proceedings of
SIGMOD 2001, Santa Barbara, USA, May 21–24 2001.

[9] J. Gough and G. Smith. Efficient Recognition of Events in a
Distributed System. In Proceedings of ACSC-18, 1995.

[10] E. N. Hanson, M. Chaabouni, C.-H. Kim, and Y.-W. Wang.
A Predicate Matching Algorithm for Database Rule Sys-
tems. In Proceedings of SIGMOD 1990, USA, May 1990.

[11] A. Hinze. A-MEDIAS: Concept and Design of an Adap-
tive Integrating Event Notification Service. PhD thesis, Freie
Universität Berlin, Institute of Computer Science, July 2003.

[12] M. Jarke and J. Koch. Query Optimization in Database Sys-
tems. ACM Computing Surveys, 16(2):111–152, 1984.

[13] A. Kemper, G. Moerkotte, K. Peithner, and M. Steinbrunn.
Optimizing Disjunctive Queries with Expensive Predicates.
In Proceedings of SIGMOD 1994, USA, May 1994.

[14] G. Mühl and L. Fiege. Supporting Covering and Merg-
ing in Content-Based Publish/Subscribe Systems: Beyond
Name/Value Pairs. IEEE DSOnline, 2(7), 2001.

[15] J. Pereira, F. Fabret, F. Llirbat, and D. Shasha. Efficient
Matching for Web-Based Publish/Subscribe Systems. In
Proceedings of CoopIS 2000, Israel, September 2000.

[16] B. Segall and D. Arnold. Elvin has left the building: A pub-
lish/subscribe notification service with quenching. In Pro-
ceedings of AUUG97, Brisbane, Australia, September 1997.

[17] T. W. Yan and H. Garcı́a-Molina. Index Structures for
Selective Dissemination of Information Under the Boolean
Model. ACM TODS, 19(2):332–364, 1994.

Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’05)

1545-0678/05 $20.00 © 2005 IEEE

