CHR: a Distributed Hash Table for Wireless Ad
Hoc Networks*

Filipe ARAUJO Luis RODRIGUES
Universidade de Lisboa University of Lisboa
filipius@di. fe.ul.pt ler@di.fc.ul.pt

Jorg KAISER Changling L1u
University of Ulm University of Ulm
kaiser@informatik.uni-ulm.de changling.liu@informatik. uni-ulm.de

Carlos MITIDIERI
University of Ulm

carlos. mitidieri@informatik. uni-ulm.de

Abstract

This paper focuses on the problem of implementing a distributed hash
table (DHT) in wireless ad hoc networks. Scarceness of resources and node
mobility turn routing into a challenging problem and therefore, we claim
that building a DHT as an overlay network (like in wired environments)
is not the best option. Hence, we present a proof-of-concept DHT, called
Cell Hash Routing (CHR), designed from scratch to cope with problems
like limited available energy, communication range or node mobility. CHR
overcomes these problems, by using position information to organize a
DHT of clusters instead of individual nodes. By using position-based
routing on top of these clusters, CHR is very efficient. Furthermore, its
localized routing and its load sharing schemes, make CHR very scalable
in respect to network size and density. For these reasons, we believe that
CHR is a simple and yet powerful adaptation of the DHT concept for
wireless ad hoc environments.

*Selected sections of this report were published in the Proceedings of the Fourth Interna-
tional Workshop on Distributed Event-Based Systems (DEBS’05), in conjuction with the 25th
International Conference on Distributed Computing Systems (ICDCS-25), Columbus, Ohio,
USA, June 2005. This work was partially supported by LaSIGE and by the FCT project
INDIQoS POSI/CHS/41473/2001 via POSI and FEDER funds and by the ESF MiNEMA
Research Network.

1 Introduction

In the recent past, researchers have given a lot of attention to distributed hash
tables (DHTSs) as these turned out to be a simple, elegant and powerful building
block for distributed systems. In particular implementations of DHT's for wired
scenarios have the following interesting properties: good scalability, tolerance
to node failures and low congestion. Furthermore, they are efficient in terms
of node degree/path length characteristics. In wired scenarios, routing can be
taken for granted and DHT's are implemented as overlay networks on top of IP.
In these overlays, two nodes can always use an IP tunnel to communicate with
each other, no matter how far apart they are.

Although we can also find some attempts to build DHT's in wireless networks,
namely [4,15,16], this exercise is much harder than building DHTs for wired
networks [5,8,14,17-19,22]. The main challenge resides in the efficiency of
routing. In wireless ad hoc networks routing of messages between two arbitrary
nodes is an extremely expensive operation, that may involve flooding of the
network to find a path or global state updates when the topology changes due to
node mobility. Furthermore, each additional hop consumes significant resources
at intermediate nodes. Therefore, any DHT for wireless networks must be aware
and adapted to the underlying routing strategy.

In this paper, we present Cell Hash Routing (CHR), which is a proof-of-
concept DHT designed from scratch for wireless ad hoc environments. CHR
uses an inexpensive localized cell-based clustering method that groups nodes
according to their location. This clustering method groups nodes inside cells of
predefined and globally known shape. As a consequence, nodes are not individ-
ually addressable, because routing works at the cell level. Such an approach is
particularly well-suited to the world of small and simple wireless devices or em-
bedded systems, where nodes may look for specific contents and not for peers.
Consider the case of sensor networks. In these networks, it is often irrelevant
to know the output of the individual sensors; it may suffice to compute some
function like an average or a maximum temperature at some particular zone.
Hence, globally known individual addresses are not necessary as sensor nodes
are not individually queried.

On the other hand, the advantage of clustering is twofold. First, it creates a
very structured and sparsely populated network of clusters, where we can apply
a lightweight routing scheme. Second, the efficiency of the routing scheme is
not affected by increasing node density. Furthermore, our routing scheme also
scales with increasing network sizes, because it is localized. Hence, by using a
location-based clustered approach, routing in CHR is scalable with respect to
both, network size and node density. Although simple, this scheme is powerful
and enables us to implement a DHT in a straightforward and efficient way.
In this paper we present CHR and claim that the DHT implemented by CHR
perfectly fits wireless ad hoc environments and can be used as a component of
more complex architectures, like a publish/subscribe system. When compared
to other solutions, uniqueness of CHR comes from the use of routing on top of
a clustered network, which is simultaneously the basis for the DHT.

The remainder of this paper is organized as follows. Section 2 presents
the architecture of CHR and Section 3 presents early experimental results that
illustrate the efficiency of the architecture. Related work is briefly surveyed in
Section 4. Section 5 concludes the papers and presents directions for future
work.

2 Architecture of CHR

2.1 Overview

In CHR we divide the space into equally-sized cells that have the shape of
squares, as the grid depicted in Figure 1. Division of the space into cells allows
a simple definition of the network of clusters: all nodes inside the same cell
belong to the same cluster. In a sense we will use the notion of cluster as
a kind of “supernode”, where interactions occur at the level of clusters. The
result is a much sparser network, where the routing scheme consumes fewer
network and node resources. Since cells are immutable, clusters can receive
an identification that does not change with time. Hence, nodes can always
determine the identification of their cluster, as well as identify other nodes
in the same cluster, even in dynamic scenarios, where they move around and
change from cell to cell . A crucial aspect of this division is that there must
be a mapping between the identification of a cluster and its physical location,
to enable the use of a geographical routing scheme.

Any routing scheme is comprised of two parts: i) a pre-processing algorithm
that sets all data structures for ii) the distributed routing algorithm. For geo-
graphical routing schemes, the most popular routing algorithm is perhaps the
Greedy Perimeter Stateless Routing [2,10] (GPSR). When possible, GPSR uses
the greedy strategy of forwarding messages to the neighbor closest to destina-
tion. When it finds a local minimum, GPSR switches to perimeter mode and
routes around faces. As soon as it finds a node closest to destination than the
previous local minimum, GPSR goes back to greedy mode. We adopt this algo-
rithm because it is simple and can achieve good routing performance in sparse
networks. The most important restriction of this algorithm, however, is that it
only ensures routing convergence in planar graphs. To overcome this problem,
in Section 2.3, we will show how to create a non-planar graph for CHR, where
GPSR is still able to converge. This simplifies the pre-processing algorithm and
allows GPSR to perform better.

A DHT stores (key, value) pairs in its nodes. The node that stores a given
pair (keyA, valueA) depends deterministically on the result of applying the hash
function on keyA. One of the fundamental aspects of our architecture is that
we use clusters instead of nodes to hold the values. We do not require each
wireless node to participate in the DHT, because the relevant network entity is

1Usually, we use the term “cell” to mean the geographical square and the term “cluster”
to mean a group of nodes. However, in some contexts, both concepts apply and therefore, we
use the terms interchangeably.

Figure 1: Division of the space into cells of fixed size

the cluster. Compared with a network of nodes, the simplicity of the network of
clusters brings benefits to both, the routing scheme and the DHT operation. For
this idea to work, the space of outputs of our hash function is the address space
of the clusters. Hence, operation of the DHT becomes simple, when the key
hashes to a cluster that really exists, i.e., that is populated by at least one node.
Unfortunately, it is impossible to prevent that, in some cases, the key hashes to
an empty cluster. In this case, CHR resorts to a technique first proposed in [16]
that forces queries (or store operations) to take an entire loop around the empty
cluster. In the following sections we will detail our architecture.

2.2 Division into cells

The size of the cells is limited by the communication range of the nodes, because
we require that a node in a cell can always listen to any other node either
in its own cell or in any adjacent cell. This restriction ensures that in most
circumstances, the clustered network stays connected, as long as the initial
network is also connected, even if only one node is active per cell. If we assume
that nodes have a communication range of R, the resulting square side is at most
R/ V/8. This can be seen in Figure 1. By adjacent cell, we are always referring
to one of the 8 cells that surround the cell of a node. Note that we do not
strictly require a Unit Disk Graph (UDG) model 2. We only require that nodes

2In the UDG model two nodes A and B are neighbors if and only if |[AB| < 1, i.e., if their
distance is at most 1.

Home Perimeter

(a) Definition of the (b) Routing may fail (c) Home cell and home
graph of clusters perimeter

Figure 2: Network of cells

can communicate with all the other nodes in their own cell and in the adjacent
cells. We provide a short discussion of more general models in Section 5.
Nodes need to be aware of other nodes in the neighboring cells, mainly for
two reasons: 4) the routing scheme requires nodes to know whether or not the
adjacent cells are populated and i) we do not require nodes to perform some
kind of leader election algorithm; on the contrary by making nodes know all (or
at least part of) their neighbors, we can use randomization to share the routing
load among all the nodes. For instance, when a node is routing a message that
needs to go through some neighboring cell, it can arbitrarily select any node of
that cell as the next hop. Otherwise, the nodes of a given cell would still need
to decide which of them would forward the message. More formally, we state in
Assumptions 2.1 and 2.2, the conditions that we need to build our architecture.

Assumption 2.1 All the nodes know all the other nodes in their own and in
any of the adjacent cells.

Assumption 2.2 A broadcast message inside a cell is received by all nodes of
that cell.

The purpose of Assumption 2.1 is to ensure that a node has sufficient knowl-
edge to route messages and to support the DHT in the clustered hierarchy.
However, as we describe in Sections 2.3, 2.4 and 5 this assumption can be re-
laxed, for the sake of scalability. For routing to work, a node only needs to
know a single neighbor in each of the adjacent cells (nevertheless knowing more
than one neighbor will increase robustness). On the other hand, knowledge of
the nodes of the own cell is not needed for routing, but it is useful to support
the DHT. But again, partial knowledge of the own cell will be enough in most
circumstances. The purpose of Assumption 2.2 is to ensure a simple means of
communication among nodes of the same cell, to enable operation of the DHT.
For instance, in the U DG model this is easy to ensure, because all nodes of the

cell are within range and the reach of the radios between nodes in adjacent cells
is very predictable.

Finally, Definition 2.1 defines a graph comprised of our cell-based clusters.
This is represented in Figure 2a).

Definition 2.1 Consider the graph where nodes represent clusters and edges
exist between adjacent clusters if and only if their corresponding cells are both
populated. To the embedding of the graph where nodes are placed in the center
of the cells they represent, we call Geographically Clustered Graph (represented
as G).

2.3 Routing scheme

CHR uses a routing scheme based on GPSR combined with a pre-processing
algorithm that creates G. This combination allows to address scenarios such as
the one depicted in Figure 2b), where empty cells create voids in the cluster
network. In this case, node X could be a local minimum in the path from S to
D. There is plenty of evidence (see for instance [1,11]) that ¢) routing perfor-
mance of GPSR in planar graphs is better if node density (vs. communication
range) is sparse (because longer edges imply fewer hops) and furthermore, i)
for a given density of nodes, denser graphs, i.e., with more edges also allow
better performance. The reader should notice that there is no contradiction
between i and i:: i states that network should have few nodes, while i7 states
that network should have many edges. Condition ¢ is already fulfilled by our
clustering approach. Condition ii is met because we do not need to planarize
our graph, i.e., we do not remove intersections. The rationale for this is that the
only intersections that may occur in G are in the diagonals (e.g., in the lower
corner of Figure 2a)). However, as we prove in Theorem 2.1, GPSR always
converges in G, despite the existence of these intersections. As a consequence,
the pre-processing algorithm of CHR only requires nodes to beacon the number
of their cells (to fulfill Assumption 2.1). Besides this, nodes do not need further
communication to define their local view of G.

Theorem 2.1 GPSR converges in G.

Proof 2.1 GPSR converges in planar graphs. The only intersections that exist
in G are in the diagonals of 4 nodes defining a square, say A, B, C and D, with
edges AB, BC, CD and DA. Only one of these nodes, say A, could ever send a
message in perimeter mode in a face inside the square. However, this could only
happen for a destination in the direction of the 90° angle /DAB defined at A.
But this is a contradiction, because, in this case A would not use perimeter, but
greedy mode. Hence, GPSR converges, because it never uses intersecting edges
while in perimeter mode.

2.4 DHT implementation
Basic Mechanism

In the most basic setting, the hash function determines the single cluster that
will hold the (key, value) pair. In the case of a given pair (keyA, valueA), the
cluster whose identification equals hash(keyA) will be responsible for storing
valueA. For instance, consider the (“Bob”, 18) pair, where the key “Bob” hashes
to 144. In this case, the value 18 should be stored at the cell 144. Therefore, if
we could ensure that at least one node is kept active in each cell, implementing
the DHT would be straightforward. However, some cells may be empty and
therefore, we need some mechanism that can also deal with this case.

Addressing of the Cells

Although the routing scheme does not require cells to have specific addresses
(position of the destination node would be enough), the DHT requires that cells
have globally-known logical addresses. The restriction here is that the space of
outputs of the hash function must have a direct mapping with the address space
of the cells. Multiple mappings could be defined. We illustrate one possible
mapping with a very simple example that assumes a bounded geographical
space whose bounds are known by all the nodes. This scheme is equivalent to
addressing the elements of a matrix in row-major order. Equation 1 shows how
to determine the address of a cell in this scheme. D, and D, are the size of the
space in the two dimensions, d, and d, are the sizes of each cell and L, and L,
are the coordinates of the center point of the cell (it can also be any other point
inside the cell). For instance, this equation is useful to let a node determine the
number of its own cell.

A= [D/d.] x LLy/dyJ + [La/ds] (1)

The reverse correspondence is also useful to allow nodes to perform geo-
graphical routing in G. Equations 2 and 3 determine the center point (L, Ly)
of the cell. ¢ represents the number of columns and is computed as ¢ = | L, /d, |,
while % is the remainder of the division. To route to a given cell A, nodes need
to determine the center point (L, L,) of the destination cell, before they apply
the GPSR routing algorithm. These equations are needed because geographi-
cal routing takes place using the center points of the cells (graph G), while the
DHT addresses of the cells are only logical. Consider again the (“Bob”, 18)
pair, where the key hashes to 144. To compute the center (L, L,) of the target
cell, a given node would have to replace A by 144 in the Equations 2 and 3.

Ly, = dy (|[A/c] +0.5) 2)
Ly = dq (A%c + 0.5) (3)

Division of the Keys Among the Nodes in a Cell

The best way of dividing the keys among the nodes inside each cell may depend
on the global number of keys to store and on the number of nodes inside a given
cell. If the total number of keys to store is fairly small, the best policy may
be to store all the keys in all the nodes of the cell. This is simple and tolerant
to individual node failures. We believe that, despite simple, this scenario may
have wide application. Consider that the average number of nodes per cell is n
and that each node stores an average of s, bits in the DHT. If the distribution
of the nodes and the keys by the cells is even, the total size of items of the DHT
to store in each node is approximately s, X n.. This number is reasonable, for
moderate node density and if memory of nodes is not too small. It is easy to
derive alternative schemes, where the load is balanced among all nodes of a cell,
but these are omitted here due to lack of space. The important point to note
here is that these schemes may not require full knowledge of the neighbors that
populate the node’s cell. This is important in densely populated cells, because
otherwise we could not relax Assumption 2.1.

Resolving Empty Cells

One of the difficulties with our DHT architecture is that it is impossible to ensure
that there are no empty cells. The problem with empty cells is that some keys
may be left without nodes to store them. Since we use GPSR to route messages,
we can follow an approach similar to GHT [16] to tackle this problem. Similarly,
we define the concepts of home cell and home perimeter. Home cell is either the
destination cell of a packet, if destination cell is populated, or the cell closest
to the destination, in the other case (this requires a tie breaking rule, because
many cells may be at the same distance). The home perimeter is the set of
edges defining a face that encloses an empty destination cell (more precisely, the
destination may be inside a face or outside the exterior face). These concepts
are depicted in Figure 2c), where T represents the empty destination cell and
H the home cell.

Like in GHT, CHR can take advantage of the standard behavior of the
GPSR routing algorithm to ensure that a packet always reaches the home cell.
This is easy to do if the home cell is the intended destination cell. If, on the
contrary, the destination cell is empty, GPSR will also route the packet to the
home cell. In the first time the packet reaches the home cell, any node in this
cell will recognize that 7) this cell is not the destination cell and i) there is no
edge connecting to the destination cell. Furthermore, the home cell is a local
minimum in the path to destination. This forces the packet to enter perimeter
mode (it might be in perimeter mode already). Standard behavior of GPSR
forces the packet to loop in the home perimeter if destination does not exist.
However, GPSR drops the packet as soon as it discovers a cycle in the path.
Like in GHT, we need to change this behavior to ensure that the packet is not
discarded at the end of the cycle. At this point, the nodes in the home cell
know that the destination cell is empty and assume that their cell will be the

destination instead (refer to Figure 2c¢)). In fact, situation in our architecture
is even simpler in some cases, because the home cell may already know that
the destination cell is empty. Hence, it can avoid the loop around it (this may
happen if the empty destination cell is adjacent).

3 Evaluation

To compare CHR with GHT [16], we tested the average path lengths in store/lookup
operations. To do this, we routed messages from arbitrary existing nodes to ar-
bitrary points in space. Hence, in general, these points did not correspond to
any node and both, CHR and GHT had to route to the home cell/home node.
We used a square of size 300 x 300 and a communication range of approximately
106 to have an 8 x 8 grid. Distribution of nodes in the square was uniform in all
our experiments. Since node density is a key aspect to performance, we varied
the number of nodes between 80 and 600.

The first thing we evaluate is the probability of having empty cells for each
one of these node densities. This is depicted in Figure 3. In our settings,
this probability is quite high when node density is low and rapidly decreases,
to become nearly 0 as node density approaches 7 nodes per cell. To see the
impact of node density on routing performance we evaluate the average path
lengths for each node density. In Figure 4 we show the average path lengths.
The first observation that we can do from inspection of the figure is that, as
expected, clustering really benefits CHR. Furthermore as node density increases
path lengths stabilize in CHR, while they grow in a non-clustered approach like
GHT. This has to do with the length of the edges of the planar graph needed
by GHT. As node density increases, the average edge length decreases and
therefore, packets need more hops to reach destination. Finally, we can also
observe that the impact of even a large number of empty cells is very small in
the path lengths achieved by CHR.

Another advantage of CHR is that a moving node only needs to rebuild its
database of keys, when it crosses a cell boundary. Finally, CHR is more robust,
because a single key may be stored at many nodes, allowing the DHT to resist
better to abrupt departure of nodes. In fact, this is a trade-off, where the down
sides are that nodes have to know more neighbors (as required in Definition 2.1)
and need to store more keys (all the keys in their cell). However, as we stated
before, both of these problems can be mitigated at the cost of decreasing the
robustness of the DHT (because a node can know fewer neighbors and store only
a subset of keys in its cell). Nevertheless routing performance is not impaired
by these techniques.

4 Related Work

The idea of routing on top of logical cells can be found in the Content and Cell
based Predictive Routing Protocol [9] (CCPR), which uses a publish/subscribe

30 T T T T T T T
Avg. empty cells —+—
25 B

20 B

15 q

Average empty cells (%)

10 + .

0 1 1 1 N L L 1
1 2 3 4 5 6 7 8 9 10

Average number of nodes per cell

Figure 3: Average percentage of empty cells in CHR

interaction model, to distribute contents. Differently, many authors have fo-
cused on creating DHTSs, specially for wired environments, where they operate
as overlay networks on top of IP [5,8,14,17-19,22]. However, it is not trivial to
operate these DHT's under wireless environments. On the other hand, the issues
specific to wireless ad hoc networks turn routing into a difficult problem that
has deserved a lot of attention. In this paper we are particularly interested in
geographical routing schemes that ensure convergence, like GPSR [2,10]. Hence
building DHTs in wireless ad hoc networks has deserved fewer attention, but
there are, nevertheless, some examples, e.g., [4,15,16].

Clustering is a well-known technique used to reduce complexity of the rout-
ing schemes and to reduce path lengths in geographical algorithms [3,11]. Clus-
tering the space in squares of equal size can be found in [20] with the goal
of saving energy. [7,13] also create clusters that can be used to create DHTSs.
For instance, [13] also creates a DHT on top a logical structure of cells. An-
other work that also has some similarities with CHR is [21], which presents a
Two-tier Data Dissemination (TTDD). TTDD creates a grid of dissemination
for each type of data. This grid also follows a geometrical arrangement. Then,
TTDD uses flooding within the local area, while global dissemination is achieved
through the grid, for the sake of efficiency. When compared to these previous
approaches, uniqueness of CHR comes from the simplicity of routing on top of
the clusters, while no routing is needed underneath. I.e., in CHR the size of the
cells is carefully selected to allow direct communication of nodes inside neigh-
boring cells. In this way, routing really takes place in the logical graph G. Even
the problem of circulating around voids is done in G. As we have shown, one

10

30 T T T T T T T T
CHR ——
GHT —--x---
-
25 - e 8
I
e
L x i

§ 2 e *
b X
> e
7] X
=} X
E 15Fx |
c
@
j=2)
o
$
< 10} i

5 \‘*\w b

O 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10

Average number of nodes per cell

Figure 4: Performance of CHR vs. GHT

of the advantages of doing this is that there is no need to remove intersections
of the graph. Unlike CHR, in the previous approaches, routing from one cell to
the next requires the normal node-to-node routing. As a consequence, voids in
the network are much more difficult to handle.

One aspect that we do not explore here and that we can find in previous
work like [6,12,16] is the replication of data in different areas (in these cases to
reduce distance to the stored items). Nevertheless as we point out in Section 5,
many of the solutions employed in these systems can also be adopted in CHR
not only to improve performance, but also to increase tolerance to node failures.

5 Conclusions and Future Work

The results presented here show that CHR is a viable alternative to build a
DHT for ad hoc wireless networks. Therefore we plan to pursuit this work, by
designing a complementary set of mechanisms that address the limitations of
this current implementation. Namely:

e Dynamic Cell Structure: when the number of nodes in a cell drops
below [, the cell is considered empty. On the contrary, the cell needs to acquire
h nodes before it is considered populated (h > [). Note that the value h should
be fairly small. As a consequence, knowing h does not require much memory,
because, in general, a node will not need to know all the neighbors in its own
cell (i.e., Assumption 2.1 can be relaxed). A cell leaving the network delivers
its keys to its home cell. An entering cell needs to query its home perimeter to
receive its keys. Additionally, it will also receive keys of empty cells for which

11

it becomes the home cell.

e General non-UDG model: in more general models, it is possible for a
node not to see some of its neighbors in its cell or in some adjacent cell. One
possible approach to overcome this problem is to create routing tables to reach
only the invisible nodes inside the cell or adjacent cells.

e Incorrect determination of position: in this paper, we assumed that
nodes can always determine their position exactly, which is actually not the
case. The consequence of this is that a node may consider itself to be in the
wrong cell. In a sense, this resumes to the non-U DG model.

e Cluster induces disconnection: occasionally, the clustering mechanism
may disconnect the network. This event should be rare, especially in denser
networks, where use of CHR is more worthwhile. A straightforward solution
consists of creating the necessary links and then using a geographically-scoped
broadcast to remove intersections.

e Fault-tolerance requirements: one of the occurrences that CHR should
try to avoid as much as possible is the loss of stored (key,value) pairs. We already
suggested the use of thresholds to ensure that keys are sufficiently spread among
nodes of the same cell. This mechanims can be complemented with a technique
already used in wired DHTSs, e.g., [18], that consists in using k hash keys to
replicate contents in different cells.

References

[1] Filipe Aratjo and Luis Rodrigues. Fast localized delaunay triangulation.
In The 8th International Conference On Principles Of Distributed Systems
(OPODIS 2004), Grenoble, France, december 2004. (to appear).

[2] Prosenjit Bose, Pat Morin, Ivan Stojmenovié, and Jorge Urrutia. Routing
with guaranteed delivery in ad hoc wireless networks. In International
Workshop on Discrete Algorithms and Methods for Mobile Computing and
Communications (DIALM), pages 48-55, 1999.

[3] G. Chen and I. Stojmenovic. Clustering and routing in wireless ad hoc
networks. Technical Report TR-99-05, Department of Computer Science,
SITE, University of Ottawa, Ottawa, Ontario KIN 6N5, Canada, June
1999.

[4] Jakob Eriksson, Michalis Faloutsos, and Srikanth Krishnamurthy. Scalable
ad hoc routing: The case for dynamic addressing. In IEEE Infocom 2004,
2004.

[5] P. Fraigniaud and P. Gauron. The content-addressable network D2B. Tech-
nical Report 1349, LRI, Univ. Paris-Sud, France, Jan 2003.

[6] Abhishek Ghose, Jens Grossklags, and John Chuang. Resilient data-centric
storage in wireless sensor networks. IEEFE Distributed Systems online,
4(11), November 2003.

12

[7]

[13]

[16]

Indranil Gupta, Robbert van Renesse, and Kenneth P. Birman. Scalable
fault-tolerant aggregation in large process groups. In DSN ’01: Proceedings
of the 2001 International Conference on Dependable Systems and Networks
(formerly: FTCS), pages 433-442. IEEE Computer Society, 2001.

Frans Kaashoek and David R. Karger. Koorde: A simple degree-optimal
distributed hash table, 2003.

J”org Kaiser and Changling Liu. Content and cell based predictive routing
(cepr) protocol for mobile ad hoc networks. In 5th International Workshop
for Advanced Parallel Processing Technologies (APPT’03), Lecture Notes
in Computer Science 2834: Advanced Parallel Processing Technologies,
Springer, Xiamen, China, September 2003.

Brad Karp and H. T. Kung. GPRS: Greedy perimeter stateless routing
for wireless networks. In ACM/IEEE International Conference on Mobile
Computing and Networking, 2000.

Fabian Kuhn, Roger Wattenhofer, Yan Zhang, and Aaron Zollinger. Geo-
metric ad-hoc routing: Of theory and practice. In 22nd ACM Symposium
on the Principles of Distributed Computing (PODC 2003), Boston, Mas-
sachusetts, July 2003.

J. Li, J. Jannotti, D. De Couto, D. Karger, and R. Morris. A scalable loca-
tion service for geographic ad-hoc routing. In Proceedings of the 6th ACM
International Conference on Mobile Computing and Networking (MobiCom
’00), pages 120-130, August 2000.

Mei Li, Wang-Chien Lee, and Anand Sivasubramaniam. Efficient peer-to-
peer information sharing over mobile ad hoc networks. In Second Workshop
on Emerging Applications for Wireless and Mobile Access (MobEA II), in
conjunction with the World Wide Web Conference (WWW), May 2004.

Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: A scalable and
dynamic emulation of the butterfly. In Twenty-First ACM Symposium on
Principles of Distributed Computing (PODC 2002), Monterey, California,
July 2002.

Himabindu Pucha, Saumitra M. Das, and Y. Charlie Hu. How to imple-
ment dht in mobile ad hoc networks? Student poster, the 10th ACM
International Conference on Mobile Computing and Network (MobiCom
2004), September-October 2004.

S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and
S. Shenker. Ght: A geographic hash table for data-centric storage in sensor-
nets. In First ACM International Workshop on Wireless Sensor Networks
and Applications (WSNA), Atlanta, Georgia, September 2002.

13

[17]

[18]

[19]

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Schenker. A scalable content-addressable network. In Conference on ap-
plications, technologies, architectures, and protocols for computer commu-
nications, pages 161-172. ACM Press, 2001.

Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized ob-
ject location, and routing for large-scale peer-to-peer systems. Lecture
Notes in Computer Science, 2218:329-350, 2001.

Ton Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Bal-
akrishnan. Chord: A scalable Peer-To-Peer lookup service for internet
applications. In ACM SIGCOMM, San Diego, August 2001.

Ya Xu, John S. Heidemann, and Deborah Estrin. Geography-informed en-
ergy conservation for ad hoc routing. In Mobile Computing and Networking,
pages 70-84, 2001.

Fan Ye, Haiyun Luo, Jerry Cheng, Songwu Lu, and Lixia Zhang. A two-
tier data dissemination model for large-scale wireless sensor networks. In

Proceedings of ACM MOBICOM, 2002.

B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infras-
tructure for fault-tolerant wide-area location and routing. Technical Report
UCB/CSD-01-1141, UC Berkeley, April 2001.

14

