
Integrating Web Services and Mobile Agent Systems

Paolo Bellavista, Antonio Corradi, Stefano Monti
Dip. Elettronica, Informatica e Sistemistica - Università di Bologna

Viale Risorgimento, 2 - 40136 Bologna - ITALY
Phone: +39-051-2093001; Fax: +39-051-2093073

{pbellavista, acorradi, smonti}@ deis.unibo.it

Abstract

Middleware supports based on Mobile Agents

(MAs) have recently emerged with the goal of allow-
ing application developers to easily manage and con-
trol the properties and behaviors of mobile systems,
especially in novel wireless and ubiquitous scenarios.
Several MA systems have grown independently with
no widely recognized standardization and still lack
functions for easy integration. The primary conse-
quence is that one MA platform tends to offer mid-
dleware facilities scarcely compatible with other MA
systems. Moreover, MA tools are sometimes difficult
to employ by common users who have to overcome a
significant knowledge gap before properly exploiting
MA-specific functions. The paper proposes a solution
to open up the usage of MA systems via the bridge of
the emerging Web Services (WS) standard technology
to achieve interoperability. We have developed an
integration infrastructure, called WSMI, with the
twofold goal of exporting the MA functions with a WS
interface and of simplifying the access to legacy WS
components from any MA system. This promotes the
uniform access to different MA system functions, in-
dependently of the specific MA implementation. We
have thoroughly evaluated the WSMI prototype per-
formance, also by comparing the WSMI integration
functions with similar non-WS-based facilities: the
increased dynamicity and openness of our integration
infrastructure have demonstrated to largely counter-
balance the overhead introduced by WS adoption.

1 Introduction

In the last few years, the Mobile Agent (MA) [1]
approach has emerged as a promising way to address
the new challenges in the design and implementation
of distributed systems. MAs are software components
capable of migrating between different hosts during
execution, by carrying their code and the reached

execution state. The MA paradigm can help modeling
applications whose dynamicity clashes with more tra-
ditional interaction solutions: for instance, informa-
tion retrieval and network management applications
had largely and successfully adopted MA-based ap-
proaches. Some MA-based support infrastructures
have also been proposed to face the requirements of
the emerging mobile and ubiquitous scenarios, where
computational resources move across different places
without losing the capability to interact with other
network resources [2-4].

However, state-of-the-art MA platforms still suf-
fer a major drawback: there is no accepted standard
for their integration and for providing an easy and
simple interface to application developers and final
users. While several MA systems have been proposed
by different vendors and have become separately
available, there is no significant and widely-adopted
standard for their interworking, neither among differ-
ent MA platforms nor with heterogeneous non-MA-
based systems. For instance, OMG MASIF and FIPA
offer a way mainly to standardize interactions be-
tween MA systems and, moreover, have not achieved
the foreseen diffusion [5, 6]. So, if an application
wants to take advantage of any feature offered by an
MA system, it can only interact by following the spe-
cific rules and protocols defined by the MA system
itself. In summary, MA platform functions are usu-
ally available only in a proprietary and hard-to-use
way.

Cooperation, integration, and interaction are typi-
cal problems to overcome in the collaboration of het-
erogeneous distributed systems: Service Oriented Ar-
chitectures (SOAs) [7] have been proposed as an ar-
chitecture model to facilitate and promote the coop-
eration of two or more generic systems. SOA requires
any cooperating system to expose interfaces consist-
ing of services and described in a standard common
language. The adoption of standard interfaces for co-
operation and integration is not new, but in the last
years Web Services (WS) have renewed the interest
in such strategies by proposing widely-adopted Web

standards to realize SOA models, e.g., HTTP com-
munications and XML-based data description.

While WS couple the SOA interaction approach
with the wide diffusion of Web-based protocols, they
are more than a promising way of realizing the inte-
gration of heterogeneous distributed systems. More-
over, we feel that they can be suitably adopted to ad-
dress the integration needs of MA systems. The paper
proposes a WS-based infrastructure for integrating
and exporting MA features called WSMI (Web Ser-
vices for Mobile agent systems Integration). WSMI
permits a generic system to take advantage of the
main functions of an MA platform and, conversely,
MA systems to extend their functions by simplifying
the exploitation of WS to access external generic sys-
tems. From another perspective, the WSMI infra-
structure acts as a bridge linking two different
worlds: the typically asynchronous MA scenario and
more traditional synchronous SOA environments.

Section 2 describes primary guidelines and func-
tions of WS and MA systems. Section 3 presents the
requirements and goals of the WSMI design and im-
plementation, which are respectively described in
Sections 4 and 5. The experimental evaluation of
WSMI performance, conclusions, and on-going re-
search work end the paper.

2 Models and Functions of Web Ser-

vices and Mobile Agent Systems

One of the most relevant differences between MA
systems and WS is the nature of the interactions be-
tween their components. While WS adhere to a typi-
cal synchronous paradigm in which a client requests
service execution to a server endpoint, MAs interact
with clients by following a typical asynchronous be-
havior: after creation, MAs can migrate between net-
work nodes and interact with their needed resources,
with no necessity to maintain continuous connectivity
with the associated client.

2.1 Web Services

SOA proposes an architecture for the cooperation
of two or more systems via interface-exposed ser-
vices described in a widely understandable language.
SOA – and the deriving WS model – involves three
main entities: a provider, a registry (or broker), and a
requestor. The first entity hosts service implementa-
tion and acts as an access point to the service itself:
based on the service description, the requestor sends
a service request message to the provider which proc-
esses the request, executes service logic, and finally
sends back a response message. The registry entity

stores service-related naming information, such as
service access points or interface definition locations.
Interactions between SOA entities typically follow a
traditional synchronous request-response model: a
requestor sends a service request to a provider that
executes the invoked operation and then returns a re-
sponse to the requestor.

WS realize the SOA model using largely adopted
Web protocols, like the HTTP for communication of
exchanged data and XML-based grammars for ex-
changed data format definition (SOAP protocol [8]),
service interface description (WSDL protocol [9]),
and service registry standardization (UDDI protocol
[10]). While all previous protocols are considered
mature and largely accepted, WS still have some
weak and less explored areas, thus motivating current
research efforts: on the one hand, security protocols
proposals aim at identifying standards for message
authentication and encryption ([11, 12]) and for user
identification [13]; on the other hand, WS workflow
protocols propose a base for the creation of service
aggregations and compositions [14].

2.2 Mobile Agents

MA systems usually consist of a middleware layer
deployed over different physical nodes where MAs
can migrate and interact with resources. They facili-
tate application development by enabling the easy
movement of application logic, which could be more
effective than adopting more traditional programming
paradigms in several deployment scenarios. MA mid-
dlewares could also help in new wireless environ-
ments, where MA asynchronicity can become an ad-
vantage in modeling user and device mobility: MA-
based solutions are often adopted to dynamically
trace, manage, and coordinate mobile users and ter-
minals, even by handling temporary disconnections
[2-4]. Nevertheless, we have already stressed that
MA-based platforms still exhibit portability and inte-
gration problems (see also Section 3).

Nowadays, no globally accepted MA platforms
have been proposed and spread. However, the evalua-
tion of most existing MAs, e.g., [15-17], coupled
with the investigation of some reference work guide-
lines [18], helped us gathering the basic MA features
into a simple reference model which relies upon the
following entities:
• mobile agents. Software entities that can migrate

across system nodes;
• places. System nodes offering computational en-

vironments where agents can migrate and inter-
act with owned resources. Usually places map
real network nodes;

• domains. Groups of homogeneous places, e.g.,

close the one to the other from the physical loca-
tion point of view. Domains may be structured in
hierarchically nested sub-domains.

We assume that places of the same domain know all
local places and also all places of nested sub-
domains. Coherently with most existing MA systems,
our basic model provides the following tools for in-
teraction and communication:
• blackboards. Places offer storing entities where

senders/receivers (usually MAs and/or users) can
deliver messages. Blackboards usually allow
asymmetric and non-blocking forms of commu-
nication and interaction;

• messaging tools. MA systems provide direct
communication between senders and recipients,
thus enabling symmetric and typically blocking
ways of interaction.

Since our goal is to obtain WSMI portability across
different MA implementations, the WSMI design will
be based on the basic features of the considered refer-
ence MA model.

3 Integration Requirements and Goals

The MA integration with heterogeneous systems
follows two main directions. The first direction relies
upon the proposal of a standard set of functions to
access all MA system features, so that traditional ap-
plications can take advantage of MA benefits in a dy-
namic and flexible way. The second direction is to
allow MA platforms to extend their functions by in-
terfacing, in a standard uniform way, with external
(possibly legacy) systems.

The WSMI solution adopts WS to address both
integration directions. First of all, WSMI proposes a
set of standard WS interfaces that an external system
could invoke to access typical MA system functions
(WS2MA). In addition, to easily extend MA middle-
ware functions, WSMI defines an integration inter-
face by which MAs can easily invoke also non-MA-
based WS components, wherever and whenever
available (MA2WS). Figure 1 depicts the two direc-
tions of integration.

The main requirement followed in the WSMI de-
sign and implementation is to achieve maximum in-
teroperability and generality: WS2MA should work
in the same way even while changing the underlying
MA system and MA systems should be able to in-
voke external WS (via MA2WS), independently of
the nature of the generic external system.

Moreover, an important design goal is to control
the costs related to the adoption of WS protocols;
these costs are usually non-negligible due to the na-
ture of exchanged data (verbose XML SOAP docu-
ments) and of the communication protocol (SOAP

over HTTP). Therefore, on the one hand, the
WS2MA integration component should not lead to
unpredictable cost growth in MA function execution
and should represent a good trade-off between costs
and benefits. In other words, the WS2MA design
should take into special consideration service granu-
larity, by requiring that integration functions pro-
vided to open up MA systems must be coarse-
grained. On the other hand, since WSMI represents a
centralized access point to MA system functions, it
should preserve system scalability, by avoiding bot-
tlenecks and maintaining acceptable costs, even when
the number of service requests grows.

As the WS2MA integration component opens up
MA systems to a larger public of potential users, we
have carefully considered mechanisms for access
control. Further considerations about security issues,
e.g., encryption and/or signature of WS requests/re-
sponses, are not the focus of the paper; WSMI ad-
dresses them by adopting standard WS security-
related protocols [11-13]. In addition, to avoid
WS2MA users having to guess MA behaviors and
functions from mere MA names, we have introduced
agent profiling techniques to represent, describe, and
dynamically exchange MA semantics.

Figure 1. WS2MA and MA2WS directions of integration.

4 WSMI Design

The section discusses the design guidelines for the
realization of the WSMI infrastructure that satisfies
the requirements sketched in Section 3.

4.1 WSMI properties

The WSMI infrastructure should be independent
from the target integration systems, both the MA and
the external system counterpart. This is achieved by
basing WSMI design on the reference WS and MA
models that we have previously identified. The
WSMI prototype has been realized for the SOMA
MA framework, which is compliant with the refer-
ence MA model of Section 2.2 [15].

Service granularity largely depends on the actual
service logic (internal actions performed). Therefore,
a suitable choice of the WS2MA services to provide
requires a trade-off between service costs and results.
Service granularity can be controlled by introducing
the concept of service-involved topology: users may
specify places and domains interested by the execu-
tion of a service. We have distinguished a basic set of
different levels of service-involved topologies:
• global topology. All places defined in an MA

system are affected by that service;
• domain topology. All places within a specified

domain are affected by that service;
• place topology. Only a specified place is af-

fected by that service.
For instance, a service reporting a list of all active
MAs could involve only one place, by reporting all
agents in that specified place, more separate places or
the whole MA system topology (in this case the re-
port service provides all currently running agents).

Obviously, granularity control cannot resolve all
performance problems: in some MA systems, global
topology services could be too heavy for the MA
platform itself. Let us stress again that the goal of
WSMI is to propose a flexible and rich set of interac-
tion tools for both MA and non-MA systems, by leav-
ing any MA platform the final decision about which
tools to use and with which granularity. For example,
a particular MA system could decide to reject all
global topology services, while others would not.

WS2MA services extend the number of users that
can take advantage of MA systems; that introduces a
cogent need for access control and user identification
policies. While we have no assumptions on how MA
systems could specifically achieve these security
goals, we feel the need of a common mechanism to
realize these policies. That has led to be coherent
with the UDDI user identification model and the WS
security specifications [10, 13], by proposing user
identification and authentication via authentication
tokens that users enclose in their service requests as
an identity certification. Each user is identified by a
couple of IDs (one for the user and another for a pos-
sible group she belongs to) and a string containing
some authentication information. No assumptions
will be made about the nature of this information, as
it is important to give MA systems the flexibility to
choose their authentication mechanisms/algorithms.

Agent profiles allow to classify agents based on
some common semantics. On the one hand, agent
profiles can easily express agent behavior that could
be difficult to infer from the MA class name; on the
other hand, they can also permit to realize some se-
mantic-based correctness controls before service exe-
cutions. For example, if a Stationary Agent profile is

specified to describe MAs that cannot migrate and an
MA system tries to expose a WSMI-based service for
moving that agent, the WSMI infrastructure auto-
matically determines the mismatch and notifies the
possible integration error. We have defined two basic
profiles useful for the integration scenarios of our in-
frastructure: bounded-visibility and synchronous.

The first profile describes agents whose existence,
mobility, and activity effects are visible only to speci-
fied classes of clients. This kind of MA profile is use-
ful where we do not want to permit unauthorized us-
ers to interfere with hidden MA activities. We pro-
vide three basic levels of visibility:
• principal visibility. MAs are visible only to

agent creator (principal);
• group visibility. MAs are visible only to mem-

bers of a specified group;
• global visibility. MAs are visible to all users.
MAs are typically asynchronous entities and their ac-
tivities have not always computational results to be
synthesized in a data structure. For instance, consider
agents that migrate between places to maintain con-
sistency of data copies: even having a well-defined
activity, the execution result of these MAs could be
hardly captured and put into a simple data structure.
Agents whose activity can produce simple results can
be described by synchronous MA profiles and classi-
fied accordingly. A successive classification can dis-
tinguish the way synchronous agent results are deliv-
ered to final users:
• pull model. Synchronous agents publish their

activity results into blackboards that other users
may query;

• push model. While there are many ways for
MAs to send results to their clients, we have de-
cided that MAs deliver results by invoking an ex-
ternal WS chosen by clients when creating their
associated MAs.

For both profiles, and also for additional profiles that
will be defined in the future, the WSMI infrastructure
can consistently check the service semantics.

4.2 MA2WS

The first MA extension provided by WSMI is the
WS invocation feature. The key difference that makes
traditional WS invocation inapplicable is the mobility
of the endpoint (typically an MA) that requests the
services. In fact, an MA could move after a WS invo-
cation and WS response should possibly arrive at a
location that is different from the request origin.

Message delivery to mobile entities is a well-
known issue in mobile systems and traditionally
adopted solution strategies could clash with the WS

interaction model. We propose a request-response
interaction that allows agent mobility by defining a
proxy-based architecture. WSMI proxies play the role
of static WS clients/servers:
• receive WS requests from MAs;
• deliver requests to WS providers;
• receive service responses from WS providers;
• forward responses to the current location of MA

requestors, by possibly following different deliv-
ery models.

The proxy solution realizes a non-blocking interac-
tion between MA and WS providers and achieves the
redirection of service results.

Different types of request delivery channels are
provided to better fit MA and/or proxy needs, as
shown in Figure 2. The first uses HTTP and performs
a typical synchronous blocking interaction: MAs send
their requests via SOAP messages and wait until
proxies return back receipt confirmations, again via
SOAP messages. After confirmation, proxies start
operating, by forwarding requests to actual WS pro-
viders. The second model, instead, uses the TCP
communication protocol and provides a typical asyn-
chronous non-blocking interaction: MAs send re-
quests but proxies do not send any confirmation;
MAs are not blocked and proxies can forward re-
quests immediately after their reception.

Figure 2. Different request channels available in MA2WS.

Response delivery channels rely upon the differ-

ent communication tools of the MA reference model.
The first way uses a blackboard-based interaction:
responses are delivered to blackboards from where
agents have to explicitly pull service responses out
(pull model). Different flavors are possible: responses
can be sent back to the blackboard owned by the
place where the MA has first requested the service
(standard pull model) or to a blackboard owned by a
place specified by the MA itself and where it is going
to wait for the response arrival (remote-pull model -
MAs expect results from places different from the
invocation one). The second way is based upon mes-
saging tools: responses are eventually delivered to
MAs as messages. We refer to this way as a push
model because it suggests a closer interaction be-

tween the proxy and its MA (it is the proxy to push
the response to the MA as a directly delivered mes-
sage).

4.3 WS2MA

WS2MA exposes a set of services via a WS inter-
face to provide external users with a standardized
way to access relevant MA system functions.

We have designed two types of WS2MA func-
tions: descriptive services describe runtime MA sys-
tem properties either in a general (browse services) or
in a detailed (drill-down services) way; active ser-
vices permit to access and invoke MA system ac-
tions, eventually by forcing system state changes and
interventions in the provisioning environment.

In addition, we distinguish different service tar-
gets: either MAs or the MA system topology. We
have excluded active topology services because to-
pology modifications to places or domains (such as
creations or deletions) would have assumed a control
level typical of MA platform administrators. On the
contrary, our guideline is that WS2MA users should
not heavily modify the MA system itself.

We have also introduced two aggregate services
that join the information conveyed by more services
into one aggregate: this granularity-driven choice
permits to obtain several results by performing only
one WSMI service invocation. We propose the fol-
lowing groups of services:
• browse descriptive MA services. They include:

listAvailableAgents that lists all agents available
for invocation in the specified topology, while
listAllAgentsOfAuthority lists all agents visible to
token-identified user and hosted by places de-
fined in the specified service topology;

• drill-down descriptive MA services. They in-
clude services to monitor the current MA posi-
tion (getAgentPosition) and the current MA
status (getAgentStatus). For synchronous MAs,
there is also the getAgentResult service that re-
turns the MA activity results;

• active MA services. Only one service (cre-
ateAgent) is in this category. It creates an MA in-
stance in the specified place (by starting its exe-
cution if specified), passing a user-defined ini-
tialization string. It is also possible to specify the
type of visibility for bounded visibility MAs and
MA semantics for synchronous agents, e.g., the
mode exploited to return activity results;

• browse descriptive topology services. They
comprise two services: listAllDomains lists all
domains composing the MA system topology,
while listAllPlaces lists all places in a specified

domain. Only globally recognizable users can
invoke the first service, while users invoking the
second must be recognizable either globally or at
least by the specified domain;

• drill-down descriptive topology services. They
include the getPlaceDescription and getDo-
mainDescription services that describe topology
entities defined in the MA system;

• aggregate services. Two service aggregates are
defined. The first (getAgentDescription) returns
information about the current status, position,
and activity results of a specified MA, while the
second (getTopologyDescription) returns high-
level (browse services) topology information and
detailed (drill-down services) topology informa-
tion. These services perform a breadth-first ac-
cess to domain topology trees to obtain detailed
descriptions about domains/places.

5 WSMI Implementation Guidelines

Here we point out some primary guidelines of the
WSMI implementation. Additional design and im-
plementation details, together with the full source
code of the WSMI prototype, are available at
http://lia.deis.unibo.it/Research/SOMA/WSMI/.
The current implementation integrates with the
SOMA platform, entirely developed in Java; conse-
quently, we have chosen to implement all WSMI
components by using the same language. However,
the WSMI development has carefully considered
openness and portability as primary design issues;
WSMI can easily be used not only in conjunction
with the SOMA platform, but also with any MA sys-
tem that follows the presented MA reference model.

5.1 WSMI Properties

As most MA systems, SOMA does not provide a
middleware functionality for MA profiling. WSMI
extends SOMA with the MA profiling feature by ex-
ploiting Java interfaces: SOMA MAs are Java objects
and MA profiles can be modeled as interfaces that
MAs should implement to be compatible with those
profiles. WSMI defines the following interfaces:
• BoundedVisibilityAgent. It is the bounded visi-

bility MA profile with two methods to set and
get agent visibility;

• SynchronousAgent. It is the synchronous MA
profile with a method to get agent activity results
as java.io.Serializable objects. We have imple-
mented this interface by inheriting from Bound-
edVisibilityAgent because any MA created via
the WS2MA interface should be visibility-

bounded;
• SynchronousPullAgent. It describes the syn-

chronous MA profile with pull-based result de-
livery, by extending SynchronousAgent;

• SynchronousPushAgent. It is the synchronous
MA profile with push-based result delivery. It
extends SynchronousAgent with methods to set
and get the service used for result notification;
notification services should be described by us-
ing the BusinessService UDDI data structure.

5.2 MA2WS and WS2MA Implementation

To work properly and effectively, WSMI proxies
need additional MA system information: for instance,
they should know the chosen response delivery
model. To this purpose, MAs can generate SOAP
documents to describe the characteristics of service
requests by including in the document headers sev-
eral operational parameters: the MA ID, the response
delivery model, a key value to retrieve the generated
result in a blackboard (in pull-mode interactions), the
result location for generic pull models dependent on
the specific MA system, and the service provider lo-
cation (usually a URL).

We have realized two different proxies that im-
plement both presented request delivery models, thus
providing differentiated channels. In particular,
HTTP-based proxies have been implemented as Java
servlet components by extending the javax.servlet.
http.HttpServlet class and by redefining the doPost()
method. TCP-based proxy uses java.net.ServerSocket
objects waiting for SOAP envelope sending.

Blackboards are data structures, local to any
SOMA place, with simple storing and retrieving
functions used to write/read service results. The push
model uses typical MA communication tools: in
SOMA, any MA has an associated mailbox for mes-
sage delivery. The only action that proxies must per-
form to return a result according to the push model is
to send a SOMA message to the target MA, which is
identified by a SOMA ID independently of the cur-
rent location of the target MA.

To grant our implementation the required scal-
ability, we have implemented the WS2MA support
components by using Java Session Beans whose
methods map all previously described services. Each
MA-related service first checks the compatibility of
the invocation with the associated MA profile.

6 WSMI Experimental Evaluation

To evaluate the impact of WSMI adoption, we
have performed extensive tests by simulating a typi-

cal case study of interaction between MAs and WS.
Namely, a non-SOMA external client first invokes
some broad-descriptive WS2MA service on the target
system topology (either via the aggregate service get-
TopologyDescription or with listAllDomains and lis-
tAllPlaces services), to get a description of the MA
system structure. Then, the client retrieves a list of
MAs that can be created on such topology via a listA-
vailableAgents invocation. After the instantiation of a
suitable SOMA agent (createAgent service), the cli-
ent tracks the MA activity (position and status) by
using the related WS services. SOMA agents con-
tinue to perform their activities by exploiting proprie-
tary mechanisms for migration between SOMA
places, for local/remote resource interaction, and also
by invoking external WS components via the WSMI
MA2WS functionality. Finally, if MAs are synchro-
nous, clients can either invoke the getAgentResult
service to obtain the MA computed response (accord-
ing to the pull result delivery model) or wait an ex-
plicit communication from the responsible MA (ac-
cording to the push result delivery model).

The respect of a primary design and implementa-
tion guideline, i.e., cost reduction and effectiveness,
can be better evaluated when considering a worst-
case configuration. Therefore, we have chosen a test-
bed consisting of resource-constrained nodes (Mobile
AthlonXP 1,67GHz, 256 MB RAM, WindowsXP
Home Edition; and AthlonXP 1,81GHz, 256 MB
RAM, WindowsXP Professional Edition) inter-
connected by a 100 Mbps Ethernet LAN. Enterprise
Java Beans and servlets execute in the SUN J2EE
Application Server, while WS providers run in a sin-
gle Apache SOAP server.

We have performed additional tests with different
hardware and software configurations: these further
experimental results confirm the trend of the per-
formance indicators reported in the following. De-
tailed information about the additional tests accom-
plished are available at http://lia.deis.unibo.it/
Research/SOMA/WSMI/.

6.1 MA2WS Performance

The MA2WS tests have involved SOMA MAs
invoking simple WS components hosted at the
Apache SOAP server. We have measured the average
execution duration of WS components on a set of one
hundred runs. Both proxies have been tested in this
way. The measured difference in execution times be-
tween the two categories of proxies (about 8s) were
expected: the lack of request confirmation when us-
ing TCP-based interactions produces significantly
faster executions. In any case, even reliable HTTP-
based interactions still have reasonable execution

times, definitely compatible with the application do-
mains typically addressed by WS service provision-
ing.

Average WS execution times exhibit a non-
negligible threshold due to WS-based proxy-to-server
invocation (approximately 3s for TCP-based proxies
and up to 10s for HTTP-based proxies). Apart from
that almost fixed threshold, response times have dem-
onstrated to linearly depend only on server-side exe-
cution time.

6.2 WS2MA Performance

Table 1 reports average execution times for
WS2MA services exploited in the case study sce-
nario. We reported two different kinds of values: the
time interval for SOAP-based interaction and the
same time interval when directly accessing the meth-
ods of the involved Java Bean. This comparison per-
mits to evaluate the impact of WS-related technolo-
gies: the method invocation times column reports the
actual costs related to the complexity of the service
logic, while SOAP-based invocation includes the
overhead of the SOAP protocol and of the WS man-
agement infrastructure.

Service SOAP-based

Invocation (ms)
Socket-based

Invocation (ms)
listAllPlaces 9307 4160

listAvailableAgents 8036 3458
createAgent 8265 4307

getAgentPosition 8468 3703
getAgentResult 8156 3396

Table 1. Average execution times for WSMI services in
the case study scenario.

The most important experimental result is that

WS adoption in WSMI does not lead to unexpected
and unpredictable fluctuations of service execution
times. On the contrary, the impact of SOAP-related
technologies adds a highly predictable overhead,
which is relatively limited and almost constant for all
services. Additional tests (see also the WSMI Web
site) have pointed out that the execution times of
WSMI services that involve MA system topologies
exhibit a well-scalable linear dependence on the
number of interested places.

7 Conclusions

We have investigated the possibility of integrating
MA systems and (possibly legacy) WS components.
The proposed WSMI infrastructure enables applica-
tion developers to easily exploit standardized syn-
chronous access to functions that are typical of totally
asynchronous systems, such as MA platforms. More-

over, MAs themselves can extend their applicability
by exploiting typically synchronous modalities of in-
teraction without losing the asynchronicity intrinsic
to their programming model: MAs can invoke WS
components independently of their location and of
their movements between different places/domains
during service execution. In novel ubiquitous mobile
Internet scenarios for service provisioning, WSMI
grants interoperability and heterogeneity for all MA
and WS systems that adhere to the adopted reference
models. We stress again that very minimal assump-
tions have been imposed for the sake of portability.
The experimental performance evaluation has shown
that the WS-MA integration can impose limited and
predictable overhead, without introducing unexpected
costs and bottlenecks when coupled with a flexible
proxy-based support architecture.

The encouraging results obtained with the current
WSMI prototype are pushing further research activi-
ties. We are currently working on extending WSMI
first to address the needs of specific application sce-
narios, e.g., information retrieval, and to build actual
industrial-case applications working on top of the
WSMI middleware support. Secondly, we are extend-
ing the possibility to define flexible service aggre-
gates, so to personalize the granularity of aggregation
depending on the application-specific interaction
needed between clients and their delegate MAs.

Acknowledgements
Work supported by the MIUR FIRB WEB-MINDS and by
the CNR Strategic IS-MANET Projects.

References
[1] N. M. Karnik, A. R. Tripathi, “Design Issues in Mo-

bile Agent Programming Systems”, IEEE Concur-
rency, Vol. 6, No. 3, pp. 52-61, July-Sep. 1998.

[2] P. Bellavista, A. Corradi, C. Stefanelli, “Mobile
Agent Middleware for Mobile Computing”, IEEE
Computer, Vol. 34, No. 3, pp. 73-81, Mar. 2001.

[3] B. Emako, R. H. Glitho, S. Pierre, “A Mobile Agent-

Based Advanced Service Architecture for Wireless
Internet Telephony: Design, Implementation, and
Evaluation”, IEEE Transactions On Computer, Vol.
52, No. 6, pp. 690-705, June 2003.

[4] A. Di Stefano, C. Santoro, ”NetChaser: Agent Sup-
port for Personal Mobility”, IEEE Internet Comput-
ing, Vol. 4, No. 2, pp. 74-79, Mar.-Apr. 2000.

[5] Object Management Group, “Mobile Agent Facility
Specification”, http://www.omg.org/technology/
documents/formal/mobile_agent_facility.htm.

[6] Foundation for Intelligent Physical Agents, “FIPA 97
Specification”, http://www.fipa.org/specs/fipa00019/.

[7] W3 Consortium, “Web Services Architecture”, W3C
Working Group Note, http://www.w3.org/TR/ws-
arch/.

[8] W3 Consortium, “SOAP Version 1.2”, W3C Rec-
ommendation, http://www.w3.org/TR/soap/.

[9] W3 Consortium, “Web Services Description Lan-
guage (WSDL) 1.1”, W3C Note, http://www.w3.org/
TR/wsdl.

[10] OASIS, “UDDI Version 2.04 API Specification”,
UDDI Committee Specification, http://uddi.org/pubs/
ProgrammersAPI-V2.04-Published-20020719.htm.

[11] W3 Consortium, “XML–Signature Syntax and Proc-
essing”, W3C Recommendation, http://www.w3.org/
TR/xmldsig-core/.

[12] W3 Consortium, “XML Encryption Syntax and Proc-
essing”, W3C Recommendation, http://www.w3.org/
TR/2002/REC-xmlenc-core-20021210/.

[13] OASIS, “Web Services Security”, http://www-
106.ibm.com/developerworks/webservices/library/ws
-secure/.

[14] OASIS, “Business Process Execution Language for
Web Services - Version 1.1”, http://www-
128.ibm.com/developerworks/library/ws-bpel/.

[15] SOMA: Secure and Open Mobile Agent,
http://lia.deis.unibo.it/Research/SOMA/.

[16] IKV++, “Grasshopper: an Intelligent Mobile Agent
Platform", http://www.ikv.de/content/Grasshopper/
Grasshopper.htm.

[17] G. Glass, “ObjectSpace Voyager Core package Tech-
nical Overview”, in Mobility: Process, Computers
and Agents, Addison-Wesley, pp. 611-627, 1999.

[18] A. Fuggetta, G.P. Picco, G. Vigna, “Understanding
Code Mobility”, IEEE Transactions on Software En-
gineering, Vol. 24, No. 5, pp. 342-361, May 1998.

