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Abstract

We outline a lightweight architecture to support novel

application scenarios for P2P systems. These scenarios

include merging and splitting of large networks, or mul-

tiplexing relatively short-lived applications over a pool

of shared resources. In such scenarios, the architecture

needs to be quickly and efficiently (re)generated fre-

quently, often from scratch. We propose the bootstrap-

ping service abstraction as a solution to this problem.

We present an instance of the service that can jump-

start any prefix-table based routing substrate quickly,

cheaply and reliably from scratch. We experimentally

analyze the proposed bootstrapping service, demon-

strating its scalability and robustness.

1. Introduction

Structured overlay networks are increasingly seen

as a key layer (or service) in peer-to-peer (P2P) systems,

supporting a wide variety of applications. Index-based

lookup is generally considered to be a “bottom” layer

(e.g., [2,12]), based on the assumption that the life cycle

of supported systems is similar to grassroots file sharing

networks: there exists at least one functional network,

membership can change due to churn, and the network

size can also fluctuate, but relatively smoothly. Join op-

erations are assumed to be uncorrelated. Most simu-

lation and analytical studies also reflect these assump-

tions, since they are often based on traces collected from

real file sharing networks.

While this scenario may be appropriate for many

important applications, we believe that overlay net-

works can be important design abstractions in radically

different scenarios that have not yet been considered
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by the P2P research community. In particular, mas-

sive joins to a large overlay network are not supported

by known protocols very well, and many protocols

have trouble dealing with massive departures as well.

Other related scenarios that are important yet under-

emphasized include bootstrapping a large network from

scratch, merging two or more networks, splitting a large

network into several pieces, and recovering from catas-

trophic failure.

If these scenarios were to be supported efficiently,

we could build a fully open and flexible computing

infrastructure that points well beyond current applica-

tions. In this paper we envision scenarios that involve

(virtual) organizations with (possibly) large pools of re-

sources organized in overlay networks. We want to al-

low these overlay networks to freely and flexibly merge

with and split from networks of other organizations on

demand, and we want to admit allocation (or sale) of

pools of resources for relatively short periods to users

who could then build their own infrastructures on de-

mand and abandon them when they are done. This vi-

sion is in line with current efforts to enhance the flexi-

bility of Grid infrastructures using P2P technology [4].

To support the above vision, we propose a P2P ar-

chitecture with two main components: the peer sam-

pling service and a dedicated bootstrapping service.

Merging several large networks or starting an applica-

tion from scratch within its time-slice are unusual and

radical events that many existing P2P protocols are not

designed to cope with. To provide a reliable platform in

the face of massive joins and departures, we propose the

peer sampling service [6] as a lightweight bottom-most

layer of our P2P architecture. The bootstrapping service

is then built on top of this peer sampling service. In the

proposed architecture, large collections of resources can

be readily aggregated into global structured overlays

rapidly and efficiently. This then allows the use of exist-

ing, well-tuned protocols without modification to main-

tain the overlays once they have been formed. As a con-

crete example of the bootstrapping service, we present



a novel protocol that can efficiently build prefix-based

overlay routing substrates such as Pastry [13], Kadem-

lia [8], Tapestry [17] and Bamboo [11] from scratch.

The outline of the paper is as follows. Section 2

presents the architecture to support the scenarios men-

tioned above. Section 3 briefly describes the bottom

layer: the peer sampling service. Section 4 describes

the protocol implementing the bootstrapping of rout-

ing substrates, while Section 5 presents experimental

results. Finally, Sections 6 and 7 compare our contri-

bution to related work and conclude the paper.

2. The Architecture

Our ultimate goal is to design a P2P architecture

that allows for large pools of resources to behave almost

like a liquid substance: it should be possible to merge

large pools, or split existing pools into several pieces

easily. Furthermore, it should be possible to bootstrap

potentially complex architectures on top of these liquid

pools of resources quickly on demand.

The architecture is outlined in Figure 1. The low-

est layer, the peer sampling service, implicitly defines

a group abstraction by allowing higher layers to ob-

tain addresses of random samples from the actual set

of participating peers; even shortly after massive joins

or catastrophic failures. The basic idea of the architec-

ture is that we require only this lowest layer to be liquid,

that is, persistent to the radical scenarios we described,

and we propose to build all other overlays on demand.

In other words, the sampling service functions as a last

resort that provides a very basic, but at the same time

extremely robust service, which is sufficient to enable

jump starting or recovering all higher layers of the ar-

chitecture.

We realize that this idea is rather radical, and de-

pends crucially on the existence of a lightweight and

fast bootstrapping service, and a robust sampling ser-

vice. The latter has been provided in our previous work

and is briefly outlined in Section 3. In this paper we fo-

cus on the bootstrapping service assuming that the peer

sampling service is available.

As shown in Figure 1, the architecture supports

other components in addition to structured overlays.

For example, a number of components rely only on ran-

dom samples, like probabilistic broadcast (gossip) or

aggregation [3, 7]. The architecture can also support

other overlays, such as proximity based ones [5, 15].

Figure 1. The layers of the proposed architec-

ture. The highlighted part is discussed in this

paper.

3. The Peer Sampling Service

The bottom layer of the proposed P2P architecture

is the peer sampling service [6]. The purpose of this

layer is to provide random peer addresses from the set

of participating nodes. In addition, the layer implicitly

defines membership as being the pool from which the

samples are drawn. Our previous work confirms that

the layer can be implemented in such a way that it pro-

vides high quality (i.e., sufficiently random) samples,

even immediately after massive joins and departures.

This is essential for dealing with the scenarios described

in the Introduction and allows us to focus on bootstrap-

ping over a network in which the sampling service is

already functional.

In this paper we consider an instantiation of the

peer sampling service based on the NEWSCAST proto-

col [6]. The basic idea of NEWSCAST is that each node

periodically sends a small, locally available random set

of node addresses to a member of this random set. Af-

ter receiving such a message, the node keeps a fixed

number of freshest addresses (based on timestamps). In

the following we briefly summarize the most important

properties of the protocol.

Cost: Each node sends one message to one other

node during a fixed time interval. Implementations ex-

ist in which these messages are small UDP messages

containing approximately 30 IP addresses, along with

the ports, timestamps, and descriptors such as node IDs.

The time interval is typically long, in the range of 10

seconds. The cost is therefore small, similar to that of

heartbeat messages in many distributed architectures.

Self-healing: The protocol provides sufficiently

random samples very quickly after catastrophic failures

(up to 70% nodes may fail) and during massive churn.

Besides, even if the sets of random samples that are

available at the nodes locally are initialized in a non-

random way (e.g., all nodes have the same samples) the



protocol very quickly randomizes the samples.

Due to its low cost, extreme robustness and mini-

mal assumptions, this protocol is an ideal bottom layer

that makes the bootstrap service feasible. The sampling

service is useful (and, in fact, sufficient) for gossip-

based protocols that are based on sending information

periodically to random peers.

4. The Bootstrapping Service

As argued earlier, our architecture crucially relies

on the existence of a lightweight and efficient imple-

mentation of the bootstrapping service, that in turn re-

lies on peer sampling. Here we develop a protocol

that fulfills these requirements. Note that we have al-

ready addressed bootstrapping CHORD [9] that is based

on a sorted ring, and additional fingers that are defined

based on distance in the ID space. However, an im-

portant alternative design decision of DHT-s is applying

prefix-based routing tables, which have some important

advantages, such as independence of ID distribution,

but which are a significantly different task to build and

maintain. The protocol that we present here constructs

prefix-based routing tables at all participating nodes si-

multaneously, and from scratch. The key idea is to build

a sorted ring, and during the process, collect entries to

fill the prefix tables at all nodes.

The prefix table is defined as follows. We assume

that all nodes have unique numeric IDs. An ID is repre-

sented as a sequence of digits in base 2b — each digit is

encoded as a b-bit number. The prefix table of a given

node contains up to k IDs for all pairs (i, j), where i is

the length (in digits) of the longest common prefix of

the ID and the node’s own ID, and j is the first dif-

fering digit. The entries may be less than k if there

are not enough node IDs with the desired prefix and

digit among the participating nodes. Many overlay rout-

ing substrates are based on this prefix table: for exam-

ple Pastry [13], Kademlia [8], Tapestry [17] and Bam-

boo [11]. Using the prefix tables and the leaf sets (that

define the sorted ring) the protocol constructs the rout-

ing tables of all these networks can be bootstrapped.

The protocol executed at all nodes is shown in Fig-

ure 2. Each node has a prefix table to fill and a leaf set,

that is being evolved to contain the nearest neighbors in

the sorted ring of node IDs. The size of the leaf set is c.

The components of the protocol work as follows.

Method UPDATELEAFSET takes a set of node de-

scriptors (addresses and corresponding IDs) and tries to

improve the leaf set using these descriptors. First, it

merges the set given as a parameter, and the current leaf

set, and then sorts this set according to distance from the

1: loop

2: wait(∆)
3: q← SELECTPEER()
4: mp← CREATEMESSAGE(q)
5: send mp to q

6: mq← receive(q)
7: UPDATELEAFSET(mq)

8: UPDATEPREFIXTABLE(mq)

9: end loop

(a) active thread

1: loop

2: mq← receive(∗)
3: mp← CREATEMESSAGE(q)
4: send mp to sender(mq)

5: UPDATELEAFSET(mq)

6: UPDATEPREFIXTABLE(mq)

7: end loop

(b) passive thread

Figure 2. Bootstrapping protocol at node p.

node’s own ID in the ring of all possible IDs. Note that

all IDs can be classified as successors and predecessors:

if an ID is closer in the increasing direction, it is a suc-

cessor, otherwise it is a predecessor. Then, in an effort

to collect an equal amount of successors and predeces-

sors, the method attempts to keep an equal number (c/2)

of closest successors and predecessors. If there are not

enough successors or predecessors, then the leaf set is

filled with the closest elements in the other direction.

Method SELECTPEER() also sorts the leaf set ac-

cording to distance from the node’s own ID in the ring

of all possible IDs, and then picks a random element

from the first half of the sorted list.

These components of the protocol are similar to the

application of T-MAN for building a sorted ring, as de-

scribed in [5]. The rest of the components are responsi-

ble for building the prefix table. The basic idea is that

the gradually improving prefix table is fed back into the

ring building process, so that the two components mutu-

ally boost each other. That is, the ring-building process

fills in most of the entries in the prefix tables, however,

the prefix tables—even before completed—can already

fulfill a kind of routing function, just like in DHT-s. Es-

pecially in the end phase, when most of the nodes have

found their place in the ring, but a few still have an in-

correct neighborhood, the gossip mechanism of T-MAN

and the almost complete prefix tables together make



sure these last nodes also find their correct neighbor-

hood quickly, essentially as if they were routed by the

routing substrate under construction.

The simplest method is UPDATEPREFIXTABLE that

takes a set of node descriptors and fills in any missing

table entries from this set.

The key component of the algorithm is CRE-

ATEMESSAGE, which is responsible for generating a set

of node descriptors to be sent to the peer node. Knowing

the ID of the peer, the method optimizes the information

to be sent as follows. First it takes the union of the leaf

set, cr random samples taken from the sampling service,

the current prefix table, and its own descriptor (in other

words, all locally available information). It orders this

set according to distance from the peer node, and keeps

the first c entries. In addition, it adds to the message

all node descriptors that are potentially useful for the

peer for its prefix table (i.e., have a common prefix with

the peer ID). The size of this additional part is not fixed

but is bounded by the size of the full prefix table, and

usually is smaller in practice.

Finally, the protocol needs to be started in a loosely

synchronized manner, that is, the nodes have to start the

execution of the protocol with a relatively small time

difference, for example, within an interval of ∆ time

units, which defines the frequency of communication

(see Figure 2). At start time, all nodes use the peer sam-

pling service to initialize their leaf sets with a set of ran-

dom nodes, and clear their prefix table. For simplicity,

we assume here that the protocol is started by a sys-

tem administrator, using some form of broadcasting or

flooding on top of the peer sampling service (e.g., [3]).

Let us summarize the parameters of the protocol.

The prefix table is defined by b (the number of bits in

a digit) and k, the number of entries for a specific pre-

fix length and first differing digit. The size of the leaf

set is c. Parameter ∆ defines the frequency of commu-

nication. Finally, cr is the number of random samples

used for improving the messages to be sent. Note that

these samples are “free” (if cr is not too large) since

the generic peer sampling layer is assumed to function

independently of the bootstrapping service.

5. Simulation Results

Both the sampling service and the bootstrapping

service were implemented for the PEERSIM simulator

developed by us [10]. We focus on two aspects of the

protocol: scalability and fault tolerance. To this end,

we fix all the parameters of the protocol, except the net-

work size and failure model. In our simulations IDs are

64-bit integers. Although typical definitions of the ID

space consider 128-bit integers, using only 64 bits for

our simulations is not limiting since the length of the

largest common prefix is much less than 64 bits for all

node pairs in networks of any practical size. The extra

bits play no role in this protocol.

The parameters of the prefix table were chosen to

match common settings: b = 4 and k = 3. For networks

that do not require multiple alternatives of a given table

entry, setting k > 1 is still useful because it allows for

optimizing the routes according to proximity. The leaf

set size was c = 20 and the parameter cr was set to be

30. We experimented with network sizes (N) of 214, 216

and 218 nodes.

The scenario of an experiment is as follows. We

assume that we are given a network where the sampling

service is already functional. We start the bootstrapping

protocol at each node at a different random time within

an interval of length ∆. For convenience, we call the

consecutive intervals of length ∆ cycles. The first inter-

val corresponds to cycle 0.

The protocol is then run until the perfect leaf sets

and prefix tables are found at all nodes, based on the

actual set of IDs in the network. This cannot be decided

locally, and indeed, the protocol has no stopping crite-

rion. However, since our protocol is cheap and needs

only a small number of iterations, in practice, after ini-

tialization it can be run simply for a fixed number of

cycles that are known to be sufficient for convergence.

To test scalability, in the first set of experiments

(shown in Figure 3) there are no failures and all mes-

sages are delivered reliably. For network sizes 214, 216

and 218, we performed 50, 10 and 4 independent ex-

periments, respectively. The plots show the results of

each individual experiment, ending when perfect con-

vergence is obtained.

From the top graph of Figure 3 we observe that the

time required to reach a desired quality of the leaf sets

increases by an additive constant despite a four-fold in-

crease in the network size. This is a strong indication

that the time needed for convergence is logarithmic in

network size. In addition to being logarithmic, the ac-

tual convergence times are also rather small. Conver-

gence of the leaf sets clearly follows an exponential be-

havior.

The convergence of the prefix tables is rather sur-

prising (bottom graph of Figure 3): the network of 218

nodes converges faster in the final phase than a network

that is four times smaller, with the same parameters.

Note that in this final phase, the vast majority of the

entries are already available (less than 1 out of 1000 en-

tries are missing). This slight difference has to do with

the scarcity of suitable IDs for the remaining positions
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Figure 3. Results in the absence of failures.

When a curve ends, the corresponding tables

are perfect at all nodes.

to fill.

In the second set of experiments we tested the ro-

bustness of our protocol by dropping messages with a

uniform probability (Figure 4). This failure model is

appropriate for study because we designed the protocol

with a cheap, unreliable transport layer in mind (UDP).

The drop probability was chosen to be 20%, which is

unrealistically large. Since the protocol is based on

message-answer pairs, if the first message is dropped,

then the answer is not sent either. Taking this effect into

account, elementary calculation shows that the expected

overall loss of messages is 28%.

The main conclusion of these experiments is that

the behavior of the protocol is very similar to the case

when there are no failures, only convergence is slowed

down proportionally.

The protocol is not sensitive to churn either (not

shown). In short, the quality of the routing tables gener-
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Figure 4. Results with 20% of the messages

dropped. When a curve ends, the correspond-

ing tables are perfect at all nodes.

ated by our protocol is similar to that obtained by known

routing substrates in the presence of similar churn. Fur-

thermore, since our protocol is based on cheap UDP

messages and can be completed in a small number of

cycles, the effect of churn during this short time is nat-

urally limited.

6. Related Work

Massive joins to already running overlays have

been addressed previously (e.g., [12, 16]) proposing a

form of periodic repair mechanism for maintaining the

leaf set, not unlike the one presented here. More re-

cently the bootstrapping problem has been addressed as

well, focusing on specific overlays [1,9,14]. Our contri-

bution with respect to related work is twofold. First, we

propose an architecture that can support a protocol that

jump-starts an entire overlay from scratch. Our protocol



is independent of the protocol that manages the routing

substrate: we singled out the abstract bootstrap service

as an important architectural component. Second, our

protocol is efficient and lightweight, and supports over-

lays based on prefix-tables and leaf sets.

7. Conclusions

We proposed a P2P architecture that relies on a ro-

bust peer sampling service and a bootstrapping service.

Although the functionality of the sampling service is ba-

sic, its implementation is more robust and flexible than

those of currently available structured overlays. The ar-

chitecture we presented here, and in particular, the boot-

strapping service, bridges the robustness and flexibility

of the sampling service and the functionality of struc-

tured overlays.

Based on our simulation results, the proposed in-

stantiation of the bootstrapping service can build a per-

fect prefix table and leaf set at all nodes, in a logarith-

mic number of cycles, even in the presence of mes-

sage delivery failures. This performance, in combi-

nation with the support of the sampling layer, enables

the on-demand deployment of complex (multi-layered)

P2P applications in short time-slices over large pools of

shared resources, in addition to allowing large pools of

resources to be merged or split temporarily.
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