
1

Improve Searching by Reinforcement Learning in
Unstructured P2Ps

Xiuqi Li and Jie Wu
Florida Atlantic University
Boca Raton, Florida 33431
{xli, jie}@cse.fau.edu

Shi Zhong
Yahoo! Inc.

Sunnyvale, California 94089
frank.shizhong@gmail.com

Abstract— Existing searching schemes in unstructured P2Ps
can be categorized as either blind or informed. The quality of
query results in blind schemes is low. Informed schemes use
simple heuristics that lack the theoretical background to support
the simulation results. In this paper, we propose to improve
searching by reinforcement learning (RL), which has been proven
in artificial intelligence to be able to learn the best sequence of
actions in order to achieve a certain goal. Our approach, ISRL,
aims at locating the best path to desired files at low cost. It
explores new paths by forwarding queries to randomly chosen
neighbors. It also exploits the paths that have been discovered
to reduce the cumulative query cost. Two models of ISRL are
proposed: the basic ISRL for finding one desired file, and MP-
ISRL for finding multiple desired files. ISRL outperforms existing
searching approaches in unstructured P2Ps by achieving higher
query quality with less query traffic. The experimental result
supports the performance improvement of ISRL.

Keywords: Hint-based search, intelligent search, peer-to-peer net-
works, reinforcement learning, unstructured P2P.

I. I NTRODUCTION

An unstructured peer-to-peer (P2P) network is an overlay
network where all nodes play equal roles, and the topology
and data location do not follow restrictive rules. It is often used
for each user to share local files with other users in the same
network [1]. Searching is the basic operation in unstructured
P2Ps. Existing searching approaches can be classified asblind
or informed. An informed search, such as routing indices [2],
utilizes hints to facilitate query forwarding. A blind search, e.g.
the random walk [3], blindly sends queries. Informed schemes
usually achieve a higher search quality than blind ones.

Existing informed approaches can be categorized into either
proactive or reactive. Proactive approaches, such as routing
indices [2], propagate hints before files are queried whereas
reactive approaches, for example intelligent search [4], collect
hints after query processing. Reactive approaches do not waste
resource in propagating hints about unpopular files. Routing
indices spreads hints about document topics. Intelligent search
collects past similar queries. All these informed schemes
employ simple heuristics and lack theoretical support for their

This work was supported in part by NSF grants CCR 9900646, CCR
0329741, ANI 0073736, and EIA 0130806.

effectiveness. In addition, reactive approaches do not try to
improve the quality of collected hints.

In this paper, we propose to systematically learn the best
route to desired files through reinforcement learning (RL) [5].
RL addresses the general issue of how a learner that interacts
with its environment can learn the optimal actions to achieve
its goal. Trial-and-error learning and the delayed reward mech-
anism are the most important characteristics of RL. Whenever
a learner takes an action, it receives an immediate reward and
the environment changes its state. The learner discovers which
actions yield the highest cumulative reward by trying them. An
action may affect both the immediate reward and all future
rewards. RL has been proven to converge to the best sequence
of actions with the maximum cumulative reward.

When applying RL to P2P searching, each node is a
distributed learner and the P2P network is its environment. An
action is a query forwarding. Each query path is a sequential
process. The goal is to reach a node that hosts a desired file.
All nodes (learners) work together to learn the best query path
to hosting nodes. Each learner iteratively estimates which next-
hop neighbor is the best one to forward a given query by
trying them. When a query is successfully resolved, rewards
are propagated along the reverse query paths. After receiving
rewards, each node updates its estimation to reinforce better
paths. Each learner can also adapt itself to the network
dynamics through this trial-and-error mechanism.

RL has been used in [6] to adapt P2P topologies to peer
interests. This paper applies RL to P2P searching without
topology adaptation. We propose two models: basic ISRL
and MP-ISRL. The basic version is designed for locating
one desired file efficiently. Each node learns the best path
to one desired file by exploring new potential paths and
exploiting the already discovered paths. To balance exploration
and exploitation, each node adapts its exploration coarsely or
in a fine-grained manner based on the quality of the learned
paths. MP-ISRL aims at finding more than one file efficiently.
Each node learns the top-k best paths to desired files.

The following are contributed in this paper.
1) We put forward a searching scheme, ISRL, that sys-

tematically learns the best path to a desired file by
reinforcement learning and adapts itself to system dy-



2

namics. To the best of our knowledge, this is the first
work that applies RL to P2P searching without topology
adaptation.

2) We design two models of ISRL, the basic version for
locating the best path, and MP-ISRL for finding the top
k best paths. Important design issues, such as balancing
exploration and exploitation are also discussed.

3) We conduct simulations and compare results with exist-
ing searching schemes.

The remainder of this paper is organized as follows. In Sec-
tion II, we review the related work. In Section III and IV, we
introduce the basic ISRL and discuss MP-ISRL respectively.
Simulation results are presented in Section V. Our work is
summarized in Section VI.

II. RELATED WORK

Existing searching schemes in unstructured P2Ps can be
classified into blind or informed. Flooding, Depth First Search
(DFS), random walks, and their variations are blind searches.
Flooding [7] is a Breadth First Search (BFS) of the overlay
graph. DiCAS [8] uses grouping to restrict flooding among
a subset of nodes in the P2P. Freenet [9] uses a DFS of the
P2P overlay. Random walks [3] [4] try to reduce message
redundancy in flooding.k-walker random walks [3] deployk
random walkers at the querying source. Modified random BFS
[4] forwards a query to a random subset of neighbors at each
receiving node.

Informed searches include intelligent search [4], APS [10],
hybrid [11], routing indices [2], and ESS [12]. Intelligent
search directs a query to a subset of neighbors that answered
similar queries previously. APS forwards a single file lookup
query probabilistically based on the query history and the
guesses of query sources. APS can be viewed as an ad-
hoc application of reinforcement learning in specific single
file lookup queries. Our ISRL approach is more general and
theoretically sound. Hybrid probes and forwards queries based
on simple heuristics such as the number of files. Routing
indices forwards a keyword query probabilistically based on
the propagated keyword information. ESS tries to resolve
semantic queries efficiently by converting the unstructured P2P
overlay to a semantic overlay dynamically.

Q-learning [13] is one simple and widely used RL scheme.
It defines aQ function for each state-action pair(s, a). Q(s, a)
represents the expected discounted cumulative reward obtained
by taking actiona at states. A learner estimatesQ(s, a) values
iteratively based on experiences as follows. At current states,
take a selected actiona, receive an immediate rewardr, and
observe the new states

′
. Then the learner updatesQ(s, a)

according the following formula,

Q(s, a) = (1− η)Q(s, a) + η(r + γmaxbQ(s
′
, b)),

whereη is the learning rate andγ is the discount factor. Both
are in the range[0, 1]. Q(s, a) can be implemented as a simple
table or a trainable parameterized function. RL has been used
in [6] to adapt the P2P overlay topology to peer interests. RL
has also been used in packet routing in switch networks [14].

III. T HE BASIC ISRL

The goal of the basic ISRL is to deliver a query through
the best path to a node hosting the desired file. It explores
new paths by forwarding queryq to a random neighbor with
probabilitypq. It exploits existing paths by sendingq through
the best-so-far path with probability1−pq. The newly explored
better path replaces the existing path during path updates.
We consider semantic queries for files with similar semantic
content.

A. Semantic content representation

The vector space model in IR is used to represent the
semantic content of documents and queries. Each document
is represented by a semantic vector, where each dimension is
the weight of a term appearing in a document. Term weights
indicate the importance of terms in describing the semantic
content of documents. The size of semantic vectors is equal
to the size of the vocabulary for the document collection.
Stemming is often used to reduce vector dimensions. A user
can issue a semantic query described in a natural language.
The system extracts a semantic vector for such a query just
like extracting a semantic vector for a document [15]. Each
query vector or document vector is normalized such that its
Euclidean vector norm is1 before similarity computation.

Many term weighting schemes have been proposed in the
IR literature [15]. We calculate the weight of a termt, denoted
by wt, in a documentd according to the following formula.

wt = 1 + log(tft),

wheretft refers to the number of occurrences oft in d. This
scheme does not require global knowledge of the document
collection in a P2P network, and has been demonstrated to be
effective in document clustering [16].

B. Path entries

To facilitate learning the best path during query processing,
each node, sayx, keeps one path entry for each query vector
that was resolved successfully throughx. Table I lists the items
in an entry.q represents the query vector.z is the best neighbor
for finding files similar toq that x has discovered so far.
Qxq refers to the path cost in terms of the number of overlay
hops. It corresponds to theQ value in Q-learning but needs to
be minimized.pq represents the probability of exploring new
paths forq. cntUq counts the consecutive number of updates
to Qxq that are smaller than a threshold. These path entries
are created when desired files were found the first time. They
are continuously monitored during path exploration and update
process, which will be discussed later in this section.

C. 1-thread semantic search

All nodes handle queries similarly. When nodex receives
from nodey a Query message for query vectorq initiated at
nodes, it takes the following actions.

1) If a local file f is semantically similar toq, x replies
to y a QueryResponse message that includes the query,
the detailed description aboutf , and the costQxq = 0.



3

Notation Meaning

q The query semantic vector
z The neighbor on the best-so-far path forq
Qxq The cost of the best-so-far path forq
pq The path exploration probability forq
cntUq The consecutive number of minor updates toQxq

TABLE I

THE QUERY-PATH ENTRY FOR QUERY VECTORq AT NODE x IN BASIC ISRL

The query will not be forwarded further. If no desired
file exists onx, go to step2).

2) If x has a path entry that contains vectorq, then with
probability pq, the query is forwarded to a randomly
chosen neighbor other thanz (exploration). With prob-
ability (1− pq), the query is sent to the best neighborz
discovered so far (exploitation).

3) If x does not have an entry forq, it then directs the
query to a neighbor chosen randomly.

A query response message is sent along the reverse query
path and terminates at the querying source.pq is an important
design parameter. It will be discussed in detail in the next
subsection. To avoid searching loops (duplicate queries), each
Query message carries all node IDs on the query path so far.

The cosine similarity model is selected for evaluating the
similarity between a query vector and a document vector or
between two query vectors. This model is widely used in IR
community. Given twom-dimensional semantic vectors,a =
(a1, a2, ..., am)T , and b = (b1, b2, ..., bm)T , their semantic
similarity, Sim(a, b), is the cosine of the angle between them

Sim(a, b) =
∑m

i=1 aibi√∑m
i=1 a2

i

√∑m
i=1 b2

i

.

Because we normalize a query vector and a document vector
before the similarity computation, the denominator in the
formula is 1. The largerSim(a, b), the semantically closer the
two vectorsa andb. We use a threshold to determine whether
two semantic vectors are similar.

D. Path update

Path entries are updated when queried files are found. The
new path information is carried in the QueryResponse message
and transferred along the reverse query path. All nodes on
the reverse query path update their related entries accordingly.
Specifically, When a nodex receives a QueryResponse mes-
sage for query sources and query vectorq from nodey, x
performs as shown in Figure 1. If the discovered path viay
is the first path forq, x adds this new path. If the cost of
the new path viay is lower than that via the currently known
best neighborz, then replacez by y. Otherwise, keepz and
reset the update toQxq, ∆Qxq, to zero. If the update toQxq

is trivial, then increase the countercntUq. Otherwise, reset
cntUq. x always propagates the updatedQxq using a new
QueryResponse message.

E. Path exploration

Path exploration is controlled by the system parameter
pq, which determines what neighbor to send queryq. The

Path update at node x when getting qrqs from y:
// Basic ISRL;qrqs: QueryResponse message forqs

1. if (the first path forq)
2. Qxq = Qyq + 1;
3. z = y;
4. else if (Qyq + 1 < Qxq)
5. ∆Qxq = Qxq − (Qyq + 1);
6. Qxq = Qyq + 1;
7. z = y;
8. else
9. ∆Qxq = 0.
10. if (∆Qxq < ε1)
11. + + cntUq ;
12. else
13. cntUq = 0;
14. Adjustpq based oncntUq ;
15. Include(q, Qxq) in the new QueryResponse message;

Fig. 1. Path update algorithm at nodex when receiving
QueryResponse messageqrqs from nodey in basic ISRL.

neighbors attempted by a nodex serve as the training samples
for x to learn the best path forq. x faces a tradeoff between
exploration and exploitation. Largepq favors gathering new
information by exploring unknown paths. Smallpq prefers
utilizing already discovered good paths so as to reduce the
total path cost. Typically, exploration is favored initially and
exploitation is preferred later. In this paper, we consider two
design options for settingpq.

pq design 1: coarse adaptation.In this option, we use
two constants: one large valueαhigh for the initial progressive
exploration; one small valueαlow (< αhigh) for later lazy
exploration. Each node, sayx, initializespq to αhigh to gather
new information aggressively.x changespq to αlow when the
best path discovered so far is close to the actual best path.
This can be estimated by a large (≥ a thresholdw1) number
of consecutive minor updates to path costQxq. cntUq is used
to count such updates. The detailed function is shown below.

pq =
{

αhigh if cntUq < w1

αlow otherwise.

pq design 2: fine tuning. Adjust p gradually. Each node,
sayx, initializes pq to a large value. Each time when certain
number of consecutive minor updates is observed atx, reduce
pq by a constant amountµ. When forwarding a query forq
next time,x explores less.pq decreases as the best-so-far path
approaches the actual best path.

pq = pq − µ, if cntUq > w2.

F. Illustration

Figure 2 shows an example of the basic ISRL search. The
query source isA, denoted by an empty square. The desired
file is only hosted in nodeE, represented by a solid circle.
The arrows indicate query forwarding directions. The number
next to each arrowed line refers to the experiment sequence.
A - F are node IDs. The number within curly brackets next to
each node ID is theQ value for this query. The first trial via
B is successful, which causes nodesD, C, B, A to add new
entries for this query withQ values as shown in the figure.
The second and third trials fail. No update toQ values occur



4

4

query source

hosting node

other nodes

B {3)

D {1}

EF {1}

1

A {4} −> {2}

C {2}

1

1

1

2

2

2

2

2

3

3

3

3

3

4

Fig. 2. An example of the basic ISRL search.

on the reverse query path. The fourth experiment succeeds and
makes nodeF add a new entry with cost 1 for the query.A
replaces the entry toB by the new entry toF with lower cost
2. ThereforeA learns the best path to hosting nodeE through
trials.

The basic ISRL corresponds to Q-learning with the follow-
ing settings:r = 1, γ = 1, andη = 1. Thus we have

Q(s, a) = 1 + minbQ(s
′
, b)).

BecauseQ(s, a) represents the path cost, it is to be minimized.
r is set to 1 considering that the path cost is in terms of overlay
hops.γ is set to 1 becauseQ(s, a) represents path costs and
discounts are unnecessary.η is set to 1 because we can adjust
learning through the exploration probability.

IV. MP-ISRL (MULTI -PATH ISRL)

The basic ISRL keeps only one path for each successful
query vector. This may not suffice when we try to find
more than one desired files. In this extended version, MP-
ISRL, each node keeps multiple (k) paths for each query
vector. Both exploration and exploitation are implemented as
k-thread forwarding. An exploring message for vectorq is
always sent tok neighbors chosen randomly. An exploiting
one always utilizesk discovered paths forq. If a node does
not havek known paths, it replaces unknown paths by random
forwarding. The exploration probability forq is similar to basic
ISRL. A newly discovered path is always added beforek paths
have been found, and replaces the worst path thereafter if
it is better. Path evaluation can be based on cost alone or
discounted reward considering both cost and similarity scores
of desired files.

A. Path entries

Each node keeps the topk best-so-far paths for each
successful query vector. Table II lists items in the path entry
for query vectorq kept at nodex. (zj , Qxqj) represents the
jth path. zj is the next-hop neighbor on this path andQxqj

the path evaluation score.pq has the same meaning as that in
basic ISRL. To determine that the topk best paths have been

Notation Meaning

q The query vector
zj The neighbor on thejth path forq, j ∈ [1, k]

Qxqj The evaluation score of thejth path for q, j ∈
[1, k]

pq The exploration probability forq
cntUq The consecutive number of minor updates to any

Qxqj , j ∈ [1, k]

TABLE II

THE PATH ENTRY FOR VECTORq AT NODE x IN MP-ISRL

Path update at node x when getting qrqs from y:
// MP-ISRL; path cost as evaluation score.
// qrqs: QueryResponse message forqs
// qs: Query message for vectorq and sources
// kc: the number of currently known paths forq

1. if (y == zi in the ith path forq) //existing next-hop
2. if (Qyq + 1 < Qxqi) // a better one
3. Qxqi = Qyq + 1;
4. ∆Qxq = Qxqi − (Qyq + 1);
5. else
6. ∆Qxq = 0;
7. else if (kc < k) //a new next-hop; not foundk paths yet
8. Qxqj = Qyq + 1;
9. ∆Qxq = Qxqj ;
10. zj = y; j = j + 1;
11. else //found k paths already
12. Find the worst existing path(zw, Qxqw);
13. if (Qyq + 1 < Qxqw)
14. ∆Qxq = Qxqw − (Qyq + 1);
15. Qxqw = Qyq + 1;
16. zw = y;
17. else
18. ∆Qxq = 0.
19. if (∆Qxq < ε2)
20. + + cntUq ;
21. else
22. cntUq = 0;
23. Adjustpq based oncntUq ;

Fig. 3. Path update at nodex when receiving from node
y QueryResponse messageqrqs in MP-ISRL; path cost as
evaluation score.

found,cntUq counts the consecutive number of minor updates
to any path forq.

B. k-thread semantic search

When a desired file is found, a nodex in MP-ISRL acts
similarly to nodes in basic ISRL. MP-ISRL differs from basic
ISRL in query forwarding. When nodex receives a semantic
Query message from nodey that contains the query vectorq
initiated at query sources, x acts as follows.

1) If x has one or more paths forq, then with probability
pq, q is forwarded tok randomly chosen neighbors
other than those in the known paths (exploration). With
probability (1 − pq), x dispatches the query alongk
already discovered paths forq.

2) If no existing path forq is kept atx, then send the query
to k neighbors chosen uniformly at random.



5

C. Path exploration and update

Like basic ISRL, MP-ISRL sets the exploration probability
pq for query vectorq using a similar formula according to the
quality of already discovered paths. Unlike basic ISRL, MP-
ISRL gathers new information more aggressively by usingk-
thread explorations because MP-ISRL aims to locate the topk
best paths. When nodex decides to explore new paths for any
query vectorq, it dispatchesq to k randomly chosen neighbors
that do not appear in known paths.

As for path updates in MP-ISRL, like the basic version,
updates occur only when a query result is found. Path infor-
mation is propagated along the reverse query path. We evaluate
paths in two ways. The first one is by path cost like the basic
version. The second one is a new model, called discounted
reward, which is designed for the scenario where we care about
the similarity scores of desired files with respect to the same
query.

Figure 3 shows the path update in this scenario. When a
node x receives a QueryResponse messageqrqs for query
vector q and sources from node y, if y is the next-hop
neighbor on the existingith path for q, x records the new
cost Qxqi if y brings a smaller cost. Ify is a new next-hop
neighbor andx hasn’t discovered allk paths yet, addy as
a new path forq. If there arek existing paths forq, replace
the worst existing path if the new path viay is better. If the
update to any existing path ofq is trivial, the countercntUq

is increased. Otherwise,cntUq is reset.
In summary, both basic ISRL and MP-ISRL apply Q-

learning to P2P searching. Each node learns the best next-hop
neighbor to forward a given query in order to follow the best
path with the lowest cumulative cost or the highest cumula-
tive reward. The learning process iterates through continuous
exploration and exploitation. The learning rate is adjusted via
the exploration probability. Basic ISRL keeps track of the best
path while MP-ISRL maintains the topk best paths.

V. EVALUATION

In this section, we will describe the experimental setup and
compare ISRL to existing searches in unstructured P2Ps.

A. Simulation setup

We simulated the algorithms using random graphs that
have 2000 and 5000 nodes and average degree of5. The
document collection in the P2P network consists of 6000
documents chosen from disk 1&2 in the TREC data set [17].
All documents that are semantically similar are distributed
to randomly selected neighborhoods in the P2P overlay.100
document vectors are selected as semantic query vectors.
Queries arrive sequentially. Each query consists of a query
source node and a query vector.100 nodes are randomly
chosen as query sources. The query distribution is uniform.
The semantic similarity threshold is selected as 0.43 based
on the chosen document collection. The performance metrics
are the average query messages per query for measuring
query traffic, the average query success rate, and the average
number of desired documents found as an indication of query
quality. A query is considered successful if at least one desired
document is found.

B. Evaluation of the basic ISRL

The basic ISRL is evaluated against 1-walker random walks
where each node randomly forwards a query to one neighbor.
Figure 4 illustrates their performance differences with varying
TTLs in random networks with 2000/5000 nodes and the
average degree 5. The basic ISRL uses the path update policy:
fine tuning with parameters,pq being0.05 andµ being0.01.
The fine exploration is better than coarse exploration in the
experiments. The results are not included in the paper due to
space limitation.

It is observed from Figure 4(a) that in both schemes the
message consumption increases as TTL increases. This is
because the query can travel further and the query path is
longer at larger TTL values. However, random walks incur
much more traffic than the basic ISRL at higher TTLs because
the random walk does not utilize any hints and many messages
are wasted. The basic ISRL reduces traffic by exploiting
discovered good paths and exploring better paths.

Figure 4(b) shows that the success rate in both schemes also
increases with increasing TTLs because the desired files far
from the querying source can be found at larger TTLs. In a
given network, the basic ISRL improves the query success rate
by 300% to 400% over random walks because random walks
does not keep already discovered paths. The success rate for
the basic ISRL increases dramatically at smaller TTLs (< 40)
and the increase slows down at larger TTLs. This is because
when TTL is small, an increase in TTL causes exploration
to be more successful and more queries can be satisfied by
exploiting these already discovered paths.

It is also observed from Figure 4 that both the basic ISRL
and the 1-walker random walk achieve a higher query success
rate with less number of messages in 2000-node networks than
in 5000-node networks. The basic ISRL outperforms the 1-
walker random walk in both types of networks.

C. Evaluation of MP-ISRL

The MP-ISRL is compared to random walks where each
node randomly forwards a received query message tok neigh-
bors. It employs fine exploration with parameters,pq being
0.05 andµ being0.01. Figure 5 demonstrates the performance
with varying k values in networks with the average degree 5
and variable number of nodes. The TTL value is chosen as 10
because it is large enough to show the performance differences
between MP-ISRL and random walks. It is also chosen for
faster simulation speed.

MP-ISRL achieves a higher success rate with much fewer
messages starting fromk = 3 than random walks because
it can learn and utilize discovered paths. At largek values,
the random walk can reach a significant number of nodes.
Therefore its success rate is also high. As for the number
of discovered documents, MP-ISRL can find more desired
documents than random walks at mid-sizek values due to its
higher success rate. Both MP-ISRL and random walks deliver
more queries successfully with less message load and find
more desired documents in smaller networks (2000-node) than
larger networks (5000-node). MP-ISRL is superior to random
walks in both types of networks.



6

TTL

A
ve

ra
ge

 n
um

be
r 

of
 q

ue
ry

 m
es

sa
ge

s

20 40 60 80 100
0

20

40

60

80

100 Basic ISRL(2000Nodes AvgDeg5)
Basic ISRL(5000Nodes AvgDeg5)
Random walk(2000Nodes AvgDeg5)
Random walk(5000Nodes AvgDeg5)

(a) Average number of query messages.

TTL

Q
ue

ry
 s

uc
ce

ss
 r

at
e

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

Basic ISRL(2000Nodes AvgDeg5)
Basic ISRL(5000Nodes AvgDeg5)
Random walk(2000Nodes AvgDeg5)
Random walk(5000Nodes AvgDeg5)

(b) Average query success rate.

Fig. 4. Basic ISRL vs 1-thread random walks in 2000-node and 5000-node networks with the average degree 5.

K

A
ve

ra
ge

 n
um

be
r 

of
 q

ue
ry

 m
es

sa
ge

s

1 2 3 4 5
0

200

400

600

800

1000

1200 MP−ISRL (2000nodes Deg5)
MP−ISRL (5000nodes Deg5)
Rand Walk (2000nodes Deg5)
Rand Walk (5000nodes Deg5)

(a) Average number of query messages.

K

Q
ue

ry
 s

uc
ce

ss
 r

at
e

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2
MP−ISRL (2000nodes Deg5)
MP−ISRL (5000nodes Deg5)
Rand Walk (2000nodes Deg5)
Rand Walk (5000nodes Deg5)

(b) Average query success rate.

K

A
ve

ra
ge

 n
um

be
r 

of
 d

oc
um

en
ts

 fo
un

d

1 2 3 4 5
0

2

4

6

8

10

12
MP−ISRL (2000nodes Deg5)
MP−ISRL (5000nodes Deg5)
Rand Walk (2000nodes Deg5)
Rand Walk (5000nodes Deg5)

(c) Average number of documents found.

Fig. 5. MP-ISRL vs. Random walk in 2000-node and 5000-node networks with the average degree 5.

VI. CONCLUSION

In this paper, we have proposed to improve searching in un-
structured P2Ps through reinforcement learning. Our approach,
ISRL, systematically learns the best path to desired files by
exploring new paths and exploiting existing explored paths.
We have presented two design models, basic ISRL and MP-
ISRL. The basic ISRL can be extended in many other ways.
One approach that can reduce the memory storage overhead
is to cluster query vectors based on semantic similarity and
keep one vector for each query cluster. In the future, we will
investigate this and other extensions.

REFERENCES

[1] X. Li and J. Wu, “Searching techniques in peer-to-peer networks,” in
Handbook of Theoretical and Algorithmic Aspects of Sensor, Ad Hoc
Wireless, and Peer-to-Peer Networks, Edited by J. Wu. CRC Press,
2005.

[2] A. Crespo and H. Garcia-Molina, “Routing indices for peer-to-peer
systems,” inProc. of the 22nd International Conference on Distributed
Computing (IEEE ICDCS’02), 2002.

[3] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication
in unstructured peer-to-peer networks,” inProc. of the 16th ACM
International Conference on Supercomputing (ICS’02), 2002.

[4] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-yazti, “A local search
mechanism for peer-to-peer networks,” inProc. of the 11th ACM
Conference on Information and Knowledge Management (CIKM’02),
2002.

[5] T. M. Mitchell, Machine learning. WCB / McGraw-Hill, 1997.
[6] L. Gatani, G. L. Re, A. Urso, and S. Gaglio, “Reinforcement learning

for P2P searching,” inProc. of the International Workshop on Computer
Architecture for Machine Perception (CAMP’05), 2005.

[7] “Gnutella,” http://www.gnutella.com.
[8] C. Wang, L. Xiao, Y. Liu, and P. Zheng, “Ditributed caching and adaptive

search in multilayer P2P networks,” inProc. of the 24th International
Conference on Distributed Computing Systems (ICDCS’04), 2004.

[9] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A dis-
tributed anonymous information storage and retrieval system,” inProc. of
the ICSI Workshop on Design Issues in Anonymity and Unobservability,
2000.

[10] D. Tsoumakos and N. Roussopoulos, “Adaptive probabilistic search in
peer-to-peer networks,” inProc. of 2nd International Workshop on Peer-
to-Peer Systems (IPTPS’03), 2003.

[11] X. Li and J. Wu, “A hybrid searching scheme in unstructured P2P
networks,” inProc. of 2005 International Conference on Parallel Pro-
cessing (ICPP’05), 2005.

[12] Y. Zhu and Y. Hu, “Ess: Efficient semantic search on gnutella-like P2P
systems,” inTechnical Report, Department of ECECS, University of
Cincinnati, 2004.

[13] C. Watkins and P. Dayan, “Q-learning,”Machine learning, vol. 8, 1992.
[14] J. A. Boyan and M. L. Littman, “Packet routing in dynamically changing

networks: A reinforcement learning approach,” inAdvances in Neural
Information Processing Systems, J. D. Cowan, G. Tesauro, and J. Al-
spector, Eds., vol. 6. Morgan Kaufmann Publishers, Inc., 1994.

[15] M. Berry and M. Browne,Understanding Search Engines: Mathematical
Modeling and Text Retrieval. Society for Industrial and Applied
Mathematics (SIAM), 1999.

[16] H. Schtze and C. Silverstein, “Projections for efficient document clus-
tering,” in Proc. of ACM SIGIR’97, 1997.

[17] “Trec dataset,” http://www.trec.org.


