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Abstract—Existing searching schemes in unstructured P2Ps effectiveness. In addition, reactive approaches do not try to
can be categorized as either blind or informed. The quality of improve the quality of collected hints.
query results in blind schemes is low. Informed schemes use | this paper, we propose to systematically learn the best
simple heuristics that lack the theoretical background to support route to desired files thr h reinforcement learning (RL) 15
the simulation results. In this paper, we propose to improve oute lo desirea files 0“9 einforcement learming ( . ) [5]-
searching by reinforcement learning (RL), which has been proven RL addresses the general issue of how a learner that interacts
in artificial intelligence to be able to learn the best sequence of with its environment can learn the optimal actions to achieve
actions in order to achieve a certain goal. Our approach, ISRL, its goal. Trial-and-error learning and the delayed reward mech-
aims at locating the best path to desired files at low cost. It api5m gre the most important characteristics of RL. Whenever
explores new paths by forwarding queries to randomly chosen a learner takes an action, it receives an immediate reward and
neighbors. It also exploits the paths that have been discovered - v . .
to reduce the cumulative query cost. Two models of ISRL are the environment changes its state. The learner discovers which
proposed: the basic ISRL for finding one desired file, and MP- actions yield the highest cumulative reward by trying them. An
ISRL for finding multiple desired files. ISRL outperforms existing  action may affect both the immediate reward and all future
searching approaches in unstructured P2Ps by achieving higher re\yards. RL has been proven to converge to the best sequence
query quality with less query traffic. The experimental result of actions with the maximum cumulative reward
supports the performance improvement of ISRL. . : : .
_ o When applying RL to P2P searching, each node is a
Keyl\(/vordsz ]!—hnt-basedl search, intelligent Szalgczhﬁ peer-to-peer netyjstributed learner and the P2P network is its environment. An
works, reinforcement learning, unstructure : action is a query forwarding. Each query path is a sequential
process. The goal is to reach a node that hosts a desired file.
I. INTRODUCTION All nodes (learners) work together to learn the best query path

. to hosting nodes. Each learner iteratively estimates which next-
An unstructured peer-to-peer (P2P) network is an overlff%p neighbor is the best one to forward a given query by

network wherg all nodes play equgl _roles, and .the t0p0|°9r ing them. When a query is successfully resolved, rewards
and data location do not follow restrictive rules. It is often use e propagated along the reverse query paths. After receiving
for each user to share local files with other users in the Sarf’é@vards, each node updates its estimation to reinforce better

network [.1 ]'. Searching is the basic operation in un_str_uctur%%ths_ Each learner can also adapt itself to the network
P2Ps. Existing searching approaches can be classifielinas dynamics through this trial-and-error mechanism.

or informed An informed search, such as routing indices [2], RL has been used in [6] to adapt P2P topologies to peer

utilizes hints to facilitate query forwarding. A blind search, .9 tarests. This paper applies RL to P2P searching without
the random walk [3], blindly sends queries. Informed SChem?c?‘poIogy adaptation. We propose two models: basic ISRL
usually achieve a higher search quality than blind ones. 5,4 \p.ISRL. The basic version is designed for locating
Existing informed approaches can be categorized into eithgfe gesired file efficiently. Each node learns the best path
.pro'active or reactive. Proactive approaches, suc.h as routigdone desired file by exploring new potential paths and
indices [2], propagate hints before files are queried wheregg)oiting the already discovered paths. To balance exploration
reactive approaches, for example intelligent search [4], collegly eypioitation, each node adapts its exploration coarsely or
hints after query processing. Reactive approaches do not Waste fine_grained manner based on the quality of the learned

resource in propagating hints about unpopular files. Routigy,s nvp-ISRL aims at finding more than one file efficiently.
indices spreads hints about document topics. Intelligent seagell.h, hode learns the tdpbest paths to desired files.
collects past similar queries. All these informed schemestpq following are contributed in this paper.

employ simple heuristics and lack theoretical support for theirl) We put forward a searching scheme, ISRL, that sys-

This work was supported in part by NSF grants CCR 9900646, ccR  tematically learns the best path to a desired file by
0329741, ANI 0073736, and EIA 0130806. reinforcement learning and adapts itself to system dy-



namics. To the best of our knowledge, this is the first I1l. THE BASICISRL

work that applies RL to P2P searching without topology The goal of the basic ISRL is to deliver a query through

adaptation. _ __the best path to a node hosting the desired file. It explores
2) We design two models of ISRL, the basic version fofew paths by forwarding query to a random neighbor with

locating the best path, and MP-ISRL for finding the toBopapility p,. It exploits existing paths by sendingthrough

k best paths. Important design issues, such as balanciRg pest-so-far path with probability-p,. The newly explored

exploration and exploitation are also discussed. _better path replaces the existing path during path updates.
3) We conduct simulations and compare results with exisjye consider semantic queries for files with similar semantic
ing searching schemes. content.

The remainder of this paper is organized as follows. In Sec-
introduce the basic ISRL and discuss MP-ISRL respectively.

. . . . ~'The vector space model in IR is used to represent the
Simulation results are presented in Section V. Our work is . )
) . . semantic content of documents and queries. Each document
summarized in Section VI.

is represented by a semantic vector, where each dimension is
the weight of a term appearing in a document. Term weights
Il. RELATED WORK indicate the importance of terms in describing the semantic
ontent of documents. The size of semantic vectors is equal
€the size of the vocabulary for the document collection.

. - , temming is often used to reduce vector dimensions. A user
(DFS).’ rando_m walks, and t_he|r variations are blind search% N issue a semantic query described in a natural language.
Flood|ng.[7] is a Breadth F|rs_t Search (B.FS) of t_he overl he system extracts a semantic vector for such a query just
graph. DIiCAS [8] uses grouping to restrict flooding among

Existing searching schemes in unstructured P2Ps can
classified into blind or informed. Flooding, Depth First Searc

. e extracting a semantic vector for a document [15]. Each
a subset of nodes in the P2P. Freenet [9] uses a DFS of ueery vector or document vector is normalized such that its
P2P overlay. Random walks [3] [4] try to reduce messa

; ; clidean vector norm i$ before similarity computation.
redundancy in roodmgk:-waII_<er random Walk_s_ [3] deploy Many term weighting schemes have been proposed in the
random walkers at the querying source. 'V'Od'f"?d random BI:I literature [15]. We calculate the weight of a tetphdenoted
Ei]C;?\?i':‘Zr?;se?uery to a random subset of neighbors at eaﬁy wy, in @ document! according to the following formula.

Informed searches include intelligent search [4], APS [10], wy = 1+ log(tf),

hybrid [1,1]’ routing indices [2], and ESS [12]. Intelligenrwh retf; refers to the number of occurrencestah d. This
search directs a query to a subset of neighbors that answ leme does not require global knowledge of the document

similar queries previously. APS forwards a single file 100kupyie ction in a P2P network, and has been demonstrated to be
qguery probabilistically based on the query history and thaeffective in document clustering [16]
guesses of query sources. APS can be viewed as an ad- '

hoc application of reinforcement learning in specific single ,
file lookup queries. Our ISRL approach is more general afy Path entries
theoretically sound. Hybrid probes and forwards queries basedlo facilitate learning the best path during query processing,
on simple heuristics such as the number of files. Routigich node, say, keeps one path entry for each query vector
indices forwards a keyword query probabilistically based dhat was resolved successfully throughTable I lists the items
the propagated keyword information. ESS tries to resoli@an entryq represents the query vecteris the best neighbor
semantic queries efficiently by converting the unstructured P#® finding files similar toq that = has discovered so far.
overlay to a semantic overlay dynamically. Qx4 refers to the path cost in terms of the number of overlay
Q-learning [13] is one simple and widely used RL schemB0ps. It corresponds to th@ value in Q-learning but needs to
It defines ay function for each state-action pdif, a). Q(s,a) be minimized.p, represents the probability of exploring new
represents the expected discounted cumulative reward obtaifaths forg. cntU, counts the consecutive number of updates
by taking actior: at states. A learner estimate§(s, a) values 10 @, that are smaller than a threshold. These path entries
iteratively based on experiences as follows. At current stateare created when desired files were found the first time. They
take a selected actiom, receive an immediate reward and are continuously monitored during path exploration and update
observe the new state. Then the learner updateg(s,a) Process, which will be discussed later in this section.

according the following formula,
C. 1-thread semantic search

Qs a) = (1 =m)Q(s, a) +n(r + ymazyQ(s ,b), All nodes handle queries similarly. When nodereceives
where is the learning rate angl is the discount factor. Both from nodey a Query message for query vectpinitiated at
are in the rangé0, 1]. Q(s, a) can be implemented as a simplgodes, it takes the following actions.
table or a trainable parameterized function. RL has been used) If a local file f is semantically similar tq;, = replies
in [6] to adapt the P2P overlay topology to peer interests. RL  to y a QueryResponse message that includes the query,
has also been used in packet routing in switch networks [14].  the detailed description aboift and the cost),, = 0.



[ Notation | Meaning Path update at node =z when getting grqs from

q The query semantic vector /I Basic ISRL;qrqs: QueryResponse message ar
z The neighbor on the best-so-far path for 1. if (the first path forg)
Qzq The cost of the best-so-far path for 2. Qug = Qg+ 1;
Dy The path exploration probability fay 3. zZ =1y,
entlU, The consecutive number of minor updatese, 4. elseif (Qyq +1 < Qaq)
5. AQzq = Qzq — (Qyq + 1);
TABLE | 6. Qug = Qug + 1
THE QUERY-PATH ENTRY FOR QUERY VECTORy AT NODE x IN BASIC ISRL ; ! 2=
. eLse
9. AQquq = 0.

10.if (AQazq < €1)

11. + + entUy,

The query will not be forwarded further. If no desired lg- else

: : 13. entUy, = 0;

file exists onx, go to step2). _ _ " Adjustpquased orently;

2) If z has a path entry that contains vectgrthen with 15. Include(g, Qz4) in the new QueryResponse message;
probability p,, the query is forwarded to a randomly
chosen neighbor other than(exploration). With prob- (g 1 path update algorithm at node when receiving

ability (1 —p,), the query is sent to the best neighhor QueryResponse message,, from nodey in basic ISRL.
discovered so far (exploitation).

3) If x does not have an entry fay, it then directs the
uery to a neighbor chosen randomly.
query 9 . y neighbors attempted by a nodeserve as the training samples
A query response message is sent along the reverse QL%SI’)Q

; ! ; . r’z to learn the best path far. « faces a tradeoff between
path and terminates at the querying souggeis an important ) L .
. . . . S exploration and exploitation. Large, favors gathering new
design parameter. It will be discussed in detail in the neX : .
information by exploring unknown paths. Smai} prefers

subsection. To avoid searching loops (duplicate queries), ea?lllzing already discovered good paths so as to reduce the

Query message carries all node IDs on the query path so tja{al path cost. Typically, exploration is favored initially and

The cosine similarity model is selected for evaluating th xploitation is preferred later. In this paper, we consider two
similarity between a query vector and a document vector £P P ' paper,

between two query vectors. This model is widely used in | eSIQZeOSF;tIgni-f%;;?;gng(ga tationn this option. we use

community. Given twom-dimensional semantic vectors,= Pq 9 _' P ' > opton, .

(v, a2,y @), and b = (by,bs, ..., bw)T, their semantic two constants: one large valug,;,, for the initial progressive
K PR m 1 - b) 3 ey ¥ Ll

similarity, Sim(a, b), is the cosine of the angle between thengxplorat!on; one small valuevo, (< anign) for later lazy
exploration. Each node, say initializesp, to a4, to gather

Sim(a,b) = St agb; . new information aggressively. change, to o;,., when the
’ Voo a2/> o b2 best path discovered so far is close to the actual best path.
Because we normalize a query vector and a document vecl{§S can be estimated by a large @ thresholdw,;) number
before the similarity computation, the denominator in th@ cOnsecutive minor updates to path cQsl,. cntU, is used
formula is 1. The largeim(a, b), the semantically closer the to count such updates. The detailed function is shown below.
two vectorse andb. We use a threshold to determine whether | nign  if entUy < wy
two semantic vectors are similar. Pq = { alow  Otherwise

D. Path update Dq d_eg_gq 2: fine tuning. Adjust p gradua_llly. Each node,.
] o say z, initializes p, to a large value. Each time when certain
Path entries are updated when queried files are found. Th§inber of consecutive minor updates is observed a¢duce
new path information is carried in the QueryResponse messageny a constant amount. When forwarding a query fog

and transferred along the reverse query path. All nodes Réxt time,z explores lessp, decreases as the best-so-far path
the reverse query path update their related entries accordinglynsroaches the actual best path.

Specifically, When a node receives a QueryResponse mes- _

sage for query source and query vectoy; from nodey, x Pg = Pq — pa 1f cntUy > ws.
performs as shown in Figure 1. If the discovered pathyvia

is the first path forg,  adds this new path. If the cost ofF. Illustration

the new path via, is lower than that via the currently known  Figure 2 shows an example of the basic ISRL search. The
best neighbor, then replace: by y. Otherwise, keep and  query source is4, denoted by an empty square. The desired

reset the update tQ.q, AQaq, to zero. If the update t6).; file is only hosted in node?, represented by a solid circle.

is trivial, then increase the countentU,. Otherwise, reset The arrows indicate query forwarding directions. The number

cntlUy. = always propagates the updaté€ll, using a new pext to each arrowed line refers to the experiment sequence.

QueryResponse message. A - F are node IDs. The number within curly brackets next to
_ each node ID is th&) value for this query. The first trial via
E. Path exploration B is successful, which causes nodesC, B, A to add new

Path exploration is controlled by the system parametentries for this query with) values as shown in the figure.
pg, Which determines what neighbor to send queryThe The second and third trials fail. No update@ovalues occur



Notation | Meaning ]

q The query vector

2 The neighbor on thg®® path forq, j € [1, k]

Quqj The evaluation score of thgf" path forq, j €
[L, k]

Dy The exploration probability fog

cntUy The consecutive number of minor updates to any
qujr J S [Lk}

TABLE I

THE PATH ENTRY FOR VECTORg AT NODE z IN MP-ISRL

O query source Path update at node x when getting qrqs from y:
hosti d /I MP-ISRL; path cost as evaluation score.
@ hosting node Il grqs: QueryResponse message for
O other nodes Il gs: Query message for vectgrand sources
) Il kc: the number of currently known paths for
Fig. 2. An example of the basic ISRL search. 1. if (y == z in the st path forq) //existing next-hop
2 if (Qyq+ 1< Quqi) Il abetter one
3 rqi — qu +1;
4 AQzq = Qugi — (Qyq + 1);
on the reverse query path. The fourth experiment succeeds awog elSEAQ —0
. xq — Y
makes noder” add a new entry with cost 1 for the query. 7. else if (ke < k) /la new next-hop; not found paths yet
replaces the entry t@® by the new entry ta#" with lower cost 8 Qagj = Qyg + 1
2. ThereforeA learns the best path to hosting naBethrough 190 5 quj%;g 1
. . ] — 9 - ’
trials. 11. else /ffound k paths already
The basic ISRL corresponds to Q-learning with the follow- ig !}m(thhe W(l)rst gXIstm)g patfew, Qeqw);
in ingsr =1, v = 1, andn = 1. Thus we hav - W (Qug 1< Qaqu
g settingsyr Y , andn us we have 14, Ay = Qug (@ + 1;
) / 15 Qequw = Qyq + 1;
Q(S,CI,) =1 +m2an(3 ab)) 16 qu: y; v
. _ 17 [
Because)(s, a) represents the path cost, itis to be minimized.| 15 “"aq,. — 0
r is set to 1 considering that the path cost is in terms of overlay 19.if (AQaq < €2)
hops.~ is set to 1 becaus@(s, a) represents path costs and 32 z ++ entUq
. . B etLse
discounts are unnecessatyis set to 1 because we can adjust| 5, entUy = 0;
learning through the exploration probability. 23. Adjustp, based orcntUy;

IV. MP-ISRL (MULTI-PATH ISRL) Fig. 3. Path update at node when receiving from node

The basic ISRL keeps only one path for each successfulQUeryResponse message,; in MP-ISRL; path cost as
query vector. This may not suffice when we try to fin@valuation score.
more than one desired files. In this extended version, MP-
ISRL, each node keeps multiplé)( paths for each query
vector. Both exploration and exploitation are implemented g8ng, 117, counts the consecutive number of minor updates
k-thread forwarding. An exploring message for vectois
) > to any path forg.
always sent tak neighbors chosen randomly. An exploiting
one always utilizes: discovered paths fog. If a node does
not havek known paths, it replaces unknown paths by random .
forwarding. The exploration probability faris similar to basic B. k-thread semantic search
ISRL. A newly discovered path is always added befopaths . _ .
have been found, and replaces the worst path thereafter.iy\./hen a deswed_ file IS found, a nodein MP'ISRL acts.
it is better. Path evaluation can be based on cost aloneS ilarly to nodes in basic ISRL. MP-ISRL differs from basic

discounted reward considering both cost and similarity scorI L in query forwarding. When nod_e receives a semantic
of desired files. uery message from nodgethat contains the query vectqr

initiated at query source, x acts as follows.

A. Path entries 1) If = has one or more paths fgr then with probability
pg, q is forwarded tok randomly chosen neighbors
other than those in the known paths (exploration). With
probability (1 — p,), = dispatches the query alorg
already discovered paths for

2) If no existing path fory is kept atx, then send the query
to k£ neighbors chosen uniformly at random.

Each node keeps the top best-so-far paths for each
successful query vector. Table Il lists items in the path entry
for query vectorg kept at nodez. (z;, Q,q;) represents the
ji" path. z; is the next-hop neighbor on this path ad,,;
the path evaluation scorp, has the same meaning as that in
basic ISRL. To determine that the tépbest paths have been



C. Path exploration and update B. Evaluation of the basic ISRL

Like basic ISRL, MP-ISRL sets the exploration probability The basic ISRL is evaluated against 1-walker random walks
pq for query vectorg using a similar formula according to thewhere each node randomly forwards a query to one neighbor.
quality of already discovered paths. Unlike basic ISRL, MPAFigure 4 illustrates their performance differences with varying
ISRL gathers new information more aggressively by using TTLs in random networks with 2000/5000 nodes and the
thread explorations because MP-ISRL aims to locate thé tofaverage degree 5. The basic ISRL uses the path update policy:
best paths. When nodedecides to explore new paths for anffine tuning with parameters,, being0.05 and x being0.01.
query vector, it dispatcheg to £ randomly chosen neighborsThe fine exploration is better than coarse exploration in the
that do not appear in known paths. experiments. The results are not included in the paper due to

As for path updates in MP-ISRL, like the basic versiorspace limitation.
updates occur only when a query result is found. Path infor-1t is observed from Figure 4(a) that in both schemes the
mation is propagated along the reverse query path. We evaluagssage consumption increases as TTL increases. This is
paths in two ways. The first one is by path cost like the basiecause the query can travel further and the query path is
version. The second one is a new model, called discounteélger at larger TTL values. However, random walks incur
reward, which is designed for the scenario where we care abawich more traffic than the basic ISRL at higher TTLs because
the similarity scores of desired files with respect to the sanitee random walk does not utilize any hints and many messages
query. are wasted. The basic ISRL reduces traffic by exploiting

Figure 3 shows the path update in this scenario. Whendgcovered good paths and exploring better paths.
node = receives a QueryResponse messagg for query  Figure 4(b) shows that the success rate in both schemes also
vector ¢ and sources from nodey, if y is the next-hop increases with increasing TTLs because the desired files far
neighbor on the existing’" path for ¢, x records the new from the querying source can be found at larger TTLs. In a
cost Q. if y brings a smaller cost. If is a new next-hop given network, the basic ISRL improves the query success rate
neighbor andr hasn't discovered alk paths yet, addy as by 300% to 400% over random walks because random walks
a new path forg. If there arek existing paths for, replace does not keep already discovered paths. The success rate for
the worst existing path if the new path viais better. If the the basic ISRL increases dramatically at smaller TT&s40)
update to any existing path afis trivial, the counterntlU, and the increase slows down at larger TTLs. This is because
is increased. OtherwisentU, is reset. when TTL is small, an increase in TTL causes exploration

In summary, both basic ISRL and MP-ISRL apply Qto be more successful and more queries can be satisfied by
learning to P2P searching. Each node learns the best next-BRploiting these already discovered paths.
neighbor to forward a given query in order to follow the best |t js also observed from Figure 4 that both the basic ISRL
path with the lowest cumulative cost or the highest cumuland the 1-walker random walk achieve a higher query success
tive reward. The learning process iterates through continuggge with less number of messages in 2000-node networks than
exploration and exploitation. The learning rate is adjusted Vjig 5000-node networks. The basic ISRL outperforms the 1-

the exploration probability. Basic ISRL keeps track of the begfalker random walk in both types of networks.
path while MP-ISRL maintains the top best paths.

V. EVALUATION C. Evaluation of MP-ISRL

In this section, we will describe the experimental setup andThe MP-ISRL is compared to random walks where each

compare ISRL to existing searches in unstructured P2Ps. node randomly forwards a received query messagderteigh-
. _ bors. It employs fine exploration with parametepg, being

A. Simulation setup 0.05 andy being0.01. Figure 5 demonstrates the performance

We simulated the algorithms using random graphs thaith varying & values in networks with the average degree 5
have 2000 and 5000 nodes and average degreg dhe and variable number of nodes. The TTL value is chosen as 10
document collection in the P2P network consists of 600fkcause it is large enough to show the performance differences
documents chosen from disk 1&2 in the TREC data set [1Hjetween MP-ISRL and random walks. It is also chosen for
All documents that are semantically similar are distributefdster simulation speed.
to randomly selected neighborhoods in the P2P oveiilaf. MP-ISRL achieves a higher success rate with much fewer
document vectors are selected as semantic query vectongessages starting froth = 3 than random walks because
Queries arrive sequentially. Each query consists of a quétycan learn and utilize discovered paths. At larfgesalues,
source node and a query vectdf0 nodes are randomly the random walk can reach a significant number of nodes.
chosen as query sources. The query distribution is uniforifherefore its success rate is also high. As for the number
The semantic similarity threshold is selected as 0.43 basafddiscovered documents, MP-ISRL can find more desired
on the chosen document collection. The performance metradmcuments than random walks at mid-sizealues due to its
are the average query messages per query for measufhigher success rate. Both MP-ISRL and random walks deliver
query traffic, the average query success rate, and the avenagee queries successfully with less message load and find
number of desired documents found as an indication of quenore desired documents in smaller networks (2000-node) than
quality. A query is considered successful if at least one desirkdger networks (5000-node). MP-ISRL is superior to random
document is found. walks in both types of networks.
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Fig. 5. MP-ISRL vs. Random walk in 2000-node and 5000-node networks with the average degree 5.
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