
Embedded Virtual Machines for Robust Wireless Control Systems

Rahul Mangharam and Miroslav Pajic
Dept. of Electrical & Systems Engineering

University of Pennsylvania, U.S.A.
{rahulm, pajic}@seas.upenn.edu

Abstract
Embedded wireless networks have largely focused on open-

loop sensing and monitoring. To address actuation in closed-
loop wireless control systems there is a strong need to re-think
the communication architectures and protocols for reliability,
coordination and control. As the links, nodes and topology of
wireless systems are inherently unreliable, such time-critical
and safety-critical applications require programming abstrac-
tions where the tasks are assigned to the sensors, actuators
and controllers as a single component rather than statically
mapping a set of tasks to a specific physical node at design
time. To this end, we introduce the Embedded Virtual Ma-
chine (EVM), a powerful and flexible programming abstrac-
tion where virtual components and their properties are main-
tained across node boundaries. In the context of process and
discrete control, an EVM is the distributed runtime system that
dynamically selects primary-backup sets of controllers to guar-
antee QoS given spatial and temporal constraints of the under-
lying wireless network. The EVM architecture defines explicit
mechanisms for control, data and fault communication within
the virtual component. EVM-based algorithms introduce new
capabilities such as predictable outcomes and provably mini-
mal graceful degradation during sensor/actuator failure, adap-
tation to mode changes and runtime optimization of resource
consumption. Through the design of a natural gas process plant
hardware-in-loop simulation we aim to demonstrate the prelim-
inary capabilities of EVM-based wireless networks.

Keywords: Real-time systems, embedded systems, wireless
sensor networks, virtual machines.

1. Introduction
Automation control systems form the basis for significant

pieces of our nation’s critical infrastructure. Time-critical and
safety-critical automation systems are at the heart of essential
infrastructures such as oil refineries, automated factories, logis-
tics and power generation systems. Discrete and process control
represent an important domain for real-time embedded systems
with over a trillion dollars in installed systems and $90 billion
in projected revenues for 2008 [1].

In order to meet the reliability requirements, automation sys-
tems are traditionally severely constrained along three dimen-
sions, namely, operating resources, scalability of interconnected
systems and flexibility to mode changes. Oil refineries, for ex-

ample, are built to operate without interruption for over 25 years
and can never be shutdown for preventive maintenance or up-
grades. They are built with rigid ranges of operating through-
put and require a significant re-haul to adapt to changing mar-
ket conditions. This rigidity has resulted in proprietary sys-
tems with limited scope for re-appropriation of resources during
faults and retooling to match design changes on-demand. For
example, automotive assembly lines lose an average of $22,000
per minute of downtime [2] during system faults. This has cre-
ated a culture where the operating engineer is forced to patch a
faulty unit in an ad hoc manner which often necessitates mask-
ing certain sensor inputs to let the operation proceed. This pro-
cess of unsystematic alteration to the system exacerbates the
problem and makes the assembly line difficult and expensive to
operate, maintain and modify.

Embedded Wireless Sensor-Actuator-Controller (WSAC)
networks are emerging as a practical means to monitor and op-
erate automation systems with lower setup/maintenance costs.
While the physical benefits of wireless, in terms of cable re-
placement, are apparent, automation manufacturers and plant
owners have increasing interest in the logical benefits.

With multi-hop WSAC networks, it is possible to build mod-
ular systems which can be swapped out for off-line maintenance
during faults. Modular systems can be dynamically assigned
to be primary or backup on the basis of available resources or
availability of the desired calibration. Modularity allows for in-
cremental expansion of the plant and is a major consideration in
emerging economies. WSAC networks allow for runtime con-
figuration where resources can be re-appropriated on-demand,
for example when throughput targets change due to lower price
electricity during off-peak hours or due to seasonal changes in
end-to-end demand.

While WSAC networks facilitate both planned and un-
planned mode changes, runtime programmable WSAC net-
works allow for flexible item-by-item process customization.
For example, a high demand for fuel-efficient Toyota Prius’ will
require major retooling of a traditional wired factory that is de-
signed for the Toyota Camry chassis. With re-programmable
WSAC, the assembly line stations can adapt to a schedule where
every 3 Camrys are interleaved with 2 Prius’ with synchronized
changes in operation modes and assembly line operations.

1

Figure 1. (a) A wireless sensor, actuator and controller network. (b) Algorithm assignment to a set of controllers, each mapped to the
respective nodes. (c) Three Virtual Components, each composed of several network elements

1.1. Embedded Virtual Machines

The current generation of embedded wireless systems has
largely focused on open-loop sensing and monitoring applica-
tions. To address actuation in closed-loop wireless control sys-
tems there is a strong need to re-think the communication archi-
tectures and protocols for reliability, coordination and control.
As the links, nodes and topology of wireless systems are inher-
ently unreliable, such time-critical and safety-critical applica-
tions require programming abstractions where the tasks are as-
signed to the sensors, actuators and controllers as a single com-
ponent rather than statically mapping a set of tasks to a specific
physical node at design time. Such wireless controller grids
are composed of many wireless nodes, each of which share a
common sense of the control application but without regard to
physical node boundaries.

To this end, we introduce the Embedded Virtual Machine
(EVM), a powerful and flexible programming abstraction where
virtual components and their properties are maintained across
node boundaries. EVMs differ from classical virtual machines
(VM). In the enterprise or on PCs, one (powerful) physical ma-
chine may be partitioned to host multiple virtual machines for
higher resource utilization. On the other hand, in the embed-
ded domain, an EVM is composed across multiple physical
nodes with a goal to maintain correct and high-fidelity operation
even under changes in the physical composition of the network.
The goal of the EVM is to maintain a set of functional invari-
ants, such as a control law and para-functional invariants such
as timeliness constraints, fault tolerance and safety standards
across a set of controllers given the spatio-temporal changes in
the physical network.

By incorporating EVMs in existing and future wireless au-
tomation systems, our aim is to realize:

1. Predictable outcomes in the presence of controller failure.
During node or link faults, EVM algorithms determine if and
when tasks should be reassigned and provide the mechanisms
for timely state migration.

2. Provably minimal QoS degradation without violating
safety. In the case of (unplanned) topology changes of the wire-
less control network, potential safety violations are routine oc-
currences and hence the EVM must reorganize resources and
task assignments to suit the current resource availability (i.e.
link bandwidth, available processing capacity, memory usage,

sensor inputs, etc.).
3. Composable and reconfigurable runtime system through

synthesis In the EVM approach, a collection of sensors, actu-
ators and controllers make a Virtual Component as shown in
Fig. 1. A Virtual Component is a composition of interconnected
communicating physical components defined by object trans-
fer relationships. At runtime, nodes determine (via centralized
or distributed algorithms) the task-set and operating points of
different controllers in the Virtual Component. This machine-
to-machine coordination require task-set generation, task mi-
gration and remote algorithm activation which are executed via
synthesis at runtime.

4. Adaptive Resource Re-appropriation and Optimization
for dynamic changes in service. For planned system changes
such as a factory shift, increase in output or retooling for a dif-
ferent chassis, nodes are required to be re-scheduled in a timely
and work conserving manner. For example, if an assembly
line is to process two types of units, red units and blue units,
it must ensure that the additional processing time required for
blue units does not violate the processing of red units along the
shared conveyor belt.

1.2. Research Challenges

While there has been considerable research in the general
area of wireless sensor networks, a majority of the work has
been on open-loop and non-real time monitoring application.
As we extend the existing programming paradigm to closed-
loop control applications with tight timeliness and safety re-
quirements, we identify five primary challenges with the design,
analysis and deployment of extending such networks:

1. Programming motes in the event-triggered paradigm
is tedious for control networks. It is hard to provide any ana-
lytical bounds on the response time, stability and timeliness of
tasks in an event-driven regime [3, 4]. Real-time tasks are time-
triggered while sensor inputs are event-triggered. It is generally
easier to incorporate sporadic tasks in a time-triggered regime
than vice versa.

2. Programming of sensor networks is currently at the
physical node-level where the tasks are bound to the node at
compile-time. This makes it non-trivial to decompose a large
control problem into defining components and applications for
each mote. In the case of sensor network virtual machines such

as Mate [4], Scylla [5] and SwissQM [6] and runtime program-
ming frameworks such as SOS [7] and Contiki [8], the interac-
tion is assumed to be between an end-user and a single isolated
node in a network and not among the nodes themselves.

3. Design of systems with flexible topologies is hard with
physical node-level programming as the set of tasks (or respon-
sibility) is associated with the physical node. Thus, a change in
the link capacity, node energy level or connectivity in the cur-
rent topology will render the application useless. It is necessary
to associate a logical mapping of tasks to nodes and incorporate
mechanisms to transfer responsibilities during physical and en-
vironmental changes in the network.

4. Fault diagnostics, repair and recovery are manual and
template-driven for a majority of networked control systems.
Approximately 30% of the code in automation systems is ded-
icated to fault detection and recovery. In the case of WSAC
networks, it is not plausable to exhaustively capture all possi-
ble faults at design time and thus provisions must be made for
runtime diagnostics and recovery.

5. Template-driven Safety: A majority of automation sys-
tems use ‘if-then’ template-driven statements to detect safety.
With frequent code patches, it is hard to provide safety guar-
antees. Any change in topology or the number of associated
nodes may violate the fixed safety rules which are determined
at design-time. Nodes must operate in tandem where the per-
formance and operational safety of one node is continuously
monitored by others and vice versa.

2. Background and Preliminary Work
The EVM architecture and algorithms are built on a modified

version of the FireFly sensor network platform [9] and nano-RK
sensor real-time operating system (RTOS) [10]. The EVM is
implemented in the form of a virtual machine abstraction layer
on top of the RTOS and executes as a special task within nano-
RK. As a special task, the EVM has both parametric and pro-
grammable control of the entire operating system and hardware
resources. We describe below the current developments and ex-
periences of the FireFly platform and nano-RK RTOS and also
the preliminary investigations with the EVM.

2.1. Embedded Network Platforms for Time
Synchronized Communication

Several platforms, such as Mica2, MicaZ, Telos, ExScale
and TinyNode [11], that have enabled sensor networks are avail-
able. Many of these platforms are based on the component-
based, event-triggered operating system and application frame-
work called TinyOS [3]. While this framework is flexible, tim-
ing predictability and fine-grained deterministic resource con-
trol were not its primary design objectives.

We use the FireFly platform [9] which is designed to support
real-time sensor networking applications [12, 13]. The Fire-
Fly node shown in Fig. 2 is a low-cost, low-power, platform
that is based on the Atmel ATmega1281 8-bit micro-controller
with 8KB of RAM and 128KB of ROM along with a Chipcon
CC2420 IEEE 802.15.4 standard-compliant radio transceiver.
A FireFly node can also operate with a solar cell driven by am-
bient light. Each node supports and expansion card with light,

Figure 2. FireFly node with sensors & AM time sync

temperature, audio, passive infrared motion, dual axis accelera-
tion and voltage sensors.

The primary reason we use FireFly for EVMs is for its ability
to support tight global hardware-based time synchronization for
real-time TDMA-based communication with the RT-Link pro-
tocol [12]. FireFly nodes are able to achieve sub-150µs jitter by
using a passive AM radio receiver. Through the tight time syn-
chronization of RT-Link, it has been demonstrated to have an
effective battery lifetime of 1.8 years with a 5% duty cycle. RT-
Link outperforms asynchronous protocols such as B-MAC [14]
and loosely synchronous protocols such as S-MAC [15] across
all duty cycles and event rates. We have demonstrated real-
time two-way interactive voice streaming across multiple Fire-
Fly nodes using the RT-Link protocol [13]. With RT-Link,
communication for real-time applications is collision-free and
is scheduled in well-defined TDMA slots that ensures timely
communication between nodes within an EVM’s Virtual Com-
ponent.

2.2. Real-Time Sensor Operating System as a
basis for the EVM

To address the need for timing precision, priority scheduling
and fine-grained resource management the nano-RK resource
kernel [10] was developed with timeliness as first-class citi-
zens. nano-RK is a fully preemptive RTOS with multi-hop net-
working support that runs on a variety of sensor network plat-
forms (8-bit Atmel-AVR, 16-bit TI-MSP430, Crossbow motes,
FireFly). It supports fixed-priority preemptive scheduling for
ensuring that task deadlines are met, along with support for
and enforcement of CPU and network bandwidth reservations.
Tasks can specify their resource demands and the operating sys-
tem provides timely, guaranteed and controlled access to CPU
cycles and network packets in resource-constrained embedded
sensor environments. It also supports the concept of virtual
energy reservations that allows the OS to enforce energy bud-
gets associated with a sensing task by controlling resource ac-
cesses. nano-RK provides various medium access control and
networking protocols including a low-power-listen CSMA pro-
tocol called B-MAC, an implicit tree routing protocol and RT-
Link.

For networked control systems, it is essential that the under-
lying sensor operating system expose precision timing, sched-
uled tasks and synchronized networking so that the trade-offs
between energy-consumption (node lifetime), reliability and re-
sponsiveness are specifiable and enforceable both at design-
time and runtime. Support for the above services is required
for low-duty cycle and energy-constrained sensor networks too

because the computation and communication are packed into a
short duration so all nodes may maximize their common sleep
time. As shown in Fig. 3, the EVM is built upon nano-RK and
adds the capability for a suite of runtime services with paramet-
ric and programmable control.

3. EVM Architecture and Algorithms
The system under consideration includes a number of wire-

less sensors, actuators and controllers composed into a Virtual
Component. The Virtual Component acts as a single entity for
the control algorithm execution. The EVM provides a flexi-
ble programming abstraction to share state and responsibilities
across physical nodes and allows multiple EVM-enabled nodes
to be composed into a single logical entity.

Control algorithms are automatically distributed across
physical nodes based on computing load and proximity to the
corresponding sensors and actuators. Multiple copies of each
algorithm are present on the physical nodes and state is shared
either passively or actively to enable fault tolerance. Control al-
gorithms ’spawn’ automatically proliferating to nodes capable
of executing them and maintain a common state at all times. If
one of the nodes executing control algorithm fails, another node
capable of performing the same control function takes over con-
trol execution. Algorithm migration from one physical node to
another is a key feature of this system. Control algorithm exe-
cution by one node is passively observed by other nodes capa-
ble of executing the same algorithm. Control algorithm failure
is detected by backup observers and a new master is selected
based on an arbitration algorithm.

3.1. EVM Architecture

We now consider the design of the EVM within the nano-RK
RTOS framework. The EVM describes its own instruction set
for efficient control, task and fault management between nodes.
As with Mate, the EVM is based on a FORTH-like interpreter.
The interpreter runs within nano-RK as a super task. However,
unlike Mate, the EVMs instruction set is extensible at runtime.
Furthermore, EVM instructions are focused on node-to-node
communication and control rather than PC-to-node control. We
describe two main architectural components within the EVM -

 State
Migration

Task

Motor
Control

Task

Overload
Detection

Task

Focus of EVM work

A
pp

s
K

er
ne

l
H

ar
dw

ar
e

Task
Management

Peripheral
Drivers

 Microcontroller

Real-Time Scheduler

Reservations

Reserves Reserves Reserves

Adaptive Virtual Machine
Runtime S

802.15.4 Radio

 Time Sync RX Power Control

RX Buffer

TX Buffer

RT-Link

Network
Management ystem

Parametric Control

Task Partitioning

Scheduleability Analysis

Software Attestation

Algorithm Activation

Protocol Adaptation

Policy Negotiation

Data Migration

Online Fault Diagnosis

Figure 3. nano-RK sensor RTOS with interfaces to the EVM.
EVM includes parametric and programmable control algorithms
for runtime logical-task to physical-node mapping.

EVM node-specific operations and object transfers for efficient
node-to-node communication.

3.1.1. EVM Node-specific Operations
The EVM is responsible for the following core node-specific

operations. The parametric control has been implemented as
an EVM library for core pre-defined instructions. The pro-
grammable control will be implemented as a runtime service
and requires hooks within the kernel, device drivers and link
layer.

1. Runtime Task Management This includes basic task al-
location, assignment and manipulation. The specific operations
supported by the EVM are task assignment to a particular node,
task migration from one node to another, task partition from one
node to another and itself and finally task replication where an
instance of a task is also invoked on another node (using the
same state information, stack and register settings).

2. Runtime Resource allocation This operation facilitates
allocation or re-allocation of a task control block and reserva-
tion with the scheduler and network for a new task or for an
existing task on the local node.

3. Scheduling and schedulability analysis This operation
is invoked when there has been a change to the scheduler or
task-set on a node. The new task-set or schedule will only be ac-
tivated if the schedulability test is passed. This ensures that all
tasks are schedulable within the scheduler’s utilization bounds
even after a new task is added.

4. Priority assignment This parametric control operation
allows a node to re-prioritize its tasks upon the admission of a
new task or change in operating conditions.

5. Fault/failure detection and adaptation This handler is
activated when a fault message is received by the kernel and
the desired action is carried out. An example of this would be
when a fault message informs the kernel that the battery is out
of energy and the kernel activates a task migration operation to
move operations to a more able node.

6. Node membership and data migration The membership
of a Virtual Component is not fixed. If new nodes are present
they are admitted to the Virtual Component. This operator en-
sures that the requirements of new nodes or the network state
of surviving nodes is stable. Furthermore, this operator invokes
the optimization sub-routine if more resources are added to the
Virtual Component’s resource pool.

7. Run-time optimization This operation executes opti-
mization of resource allocation and task assignment at runtime.
We use Binary Quadratic Programming for fixed-point opti-
mization for functional and para-functional requirements across
controller nodes. Due to space limitation we will not discuss
this in detail.

8. Software attestation When new code or data is received
by a node from another node, the node executes a basic attesta-
tion test to ensure the code/data is not corrupted and passes the
schedulability test.

While the above operations are not exhaustive, we will select
the ones that matter the most in our case studies and test them
under changing conditions with large dynamic ranges.

Figure 4. Unisim model for a natural gas process plant

3.1.2. EVM Object Transfers
We now describe the mechanisms used to communicate

control, data and fault information between controllers within
a virtual component. Five elementary object transfer types
are included in the EVM design. These include: disjoint,
bi-directional transfers, temporal-conditional transfers, causal-
conditional transfers and health assessment.

A disjoint relation between two nodes indicate that the nodes
may operate concurrently in both temporal and spatial domains
without any shared state. Directional and bi-directional trans-
fers define relationships such as master-slave, publish-subscribe
and producer-consumer. This is the basic transfer type for all
active controllers within a virtual component. Temporal and
causal transfers define the type of relationship between inter-
connected controllers and enforce a set of restrictions between
the controllers. Finally, health assessment transfers are used for
monitoring and tracking and define which node is the primary
or backup and the nature of response to faults such as trigger
alert, trigger backup, halt and local fail-safe operation.

4. EVM Evaluation
We have implemented the parametric control capability of

the EVM on the FireFly nodes over the nano-RK sensor RTOS.
This allows remote runtime triggering of individual sensor
drivers, modification of task reservations and network time-slot
assignment. Through a process control case study, we evalu-
ate the programmable control, more specifically the fault toler-
ant capability, of the EVM. We employ the Honeywell Unisim
plant simulator with hardware-in-loop via a a set of six inter-
connected FireFly nodes, as shown in Fig. 5. Each sensor, con-

UniSim Process

Sensors Actuators

Controller A
Task A.1
Task A.2
Task A.3

S1

S2

S3

A2

A1

Controller B
Task B.1

Controller C
Task C.1
Task C.2

Figure 5. EVM evaluation with wireless networked hardware-
in-loop simulation

troller and actuator node interfaces with a gateway node via RT-
Link. The gateway communicates with Unisim (on the work-
station) via ModBus. The controllers operate on information
generated by the plant simulation and sensor I/O for a realistic
closed-loop WSAC evaluation. This allows us to evaluate the
network with large dynamic input ranges and dramatic topol-
ogy changes.

Our focus is on the fault-tolerance of controllers only, all of
which are connected with wireless connections to each other
and to the physical sensors and actuators that interface to
Unisim. When a particular backup controller detects a series of
faults in the primary controller, it triggers a task migration op-
eration to the backup controller. This operation includes a capa-
bilities check and the migration of the task control block, stack,
data and timing/precedence-related metadata. The backup con-
troller is activated and the primary controller switches to a pas-
sive ‘indicator’ mode.

4.1. Natural Gas Plant Model
We employed a Unisim model for a natural gas processing

application. This case study models a natural gas processing
facility that uses propane refrigeration to condense liquids from
the raw natural gas feed and a distillation tower to process the
liquids. The flowsheet for this process is in Fig. 4. In this plant,
a raw natural gas stream containing N2, CO2, and C1 through
n-C4 is processed in a refrigeration system in order to remove
the heavier hydrocarbons. The liquids removed from the input
stream yield to a liquid product that has desired propane con-
tent.

As shown in Fig. 4, multiple input raw natural gas feed
streams are combined before entering Inlet Separator (InletSep)
that removes free liquids from them. Overhead gas from the
Inlet Separator is combined in the gas/gas exchanger with al-
ready cooled gas in order to decrease its temperature. The cold
stream from chiller is introduced to the Low-Temperature Sepa-
rator (LTS), which separates the heavy hydrocarbon liquid from
its input stream, while remaining gas is fed back to the gas/gas
exchanger. Liquid output of LTS is mixed with free liquids from
the Inlet Separator, InletSep. These liquids are then processed
at the Depropanizer column to produce a low-propane-content
bottoms product.

4.2. Fault-Tolerant Wireless Controllers
The plant model has a several control loops (presented with

light green connections). In considered application 8 differ-
ent controllers are used (4 in top level system and 4 in De-

(a) (b)
Figure 6. (a)Primary and backup controllers for the Low Temperature Separator. (b)Process control outputs during primary controller
failure (300s), recovery (600s) and activation of backup controller (at 601s). Legend: LTS-Liquid Percent Level (red), SepLiq-Molar
Flow (blue), LTSLiq-Molar Flow(magenta), TowerFeed-Molar Flow(green)

Propanizer). These controller algorithms are implemented us-
ing EVM across multiple physical nodes.

To show performance of designed EVM we will focus on the
controller for valve at liquid flow from LTS output and TowerIn-
let (Fig. 6(a)). In the presented configuration, 2 physical con-
trollers, Ctrl-A and Ctrl-B, implement the control algorithm as
primary and backup controllers respectively. The liquid’s per-
centage level in LTS is used as an input to the controllers, which
perform second order filtering with a PID regulator. The opera-
tion switch, OS-1, determines which controller’s output should
be connected to the valve.

To demonstrate fault-tolerant operation with the EVM, the
scenario in Fig. 6(b) is used. Before time T1, Ctrl-A is in Ac-
tive mode and actually controls the valve‘s output level. This
configuration is valid till the moment T2 when, due to a failure,
Ctrl-A sets a wrong valve output level (75% instead of 11.48%).
This is seen in the rapid drop of the liquid percent level and
variation of the liquid level in the separator. At time instance
T3, after the node Ctrl-B (which is in the Backup mode), deter-
mines inappropriate outputs from Ctrl-A and informs the head
of the Virtual Component, the VC sets Ctrl-B in Active mode,
while Ctrl-A goes to Backup mode. Finally at the end of this
transition, the Ctrl-A node is set to the Dormant mode. After
the stable system configuration is restored with the introduction
of Ctrl-B output, liquid level in LTS starts to recover slowly.
During the on set of the fault, the rapid increase in LTS valve‘s
output level introduced significant changes in molar flows of
the LTS, Separator and Tower Feed liquids. But after system‘s
reconfiguration these values were restored to the previous (‘sta-
ble’) values. While the changes in the process are along rel-
atively long time intervals (100s of seconds), our goal is to
demonstrate the flexible logical to physical mapping of tasks
and the runtime adaptation to system, network and environmen-
tal changes. As future work we aim to implement a suite of
programmable control runtime capabilities for distributed fault-
tolerance and reconfiguration.

In summary, the specific objectives of this effort are:
1. Ability to deploy control algorithms in a virtual compo-

nent defined over a grid of wireless controllers.
2. On-line capacity expansion where more controllers can

be added to share the load and trigger re-distribution of tasks.
3. Algorithm replication to a set of nodes capable of per-

forming the same control function for throughput adaptation.
4. Fault tolerance to node and communication failures.
5. Control algorithm execution with high-speed operation

(1/4 second or less control cycle) and with a small latency (≤1/3
of the control cycle).

References

[1] Frost and Sullivan, North American Sensor Markets, Technical
Report A-761-32, 2004.

[2] Nielsen Research, Downtime Costs Auto Industry, March 2006.
[3] J. Hill et. al. System architecture directions for network sensors.

ASPLOS, 2000.
[4] P. Levis and D. Culler. Mate: A tiny virtual machine for sensor

networks . ACM ASPLOS-X , 2002.
[5] P. Marbell and L. Iftode. Scylla: A smart virtual machine for

mobile embedded systems. In WMCSA, 2000.
[6] R. Müller, G. Alonso, and D. Kossmann. A virtual machine for

sensor networks. In ACM EuroSys, 2007.
[7] S. Han et. al. SOS : A Dynamic Operating System for Sensor

Nodes. ACM Mobisys, 2005.
[8] A. Dunkels and N. Finne and J. Eriksson and T. Voigt. Run-time

dynamic linking for reprogramming wireless sensor networks.
ACM SenSys, 2006.

[9] R. Mangharam, A. Rowe, and R. Rajkumar. FireFly: A Cross-
layer Platform for Real-time Embedded Wireless Networks.
Real-Time System Journal, 2007.

[10] nano-rk sensor rtos. http://nanork.org.
[11] J. Hill, M. Horton, R. Kling, and L. Krishnamurthy. Plat-

forms enabling wireless sensor networks . Communications of
the ACM, 47(6):41-46, 2004.

[12] A. Rowe, R. Mangharam, and R. Rajkumar. RT-Link: A Time-
Synchronized Link Protocol for Energy-Constrained Multi-hop
Wireless Networks. IEEE SECON, 2006.

[13] R. Mangharam, A. Rowe, and R. Rajkumar. Voice over Sensor
Networks. RTSS, 2006.

[14] J. Polastre, J. Hill, and D. Culler. Versatile Low Power Media
Access for Wireless Sensor Networks. ACM SenSys, 2005.

[15] W. Ye, J. Heidemann, and D. Estrin. An Energy-Efficient MAC
Protocol for Wireless Sensor Networks. INFOCOM, June 2002.

