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Abstract—Remote Data Checking (RDC) allows clients to
efficiently check the integrity of data stored at untrusted servers.
This allows data owners to assess the risk of outsourcing data
in the cloud, making RDC a valuable tool for data auditing.
A robust RDC scheme incorporates mechanisms to mitigate
arbitrary amounts of data corruption. In particular, protection
against small corruptions (i.e., bytes or even bits) ensures that
attacks that modify a few bits do not destroy an encrypted file or
invalidate authentication information. Early RDC schemes have
focused on static data, whereas later schemes such as DPDP sup-
port the full range of dynamic operations on the outsourced data,
including insertions, modifications, and deletions. Robustness is
required for both static and dynamic RDC schemes that rely on
spot checking for efficiency.

However, under an adversarial setting there is a fundamental
tension between efficient dynamic updates and the encoding
required to achieve robustness, because updating even a small
portion of the file may require retrieving the entire file. We
identify the challenges that need to be overcome when trying
to add robustness to a DPDP scheme. We propose the first
RDC schemes that provide robustness and, at the same time,
support dynamic updates, while requiring small, constant, client
storage. Our first construction is efficient in encoding, but has a
high communication cost for updates. Our second construction
overcomes this drawback through a combination of techniques
that includes RS codes based on Cauchy matrices, decoupling
the encoding for robustness from the position of symbols in
the file, and reducing insert/delete operations to append/modify
operations when updating the RS-encoded parity data.

I. INTRODUCTION

Remote Data Checking (RDC) is a technique that allows
to check the integrity of data stored at a third party, such as
a Cloud Storage Provider (CSP). Especially when the CSP is
not fully trusted, RDC can be used for data auditing, allowing
data owners to assess the risk of outsourcing data in the cloud.

In an RDC protocol, the data owner (client) initially stores
data and metadata with the cloud storage provider (server); at
a later time, an auditor (the data owner or another client) can
challenge the server to prove that it can produce the data that
was originally stored by the client; the server then generates a
proof of data possession based on the data and the metadata.
Several RDC schemes have been proposed, including Provable
Data Possession (PDP) [1], [2] and Proofs of Retrievability
(PoR) [3], [4], both for the single server [1], [3], [4] and for
the multiple server setting [5]–[8].

Early RDC schemes have focused on static data, in which
the client cannot modify the original data [1], [3], [4] or
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can only perform a limited set of updates [9]. Erway et
al. [10] have proposed DPDP, a scheme that supports the
full range of dynamic updates on the outsourced data, while
providing the same strong guarantees about data integrity. The
ability to perform updates such as insertions, modifications,
or deletions, extends the applicability of RDC to practical
systems for file storage [11], [12], database services [13], peer-
to-peer storage [14], [15], and more complex cloud storage
systems [16], [17].

A scheme for auditing remote data should be both
lightweight and robust [2]. Lightweight means that it does
not unduly burden the server; this includes both overhead
(i.e., computation and I/O) at the server and communication
between the server and the client. This goal can be achieved
by relying on spot checking, in which the client randomly
samples small portions of the data and checks their integrity,
thus minimizing the I/O at the server. Spot checking allows
the client to detect if a fraction of the data stored at the server
has been corrupted, but it cannot detect corruption of small
parts of the data (e.g., 1 byte).

Robust means that the auditing scheme incorporates mech-
anisms for mitigating arbitrary amounts of data corruption.
Protecting against large corruptions ensures the CSP has
committed the contracted storage resources: Little space can
be reclaimed undetectably, making it unattractive to delete
data to save on storage costs or sell the same storage multiple
times. Protecting against small corruptions protects the data
itself, not just the storage resource. Many data have value well
beyond their storage costs, making attacks that corrupt small
amounts of data practical. For example, modifying a single
bit may destroy an encrypted file or invalidate authentication
information. Thus, robustness is a necessary property for all
RDC schemes that rely on spot checking, which includes the
majority of static and dynamic RDC schemes.

Robustness is usually achieved by integrating forward error-
correcting codes (FECs) with remote data checking [2], [18],
[19]. Attacks that corrupt small amounts of data do no damage,
because the corrupted data may be recovered by the FEC.
Attacks that do unrecoverable amounts of damage are easily
detected using spot checking, because they must corrupt many
blocks of data to overcome the FEC redundancy. Unfortu-
nately, under an adversarial setting, there is a fundamental
tension between the dynamic nature of the updates supported
in the DPDP scheme and FEC codes (which are mostly
designed for static data) because securely updating even a
small portion of the file may require retrieving the entire file.
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In this paper, we make the following contributions:

• We identify Reed-Solomon (RS) codes based on Cauchy
matrices which provide communication-efficient code up-
dates and propose methods to efficiently update the code
parity under a benign setting (i.e., when the server is
trustworthy). We observe that append/modify updates have
a much lower bandwidth overhead than insert/delete updates
(Section III-B).
• We identify the challenges that need to be overcome when
trying to add robustness to a DPDP scheme in an adversarial
setting (Section IV). Reed-Solomon codes provide efficient
error correction capabilities in the static case, but their
linear nature imposes a high communication cost when even
a small portion of the original data needs to be updated
(insertions/deletions). Moreover, it is difficult to hide the
relationship among file symbols (required for robustness)
while achieving a low communication overhead for updates.
• We give the definition of a Robust DPDP (R-DPDP)
scheme, which is a remote data checking scheme that sup-
ports dynamic updates and at the same time provides robust-
ness. We propose two R-DPDP constructions that realize
this definition. The first one, πR-D, achieves robustness by
extending techniques from the static to the dynamic setting.
The resulting R-DPDP scheme is efficient in encoding,
but requires a high communication cost for updates (inser-
tions/deletions). Our second construction, VLCG (Variable
Length Constraint Group), overcomes this drawback by: (a)
decoupling the encoding for robustness from the position
of symbols in the file and instead relying on the value of
symbols, and (b) reducing expensive insert/delete operations
to append/modify operations when updating the RS-coded
parity data, which ensures efficient updates even under an
adversarial setting. The improvement provided by VLCG
over πR-D is beneficial, as our source code analysis of a few
popular software projects shows that insert/delete operations
represent a majority of all updates (Section IV-C).

Although DPDP schemes and robustness for the static RDC
setting have been individually considered previously, we are
the first to propose R-DPDP schemes that simultaneously pro-
vide robustness and support dynamic updates, while requiring
small, constant, client storage.

On the Adversarial Model. We work under the assumption
that the cloud storage server is not trustworthy. Protection
against corruption of a large portion of the data is necessary
in order to handle servers that discard a significant fraction of
the data. This applies to servers that are financially motivated
to sell the same storage resource to multiple clients.

Protection against corruption of a small portion of the data
is necessary in order to handle servers that try to hide data
loss incidents. This applies to servers that wish to preserve
their reputation. Data loss incidents may be accidental (e.g.,
management errors or hardware failures) or malicious (e.g.,
insider or outsider attacks).

Moreover, the storage server may try to provide a stale,
older version of the data.

II. BACKGROUND AND RELATED WORK

A. Remote Data Checking (RDC)

Remote Data Checking (RDC) allows a client to check the
integrity of data outsourced at an untrusted server, and thus
to audit whether the server fulfills its contractual obligations.
For simplicity, we assume the client’s data consists of a file
F.

A RDC protocol consists of three phases: Setup, Challenge
and Retrieve. During Setup, the data owner preprocesses the
file F generating metadata Σ, and then stores both F and Σ
at the server. The data owner deletes F and Σ from its local
storage and only keeps a small amount of secret key material
K (constant client storage). During Challenge, an auditor (the
data owner or another client) challenges the server to prove
that it can produce the data that was originally stored. The
server produces a proof of data possession based on the data
and the metadata. The client uses the secret key material K to
check the validity of the proof provided by the server. During
the Retrieve phase, the data owner recovers the original data.
Depending on how robustness is added to RDC, recovering the
data can be as simple as retrieving the original file or using
the redundancy provided by error correction to compensate for
small data corruption.

B. Remote Data Checking for Dynamic Settings

Early RDC schemes have focused on static data, in which
the client cannot modify the original data [1], [3], [4] or can
only perform a limited set of updates [9].

Dynamic Provable Data Possession (DPDP) [10] proposes
a model that provides strong guarantees about data integrity
while supporting the full range of dynamic operations on the
outsourced data, including modifications, insertions, deletions,
and appends. A DPDP protocol contains the three phases
as in an RDC protocol for static data (Setup, Challenge,
and Retrieve), but also allows another phase, Update. During
Update, the original file may be updated. During Challenge,
the auditor obtains an integrity guarantee about the latest
version of the file (due to updates, this may be different from
the original file). In Retrieve, the client recovers the latest
version of the file. As opposed to handling static data, the
main challenge in DPDP is ensuring that the client obtains
guarantees about the latest version of the file (i.e., prevent the
server from passing the client’s challenges by using old file
versions) while meeting the low overhead requirements for
RDC.

A DPDP scheme is a collection of seven polynomial-
time algorithms (KeyGen DPDP, PrepareUpdate DPDP,
PerformUpdate DPDP, VerifyUpdate DPDP,
GenChallenge DPDP, Prove DPDP, Verify DPDP) that can
be used to construct a DPDP protocol as follows. Dur-
ing the Setup phase, the client uses KeyGen DPDP to
setup the scheme and PrepareUpdate DPDP to prepro-
cess the file and generate metadata. The server stores the
client’s data using PerformUpdate DPDP and the client
uses VerifyUpdate DPDP to check the success of the
initial file submission (note that the initial file submis-
sion can be seen as an update in which the client re-
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writes the entire file). In the Update phase, the client and
server use PrepareUpdate DPDP, PerformUpdate DPDP
and VerifyUpdate DPDP to prepare the update, apply the
update on the file, and verify if the update was applied
correctly, respectively. During the Challenge phase, the client
uses GenChallenge DPDP to generate a challenge, the server
generates a proof of data possession using Prove DPDP, and
the client verifies the proof using Verify DPDP.

For the complete definition of a DPDP scheme, we refer the
reader to [10]. We note that DPDP does not include provisions
for robustness.

Dynamic Proofs of Retrievability. Concurrently with our
work, Stefanov et al. [20] proposed Iris, a system that supports
dynamic proofs of retrievability (D-PoR), including protec-
tion against small data corruption. For practical reasons, Iris
achieves robustness by storing the parity data on the client. As
this may place an additional burden on lightweight clients, our
work focuses on a more challenging setting which has stood
as an open problem: All data, including parity, is stored at the
server, in order to minimize client storage.

Another proposal for D-PoR [21] does not offer protection
against small data corruption when clients rely on spot check-
ing data stored at untrusted servers.

Authenticated Data Structures. In all the DPDP and
D-PoR constructions, the client uses an authenticated data
structure to ensure the freshness of the retrieved file and
to prevent the server from using an old file version when
answering challenges. This data structure is usually a tree-like
structure computed over the verification tags, and the client
keeps a copy of the root of this structure (e.g., skip lists [10],
RSA trees [10], Merkle hash trees [20], [22], or 2-3 trees [21]).
Our work can rely on any of these data structures to ensure file
data freshness and prevent the server from conducting replay
attacks.

C. Error-correcting codes

We say that a code C is a (n, k, d + 1) error-correcting
code if it encodes a message of k symbols into a codeword
of n symbols and has minimum distance d+1. The minimum
distance d + 1 is the minimum Hamming distance between
any two distinct codewords of C and reflects the code’s ability
to handle errors. We will use Reed-Solomon [23] (RS) codes
which are Maximum Distance Separable (MDS) codes (i.e.,
can tolerate as many erasures as their overhead, e.g., n − k).
We use the notation (n, k) RS code to denote a RS code that
can correct up to d = n− k erasures.

For data checking protocols, we are concerned with erasure
correction not error correction. The integrity of data is inde-
pendently verifiable, e.g., through verification tags in PDP [1].
Any data error will be detected and the erroneous data will be
omitted, converting an error into an erasure.

We consider systematic forward error-correcting (FEC)
codes, which are codes that embed the unmodified input in
the encoded output (e.g., the first k symbols of a codeword
are the same k original symbols). We refer to the redundant
symbols in the codeword as parity symbols.

D. Robust Auditing of Outsourced Data

A robust auditing scheme incorporates mechanisms for
mitigating arbitrary amounts of data corruption. We consider a
notion of mitigation that includes the ability to both efficiently
detect data corruption and be impervious to data corruption.
When data corruption is detected, the owner can act in a timely
fashion (e.g., data can be restored from other replicas). Even
when data corruption is not detected, a robust auditing scheme
ensures that no data will be lost. More formally, we define a
robust auditing scheme as follows [2]:

Definition 2.1: A robust auditing scheme RA is a tuple
(C, T ), where C is a remote data checking scheme for a file
F and T is a transformation that yields F̃ when applied on F.
We say RA provides δ-robustness when:

the auditor will detect with high probability if the server
corrupts more than a δ-fraction of F̃ (protection against
corruption of a large portion of F̃)

the auditor will recover the data in F with high probability
if the server corrupts at most a δ-fraction of F̃ (protection
against corruption of a small portion of F̃)

Several methods can be employed to add robustness to a
remote data checking scheme [2], [18]. The most straightfor-
ward method is to use an FEC code over the entire file. For a
file of f symbols, this can be achieved with an (n, f) Reed-
Solomon code and would give an even stronger guarantee than
δ-robustness, because this code can deterministically correct
up to n − f erasures and not just with high probability.
However, such an FEC code would be impractical because RS
codes become quite inefficient to compute even for moderate-
size files if the code were to be applied over the entire file.

For efficiency reasons, it is desirable to apply a RS code
over a smaller number of symbols: the file F is divided into k-
symbol chunks and a (n, k) RS code is applied to each chunk,
expanding it into a n-symbol codeword. The first k symbols
of the codeword are the original k data symbols, followed by
d = n−k parity symbols. We define a constraint group as the
group of symbols from the same codeword, i.e., the original
k data symbols and their corresponding n−k parity symbols.
The number of constraint groups in the encoded file is the
same as the number of chunks in the original file, namely, fk .

To ensure the δ-robustness guarantee, it is necessary that
the association between symbols and constraint groups re-
main hidden (i.e., the server should not know which symbols
belong to the same constraint group). This can be achieved
through a combination of permuting and then encrypting
the symbols of the file. Different encoding schemes to add
robustness can lead to remote data checking schemes with
different properties and performance characteristics [2], [3],
[18], [19]. We review two of them next.

Let (G,E,D) be a symmetric-key encryption scheme and
π, ψ, ω be pseudo-random permutations (PRPs) defined as:
π : {0, 1}κ × {0, 1}log2(fn/k) → {0, 1}log2(fn/k)

ψ : {0, 1}κ × {0, 1}log2(f) → {0, 1}log2(f)

ω : {0, 1}κ × {0, 1}log2(fd/k) → {0, 1}log2(fd/k)

We use the keys w, z, v, u for the encryption scheme, PRP π,
PRP ψ and PRP ω, respectively.
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Permute-All (πA). The constraints among symbols can be
concealed by randomly permuting and then encrypting all
the symbols of the encoded file. Starting from the file F =
b1, . . . ,bf , we use a (n, k) RS code (with d = n − k) to
generate the encoded file F̂ = b1, . . . ,bf ,c1, . . . ,c f

k d
, in

which symbols bik+1, . . . ,b(i+1)k are constrained by parity
symbols cid+1, . . . ,c(i+1)d, for 0 ≤ i ≤ f

k − 1. We then use
π and E to randomly permute and then encrypt all the symbols
of F̂, obtaining the encoded file F̃, where F̃[i] = Ew(F̂[πz(i)]),
for 1 ≤ i ≤ fn/k.

This strategy leads to a δ-robustness guarantee [2], [3], [18],
but has two major drawbacks: permuting the entire encoded
file can be inefficient and the systematic nature of the RS code
is sacrificed.

Permute-Redundancy (πR). The drawbacks of the πA
scheme can be overcome by observing that it is sufficient to
permute and then encrypt only the parity symbols. The input
file F = b1, . . . ,bf is encoded as follows:

1) Use ψ to randomly permute the symbols of F to obtain
the file P = p1, . . . ,pf , where pi = bψv(i), 1 ≤ i ≤ f .

2) Compute parity symbols C = c1, . . . ,c f
k d

so
that symbos pik+1, . . . ,p(i+1)k are constrained by
cid+1, . . . ,c(i+1)d, for 0 ≤ i ≤ f

k − 1.
3) Permute and then encrypt the parity symbols to obtain

R = r1, . . . ,r f
k d

, where ri = Ew(cωu(i)), 1 ≤ i ≤ f
kd.

4) Output redundancy encoded file F̃ = F||R.
By computing RS codes over the permuted input file, rather

than the original input file, an attacker does not know the
relationship among symbols of the input file. By permuting
the parity symbols, the attacker does not know the relationship
among the symbols in the redundant portion R of the output
file. By encrypting the parity symbols, an attacker cannot find
the combinations of input symbols that correspond to output
symbols.

When compared to πA, πR is more efficient (as it requires
to permute and encrypt only the parity symbols) and preserves
the systematic nature of the RS code. πR was shown to achieve
the δ-robustness guarantee [18], [19] (this construction is also
known as a “server code” in the literature [6], [19]).

III. PRELIMINARIES

Towards achieving robustness, in this section we first re-
view Reed-Solomon encoding and decoding based on Cauchy
matrices. We then study how to update a Reed-Solomon code
when an update is applied to the original data. Note that in
this section we study these operations under a benign setting
(i.e., when the server is trustworthy).

We consider a (n, k) Reed-Solomon (RS) code that can
correct up to d = n − k known erasures or bd2c unknown
errors, or any combination of E errors and S erasures with
2E+S ≤ d. The minimum Hamming distance of the RS code
is d + 1, where d = n − k. If two RS codes have the same
value d, we say they provide the same fault tolerance level.

To encode a k-symbol message into a n-symbol codeword,
we need a n ∗ k encoding matrix, known as the distribu-
tion matrix. Typically, Vandermonde or Cauchy matrices are

used to construct the distribution matrix. We use Cauchy
RS codes, which are Reed-Solomon codes based on Cauchy
matrices [24], for two reasons: they are more suitable to
handle dynamic operations on the original data (as we show
in Sec. III-B) and they were shown to be approximately twice
as fast as the classical Reed-Solomon encoding based on
Vandermonde matrices [25]–[28].

A. Cauchy RS Encoding and Decoding
For ease of presentation, we present the Cauchy RS encod-

ing and decoding using a (6,4) RS code as an example (i.e.,
n = 6, k = 4, d = 2). All the arithmetic operations are in
GF (2w), assuming the condition 2w>n always holds (the +,
− operations can be regarded as ⊕, logical XOR). We use LT

to denote the transpose of a vector L.

Encode. The message L contains 4 data symbols, all of which
are in the Galois Field GF (2w): L = ( b1 b2 b3 b4 ).

We use the method introduced in [29] to construct the
Cauchy matrix, which has the useful property that it can
be re-generated on the fly based on a constant amount of
information. The distribution matrix M1, which is composed
of the identity matrix in the first 4 rows and Cauchy matrix
in the remaining 2 rows, is as follows:

M1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

a11 a12 a13 a14
a21 a22 a23 a24

 ,where aij =
1

i⊕ (d+ j)

The codeword C is computed as

C = M1×LT =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

a11 a12 a13 a14
a21 a22 a23 a24

×
 b1

b2
b3
b4

 =


b1
b2
b3
b4
p1
p2


where the parity symbols p1 and p2 are
p1 = a11 ∗ b1 + a12 ∗ b2 + a13 ∗ b3 + a14 ∗ b4
p2 = a21 ∗ b1 + a22 ∗ b2 + a23 ∗ b3 + a24 ∗ b4
Decode. When using a (6, 4) RS code, any 4 out of 6 symbols
are enough to recover L. Assume that b3 and b4 are corrupted.
To recover L, the decoding process is:

LT = M−1 ×

 b1
b2
p1
p2

 ,where M =

 1 0 0 0
0 1 0 0
a11 a12 a13 a14

a21 a22 a23 a24


The decoding matrix, M , is invertible based on the fact that

all of the 4∗4 submatrices of M1 are invertible [30]. Moreover,
M has the useful property that it can be re-generated by
knowing the indices of the non-corrupted symbols in the
codeword. By putting the non-corrupted symbols into their
right locations in the codeword for decoding, M can be re-
generated based on a constant amount of information.

B. Cauchy RS Updating
Consider a (n, k) Cauchy RS code computed over a mes-

sage. If the symbols in the original message are updated (e.g.,
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modified, appended, inserted, deleted), we are interested to up-
date the RS parity data so that it reflects the updated message.
We seek to answer the question: how can we minimize the cost
of updating the RS code? More precisely, how can we update
the parity symbols efficiently by minimizing the number of
symbols that need to be read from the orginal RS code?1. We
answer this question using the same example from Sec. III-A.
The conclusion is that modify/append operations have a lower
bandwidth overhead than insert/delete operations.

Modify a data symbol. For example, if symbol b1 is modified
to b′1, we should update the parity data correspondingly: p1

is updated to p′1, and p2 is updated to p′2. To compute p′1
and p′2, only the old parity symbols (p1, p2) and the old data
symbol (b1) are required to be retrieved (i.e., there is no need to
retrieve any other data symbol except the one to be modified):

p′1 = a11 ∗ b′1 + a12 ∗ b2 + a13 ∗ b3 + a14 ∗ b4
= a11 ∗ b1 + a12 ∗ b2 + a13 ∗ b3 + a14 ∗ b4 + a11 ∗ b′1 − a11 ∗ b1
= p1 + a11 ∗ b′1 − a11 ∗ b1

p′2 = a21 ∗ b′1 + a22 ∗ b2 + a23 ∗ b3 + a24 ∗ b4
= a21 ∗ b1 + a22 ∗ b2 + a23 ∗ b3 + a24 ∗ b4 + a21 ∗ b′1 − a21 ∗ b1
= p2 + a21 ∗ b′1 − a21 ∗ b1

Append a data symbol. For example, if b5 is appended to
L, to maintain the same fault tolerance level, the (6, 4) RS
code should become a (7, 5) RS code and the new distribution
matrix M2 is (assuming the condition 2w>n still holds):

M2 =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

a11 a12 a13 a14 a15
a21 a22 a23 a24 a25


, where aij =

1

i⊕ (d+ j)

Compared to M1, most of the elements in M2 are the same
although n has changed (this is a useful property of Cauchy
RS codes). To update the parity data correspondingly, only the
old parity symbols (p1, p2) are required to be retrieved (i.e.,
there is no need to retrieve any of the data symbols):

p′1 = a11 ∗ b1 + a12 ∗ b2 + a13 ∗ b3 + a14 ∗ b4 + a15 ∗ b5
= p1 + a15 ∗ b5

p′2 = a21 ∗ b1 + a22 ∗ b2 + a23 ∗ b3 + a24 ∗ b4 + a25 ∗ b5
= p2 + a25 ∗ b5

Insert a data symbol. For example, if b′2 is inserted into L
after b2, to maintain the same fault tolerance level, the (6, 4)
RS code should become a (7, 5) RS code. The new distribution
matrix will be M2, thus, we can update the parity data (p1 to
p′1, p2 to p′2) by retrieving whichever one is smaller between:

1For the purpose of RDC, the client needs to update the RS code on the
server after each update operation, so we are interested in minimizing the data
communication required to update the RS code.

• D is the encoded file, F is the original file, P is the redundancy
added after applying a RS code over F. We have D = F||P.
• n is the number of symbols in a constraint group: n = k + d,
where k is the number of data symbols and d is the number of
parity symbols. A (n, k) RS code is applied over each constraint
group.
• M is the server metadata computed over D (stored at the server,
includes the verification tags).
• Fi is the i-th version of F. We have Di = Fi||Pi and Mi is the
server metadata for Di.
• Mc is the client metadata (e.g., the root of the skip list/RSA
tree [10]).
• info is the information about the update operation (e.g., full re-
write, delete block i, modify block i, insert a block after block i, etc.).

Fig. 1: Reference sheet for various notations.

(i) all the data symbols (b1, b2, b3, b4), or (ii) all the parity
symbols (p1, p2) and the data symbols after b2 (b3, b4):

p′1 = a11 ∗ b1 + a12 ∗ b2 + a13 ∗ b′2 + a14 ∗ b3 + a15 ∗ b4
= p1 − a13 ∗ b3 − a14 ∗ b4 + a13 ∗ b′2 + a14 ∗ b3 + a15 ∗ b4

p′2 = a21 ∗ b1 + a22 ∗ b2 + a23 ∗ b′2 + a24 ∗ b3 + a25 ∗ b4
= p2 − a23 ∗ b3 − a24 ∗ b4 + a23 ∗ b′2 + a24 ∗ b3 + a25 ∗ b4

Delete a data symbol. Similar to inserting a data symbol,
to update the parity when deleting the i-th symbol from L,
we need to retrieve the smaller between either all the data
symbols, or all the parity symbols and the data symbols after
position i.

IV. ROBUST DYNAMIC PROVABLE DATA POSSESSION
SCHEMES

In this section, we present R-DPDP, a new framework to
add robustness to DPDP. R-DPDP allows to audit remote data
that is dynamically changing and, at the same time, offers
protection against both large and small data corruption. To the
best of our knowledge, robustness has not been previously con-
sidered for dynamic remote data checking while maintaining
small, constant, client storage.

We start by summarizing the challenges that need to be
overcome when adding robustness to DPDP. We then present
the definition of a R-DPDP scheme and propose two R-DPDP
constructions: πR-D (an extension of the πR scheme presented
in Sec. II-D) and VLCG (Variable Length Constraint Group,
a new scheme that improves the communication efficiency of
πR-D in the Update phase). To facilitate the exposition, we
include a reference sheet with various notations in Fig. 1.

Challenges. It is challenging to add robustness to DPDP in an
adversarial setting and also maintain low bandwidth overhead
for updates, because:
• Adding robustness to DPDP requires encoding the data

using Reed-Solomon codes. RS codes, as a type of linear
codes, provide error correction in a static setting, as they
compute redundancy over every portion of the original data.
However, they are not immediately suitable when the data
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can be dynamically updated. As shown in Sec. III-B, for cer-
tain update operations (insert/delete), updating even a small
portion of the original data imposes a high communication
cost (this holds even under a benign setting, in which the
server is trustworthy).
• Robustness applies RS encoding over groups of symbols
(constraint groups) and it requires to hide the association
between symbols and constraint groups (i.e., the server
should not know which symbols belong to the same con-
straint group). When dynamic updates are performed over
file data, the parity of the affected constraint groups should
also be updated, which requires knowledge of the data and
the parity symbols in those constraint groups (Sec. III-B).
However, the client cannot simply retrieve only the symbols
of the affected constraint groups, as that would reveal the
contents of the corresponding constraint groups and break
robustness. Moreover, the client cannot simply update only
the parity symbols in the affected constraint groups, as that
may allow the server to infer which parity symbols are in
the same constraint group by comparing the new parity with
the old parity.

File representation. We use two independent logical repre-
sentation of the file for different purposes:

For the purpose of file updating (during the Update phase),
the file is seen as an ordered collection of blocks. Basically,
update operations occur at the block level. This is also
the representation used for checking data possession (during
the Challenge phase), as each block has one corresponding
verification tag.

For the purpose of encoding for robustness, the file is seen
as a collection of symbols, which are grouped into constraint
groups and each constraint group is encoded independently.

For each file block, there is a corresponding verification
tag which needs to be stored at the server. Thus, larger file
blocks result in smaller additional server storage overhead due
to verification tags. On the other hand, efficient encoding and
decoding requires the symbols to be from a small size field. As
a result, one file block will usually contain multiple symbols.
Each file update operation which is performed at the block
level results into several operations applied to the symbols in
that block (for example, when modifying a data block, all the
symbols in that block and the corresponding parity symbols
should be modified).

Metric. To measure the communication overhead for data
updates, we use as a metric the update bandwidth factor α
defined as

α = the amount of data downloaded for updating one file block
the total amount of data at the server

A. R-DPDP Definition

We introduce the definition of a robust dynamic data pos-
session (R-DPDP) scheme. Compared to a DPDP scheme,
R-DPDP adds robustness, which is reflected in slightly dif-
ferent definitions for the data-updating algorithms. We have
also added an explicit algorithm to decode the data, since data
decoding is more challenging when robustness is needed. We

advise readers familiar with the definition of DPDP to skip
this section and continue with Section IV-B.

Definition 4.1: (R-DPDP SCHEME) A Robust Dynamic
Provable Data Possession (R-DPDP) scheme is a collection of
eight polynomial-time algorithms:
• KeyGen(1κ) → {sk, pk}: a probabilistic key generation
algorithm run by the client to setup the scheme. Input: the
security parameter κ. Output: the secret key sk and public
key pk.

• PrepareUpdate(sk, pk,∆F,∆Di−1, info,Mc)→
{e(∆D), e(info

′
), e(∆M)}: an algorithm run by the client

to prepare (a part of) the file for untrusted storage. Input:
the secret key sk, the public key pk, (a part of) the file ∆F ,
(a part of) the previous version of the encoded file ∆Di−1,
information about the update operation info, and the client
metadata Mc. Output: the “encoded” version of the update
data e(∆D) (add to ∆D randomness, sentinels, or simply
let e(∆(D)) = ∆D. ∆D is the data to be updated), the
“encoded” version of the update information e(info′) (info
will be changed to info′, since updating ∆F may lead to
updating of the redundancy. info′ should be changed to fit
the encoded version of ∆D), and the new server metadata
e(∆M). The client will send e(∆D), e(info′), and e(∆M)
to the server.

• PerformUpdate(pk,Di−1,Mi−1, e(∆D), e(info), e(∆M))
→ {Di,Mi,M

′

c, PM ′c}: an algorithm run by the server in
response to an update request from the client. Input: public
key pk, the old version of the encoded file Di−1, the metadata
Mi−1, and the values e(∆D), e(info), e(∆M) provided by
the client. Output: the new version of the encoded file Di

and metadata Mi, the metadata to be sent to client M
′

c and
its proof of correctness PM ′c . The server will send M

′

c and
PM ′c back to the client.

• VerifyUpdate(sk, pk,∆F,∆Di−1, info,Mc,M
′

c, PM ′c )
→ {accept, reject}: an algorithm run by the client to verify
the server’s behavior during the update. Input: all the inputs
from PrepareUpdate, M

′

c and the proof PM ′c which are sent
back by the server. Output: accept if the check succeeds,
reject otherwise.

• GenChallenge(sk, pk,Mc)→ {c}: a probabilistic algorithm
run by the client to issue a challenge for the server. Input: the
secret key sk, public key pk, and the latest client metadata
Mc. Output: the challenge c that will be sent to the server.

• Prove(pk,Di,Mi, c) → {Π}: an algorithm run by the
server to generate the proof of possession upon receiving
the challenge from the client. Input: the public key pk, the
latest version of the encoded file Di, the metadata Mi, and
the challenge c. Output: a proof of possession Π that will be
sent back to the client.

• Verify(sk, pk,Mc, c,Π) → {accept, reject}: an algorithm
run by the client to validate a proof of possession upon
receiving the proof Π from the server. Input: the secret key
sk, the public key pk, the client metadata Mc, the challenge
c, and the proof Π. Output: accept if Π is a valid proof of
possession, reject otherwise.
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• Decode(sk, pk,Di,Mi,Mc) → {Fi, failure}: an algo-
rithm run by the client to decode the latest version of the
encoded file Di (repair it if small corruption exists). Input:
the secret key sk, the public key pk, the latest version of
the encoded file Di (where Di = Fi||Pi), metadata Mi, and
client metadata Mc. Output: the latest version of the file Fi
if the decode process is successful, failure otherwise.

A R-DPDP protocol can be constructed in four phases,
Setup, Challenge, Update, and Retrieve.

Setup: The client C who is in possession of file F runs
(pk, sk)← KeyGen(1κ), followed by {e(∆D), e(info′),
e(∆M)} ← PrepareUpdate(sk, pk, F,NULL,“full re-write”,
NULL). C sends e(∆D), e(info′), e(∆M) to the server S.
S runs {D1,M1,M

′

c, PM ′c} ← PerformUpdate(pk,NULL,

NULL, e(∆D), e(info′), e(∆M)) and sends M
′

c, PM ′c back
to C. C then runs VerifyUpdate(sk, pk, F,NULL,
“full re-write”, NULL,M

′

c, PM ′c ) to check whether the
initial data outsourcing is successful or not. If successful, C
sets Mc = M

′

c, and deletes F .

Challenge: C generates challenge c by running GenChallenge(
sk, pk,Mc), and sends c to S. S runs {Π} ←
Prove(pk,Di,Mi, c) and sends to C the proof of possession
Π. C can check the validity of the proof Π by running
Verify(sk, pk,Mc, c,Π).

Update: C downloads ∆Di−1 from S, and runs {e(∆D),
e(info′), e(∆M)} ← PrepareUpdate(sk, pk,∆F,∆Di−1,
info,Mc). C sends e(∆D), e(info′), e(∆M) to S. S runs
{Di,Mi,M

′

c, PM ′c} ← PerformUpdate(pk,Di−1,Mi−1,

e(∆D), e(info′), e(∆M)) and sends M
′

c, PM ′c back to C. C
then runs VerifyUpdate(sk, pk,∆F,∆Di−1, info,Mc,M

′

c,
PM ′c ) to check whether the update is successful or not. If
successful, C sets Mc = M

′

c, then deletes ∆F and ∆Di−1.

Retrieve: C downloads the current version of the encoded file
Di and the server metadata Mi, then runs
{Fi, failure} ← Decode(sk, pk,Di,Mi,Mc).

B. Enhancing πR: πR-D

We first describe πR-D, a new scheme obtained by adapting
the πR scheme (Sec. II-D) to add robustness on top of
a DPDP scheme. In the Setup phase, the file F is first
processed according to πR, and the parity data P is gen-
erated. The encoded file D = F||P is then pre-processed
further using the DPDP algorithms PrepareUpdate DPDP,
PerformUpdate DPDP, and VerifyUpdate DPDP. During the
Challenge phase, we can use directly the DPDP algorithms
GenChallenge DPDP, Prove DPDP, and Verify DPDP.

In the Update phase, the main operations are:
• Insert/Delete a data block. A data block may contain

multiple symbols, which may belong to more than one
constraint groups. Inserting/deleting a data block is equiv-
alent to inserting/deleting all the symbols in that block.
Inserting/deleting a data symbol will affect the indices of
the following data symbols in the whole file, as well as the
parameter f of the PRP ψ in πR. Since in πR the contents

OpenSSL Eclipse
dates of activity 1998-2011 2001-2011

# of files 4,283 180,662
# of commits 67,846 883,045

# of insertions (lines) 707,978 8,579,577
# of deletions (lines) 678,936 7,009,582

# of modifications (lines) 371,159 6,714,823
Avg. # commits/file 15.8 4.9

Avg. # insertions/commit 10.4 9.7
Avg. # deletions/commit 10 7.9

Avg. # modifs./commit 5.5 7.6

TABLE I: Statistics for update operations, based on the CVS
repositories for OpenSSL and Eclipse.

of each constraint group are decided based on the indices
provided by the PRP ψ, the changing of the parameter f
of PRP ψ will require the client to download the entire
file F and re-compute the parity P based on a new set of
constraint groups. The update bandwidth factor is α = |F|

|D| .
The updated file F is pre-processed using the technique
described in πR, but the new parity P will be permuted and
encrypted by a new key (the client will only keep the new
key and discard the previous key). For an insert operation,
the newly inserted block is sent back to the server using
the corresponding DPDP update algorithms, whereas for a
delete operation the corresponding block should be deleted.
Also, P should replace the old parity at the server.
• Modify a data block. The client downloads the data block

to be modified (i.e., the old data block) and the latest version
of the parity P, decrypts P and restores the original order,
updates the parity symbols in the affected constraint groups
according to P, the data symbols in the old and the new data
block (exact procedure described in Sec. III-B). The update
bandwidth factor is α = |P|

|D| . To prevent the server from
learning the contents of the constraint groups by comparing
the new parity with the old parity, the client should use a
new key to permute and encrypt the parity symbols (the
client will keep the new key and discard the previous key).
The new data block and the new parity P are sent back to
the server using the DPDP update algorithms, replacing the
corresponding old block and old P.

In the Retrieve phase, the client simply retrieves the file F
and may use the parity P to correct data corruption.

Performance analysis. πR-D is efficient during Setup
and Retrieve, but has high communication overhead during
Update, since for every insertion/deletion the update band-
width factor is α = |F|

|D| , which approaches 1 in practice.
We have analyzed the pattern of updates for the source files
of two popular projects, OpenSSL [31] and Eclipse [32].
Table I shows that the number of insert and delete operations,
compared to modifications, represent a majority of the total
number of updates. Thus, it is likely that one small update
may require to download the entire file F. We need a scheme
with lower communication overhead for data updates.

Security analysis. The δ-robustness of the πR-D scheme can
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be established similarly as for the πR scheme [2]: Once we
fix a target for the probability of a successful attack (e.g.,
10−10), we can determine the RS encoding parameters that
minimize the number of blocks being spot-checked during a
challenge. The resulting RS encoding provides the value of δ.
If the adversary corrupts more than a δ-fraction of the encoded
file, the spot-checking based strategy and the authentication
structure of the underlying DPDP scheme guarantee that the
auditor can detect such corruptions with high probability. If
the adversary corrupts at most a δ-fraction, the data can be
retrieved based on the recovery capability of the RS code.

C. Variable Length Constraint Group

Though efficient in encoding, πR-D has a high communica-
tion overhead for updates. In πR-D, the PRP ψ is applied to the
index of data symbols, thus making it sensitive to insert/delete
operations (e.g., one simple insertion/deletion may require the
client to download the entire file F).

To mitigate the drawbacks of πR-D, we propose a sec-
ond construction called Variable Length Constraint Group
(VLCG). Like in πR-D, we still use the notion of constraint
groups, which are groups of symbols over which a RS code is
computed. However, we rely on two additional main insights.

Firstly, unlike in πR-D, in which symbols are assigned
to constrained groups based on the position (i.e., index) of
the symbols in the file, VLCG assigns symbols to constraint
groups based on the value of the symbols. More precisely, for
a data symbol b, we use hK(b) to decide the index of the
constraint group to which b belongs. This has the advantage
that, in order to insert/delete a data symbol into/from f , we
can insert/delete the data symbol into/from the corresponding
constraint group, without affecting other constraint groups.

Secondly, we employ several techniques to preserve ro-
bustness and minimize the bandwidth overhead. For example,
we reduce insert operations to append operations and delete
operations to modify operations when updating the RS-coded
parity data.

We seek to maintain the same fault tolerance level (see
definition in Sec. III-A) for all constraint groups (that is, for
every (n, k) constraint group, d = n−k will be kept the same
after each update operation). All the parity symbols P should
be permuted like in πR, but there is no need to encrypt them
(this is explained later in more detail).

Next, we give an overview of the VLCG construction,
focusing on the Update and Retrieve phases.

Update operations. For all update operations, we first execute
the actual block update on the file data, but the challenging
step is how to efficiently update the RS-coded parity data.

Inserting a symbol into the file requires updating the parity
symbols of the constraint group to which the symbol is
assigned. According to the analysis in Sec. III-B, inserting
a symbol into a RS code (equivalent to inserting it into a
constraint group) requires to retrieve either all the data symbols
in that constraint group, or all the parity symbols and some of
the data symbols in that constraint group. However, as we ar-
gued for the πR scheme (Sec. II-D), to ensure the δ-robustness
guarantee, it is necessary that the association between symbols

and constraint groups remains hidden. Thus, it is insufficient
to only retrieve symbols from the corresponding constraint
group. Moreover, it is not possible to efficiently determine
which other symbols belong to that constraint group. For these
reasons, the client would have to retrieve the entire file F. We
overcome this limitation by updating the parity symbols of
the symbol’s constraint group as if the symbol was appended
to the end of the data symbols in that constraint group (of
course, the symbol is still inserted in the file at the desired
location). The advantage of this method is that appending a
data symbol to a Cauchy RS code does not require to download
any data symbols and we can update the corresponding parity
symbols based only on the old parity (cf. Sec. III-B). We
note that ensuring δ-robustness prevents us from retrieving
only the parity symbols from this constraint group. Instead,
we retrieve all the parity data P. Thus the update bandwidth
factor is α = |P|

|D| .
Deleting a data symbol is more complex. Although under

a benign setting this operation could be achieved by only
retrieving symbols from the same constraint group, ensuring
δ-robustness prevents us from using this strategy. Instead, we
use a different strategy: to delete a data symbol, we ask the
server to physically delete the symbol from F, but we update
the parity symbols from the corresponding constraint group as
if that symbol was modified to have the value 0. As a result,
the delete operation is converted into a modify operation when
updating the RS-encoded parity data for the corresponding
constraint group (a similar strategy was previously used in [7],
[9]). A code modify operation, according to Sec. III-B, only
requires to download the parity data and the old symbol from
the corresponding constraint group. This means that the update
bandwidth factor can be kept as α = |P|

|D| for deletion.
Modifying a data symbol is the most complex operation

because if a symbol is modified to a new different value, it may
be re-assigned to a different constraint group. The old symbol
must first be deleted from its current constraint group and the
new symbol must be inserted into a (possibly) new constraint
group. The update bandwidth factor remains α = |P|

|D| .
In Sec. IV-D, we propose an alternative method to optimize

the communication overhead for updates (α = log2 |P|
|D| ) by

using Oblivious RAMs to only retrieve the parity symbols
from the corresponding constraint groups.

Retrieve data. The method we use for deciding to which
constraint group does a symbol belong in VLCG introduces
an additional challenge in the Retrieve phase. By using a PRF
over the value of the symbol to decide its constraint group,
the encoded file contains no information about the relative
position of the symbols inside a constraint group. Note that
the initial position of the symbols inside a constraint group
may change because of update operations (i.e., modification of
symbols). In case of data corruption, the RS code computed
over a constraint group will be used to recover the original
symbols; however, successfully decoding the RS code requires
knowledge of the correct position of symbols inside the
constraint group. During file recovery, the correct position of
symbols inside a constraint group may be uncertain because
of two reasons: (a) if a symbol is corrupted, the client does
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not know to which constraint group did that symbol belong,
and thus the symbol will be missing from that constraint group
during RS decoding; (b) if a symbol is deleted (i.e., a valid
delete operation), it does not exist anymore at the server (i.e.,
we cannot find this symbol in the latest file version), but for
RS decoding purposes the client should still use a symbol with
value 0 at the corresponding position in the constraint group
to which the symbol belongs.

We illustrate the uncertainty in decoding with an ex-
ample. Assume that a constraint group is a (6, 4) RS
code (b1 b2 b3 b4 p1 p2). If b3 was corrupted, the RS de-
coding should take as input (b1 b2 ? b4 p1 p2), whereas
if b3 was deleted, the input for RS decoding should be
(b1 b2 0 b4 p1 p2). But how does the client know that in
position 3 there should be a corrupted symbol or a 0 symbol?

To deal with the uncertainty about symbol position in
a constraint group during decoding, we propose a strategy
similar with the one used in HAIL [6]: to identify the
correct locations of data symbols (healthy and 0 symbols)
in their corresponding constraint groups, we convert the
parity symbols into cryptographically secure Message
Authentication Codes (MACs). Based on these MACs, we
use a brute force approach to determine the correct position
of symbols for RS decoding (full details in Fig. 2). The parity
symbols are converted to secure MACs by composing them
with a pseudorandom function (PRF) (we call this operation
masking). The PRF is computed over the file identifier, the
index of the corresponding constraint group, and the index
of the parity symbol in the constraint group. For example,
using the (6,4) RS code described in Sec. III-A, the new
parity symbols p′1 and p′2, which are also secure MACs over
b1, b2, b3, b4, are computed as:
p′1 = p1 + gK′ (file id||constraint group index||5)
p′2 = p2 + gK′ (file id||constraint group index||6),
where g is a PRF and all operations are over GF (2w), in
which “+” and “−” can be regarded as bitwise XORs. To
strip off g from p′1 and p′2, we compute:
p1 = p′1 − gK′ (file id||constraint group index||5)
p2 = p′2 − gK′ (file id||constraint group index||6)

Since different constraint groups may end up having differ-
ent sizes, the client needs to keep track of the size of each
constraint group 2. This can be done by recording either n or
k for each (n, k) RS code (because d = n − k is fixed for
all constraint groups). Let Φ be the set of (n, k) parameters
for all constraint groups. For ease of presentation, we assume
that Φ is stored (and updated) at the client. In Sec. IV-D we
discuss how to store Φ more efficiently.

Finally, we note that since the parity symbols are masked
with a PRF, there is no need to further encrypt them as in step
3 of the πR construction (described in Sec. II-D).

1) The VLCG construction: We are now ready to present
the details of our main R-DPDP construction, Variable Length
Constraint Group (VLCG). We fix the parameters n and
k as the initial size of the RS code computed over each

2Knowledge of the (n, k) parameters is required for the operations in the
Update and Retrieve phases.

constraint group of k data symbols and let d = n − k
be the fault tolerance level of the code. For a file with f
symbols F = {b1,b2, . . . ,bf}, there will be m = f/k
constraint groups and each constraint group will initially have
approximately n symbols (k data and d parity symbols). As
file updates are performed, the (n, k) parameters for different
constraint groups will change, but the fault tolerance level
d = n− k will be preserved. Each file symbol is an element
in the Galois Field GF (2w).

Let κ be a security parameter. In addition, we make use of a
pseudo-random permutation (PRP) ϕ and two pseudo-random
functions (PRF) h and g with the following parameters:
ϕ : {0, 1}κ × {0, 1}md → {0, 1}md
h : {0, 1}κ × {0, 1}w → {0, 1}logm

g : {0, 1}κ × {0, 1}∗ → {0, 1}w
Figures 2 and 3 describe our VLCG construction,

which can be built on top of any DPDP scheme
DPDP = (KeyGen DPDP, PrepareUpdate DPDP,
PerformUpdate DPDP, VerifyUpdate DPDP,
GenChallenge DPDP, Prove DPDP, Verify DPDP) (refer
to [10] for the definition of a DPDP scheme). We construct
a R-DPDP protocol from the VLCG scheme in four phases
Setup, Challenge, Update, and Retrieve as follows.

Setup. The client C runs {sk, pk} ← KeyGen(1κ), and then
runs PrepareUpdate on the file F. PrepareUpdate applies
the PRF h over every symbol in F, determining the group
where each symbol is assigned to (there are m groups). For
every group of k symbols (k may be different for different
groups, depending on how many symbols are assigned to the
groups), PrepareUpdate applies a (n = k + d, k) RS code
and every group becomes a (n, k) constraint group. The md
parity symbols from all the constraint groups will form the
parity data P. All the symbols in P are masked using PRF g
and permuted using PRP ϕ, both keyed with key K ′ (similar as
in πR). PrepareUpdate then calls the PrepareUpdate DPDP
algorithm of DPDP to further process D = F||P.

The output of PrepareUpdate is sent to the server S. S
runs PerformUpdate to fully re-write the data (D and the
corresponding verification tags in M ) and sends back the
proof. C verifies the proof by running VerifyUpdate. If the
verification is successful, C discards D and M , and keeps
all the (n, k) parameters; otherwise, C quits the protocol and
retries with a different server.

Challenge. As described in Section IV-A, the client challenges
the server to prove data possession using the GenChallenge,
Prove, and Verify algorithms which simply call their counter-
part algorithms of DPDP.

Update. Three operations are available in the Update phase:
insert, delete, and modify a data block.

Insert a data block B. After having downloaded the whole
file parity Pi−1 (i.e., ∆Di−1 = Pi−1), C runs PrepareUpdate.
C first restores the original order of the parity symbols in
Pi−1 and then strips off PRF g from them. For each symbol
b in B, C updates the constraint group with index hK(b)
by appending b to the data symbols of the constraint group
(cf. Sec. III-B). C obtains Pi by using PRF g to mask all the
symbols in the file parity P and by using PRP ϕ to permute
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KeyGen(1κ):

1. {skDPDP , pk} ← KeyGen DPDP(1κ), and K,K′ R← {0, 1}κ

2. Return {sk = {skDPDP , K,K′}, pk}
PrepareUpdate(sk, pk,∆F,∆Di−1, info,Mc):
1. If info =“full re-write ” /*occurs in the Setup phase, to prepare the

original file for outsourcing. ∆F is the original version of the file, i = 1*/
• P = ComputeParityData(sk, pk,∆F,NULL, 0)
• ∆D = ∆F ||P
• info′ = “full re-write”
• Return PrepareUpdate DPDP(skDPDP , pk,∆D, info

′,Mc)

/*For ease of presentation, we only consider block-level updates (this can be
easily extended to arbitrary file portions), thus, in the following, the block B =
∆F . If info is “delete” or “modify” a block, then ∆Di−1 is Pi−1||B′, and
B′ denotes the block to be deleted or modified. If info is “insert” a block,
then ∆Di−1 is Pi−1.*/

2. Restore the original order of symbols in Pi−1 and strip off PRF g from them
3. If info = “insert B”
• Pi = ComputeParityData(sk, pk,B, Pi−1, 1)
• ∆D = Pi||B
• info′ = “replace Pi−1 with Pi, insert block B”

4. Else if info = “delete B′ ”
• Pi = ComputeParityData(sk, pk,B′, Pi−1, 2)
• ∆D = Pi
• info′ = “replace Pi−1 with Pi, delete block B

′”
5. Else if info = “modify B′to B”
• Pi = ComputeParityData(sk, pk,B′||B,Pi−1, 3)
• ∆D = Pi||B
• info′ = “replace Pi−1 with Pi, modify B

′ to B ”
6. Return PrepareUpdate DPDP(skDPDP , pk,∆D, info

′,Mc)
PerformUpdate(pk,Di−1,Mi−1, e(∆D), e(info), e(∆M)):
Return PerformUpdate DPDP(pk,Di−1,Mi−1, e(∆D), e(info), e(∆M))
VerifyUpdate(sk, pk,∆F,∆Di−1, info,Mc,M

′
c, PM′c

):
1. Re-compute ∆D and info′ according to the procedure in PrepareUpdate

/*In fact, ∆D and info′ can directly be stored at the client after
PrepareUpdate, and there is no need to re-compute them*/

2. Return VerifyUpdate DPDP(skDPDP , pk,∆D, info
′
,Mc,M

′
c, PM′c

)

GenChallenge(sk, pk,Mc): Return GenChallenge DPDP(skDPDP , pk,Mc)
Prove(pk,Di,Mi, c): Return Prove DPDP(pk,Di,Mi, c)
Verify(sk, pk,Mc, c,Π): Return Verify DPDP(skDPDP , pk,Mc, c,Π)
Decode(sk, pk,Di = Fi||Pi,Mi,Mc):
1. Check the freshness of the retrieved file using the dynamic verification structure

(e.g., for DPDP that uses a skip list, re-compute the root of the skip list using
the verification tags as leaves and compare to the root stored at the client, which
is part of Mc [10]). If the check fails, then return failure.

2. Check the data blocks in Fi using the corresponding verification tags in Mi

and discard the corrupted blocks. If there are no corrupted data blocks, return
Fi. Otherwise, assign the symbols in healthy data blocks to their constraint
groups (i.e., for a symbol b, the index of its constraint group is hK(b)).

3. Re-order all the parity symbols in Pi, strip off PRF g from them, and put them
back to their right locations in the corresponding constraint groups based on
the (n, k) parameters of each constraint group.

4. For each (n, k) constraint group, apply brute force decoding as follows. Let
k′ be the number of healthy symbols that have been assigned to this constraint
group. Consider all permutations of k′ symbols in k′ locations (out of k
locations for data symbols), together with k−k′ parity symbols (out of d parity
symbols): (a) apply RS decoding on the k symbols to recover the original data
symbols; (b) re-compute the parity symbols; (c) if at least one of the newly
computed parity symbols match the parity symbols retrieved from the server,
then the decoding for this constraint group is considered successful. If there are
no successful decodings, then further consider ` of the k−k′ locations as zero
symbols (with 1 ≤ ` ≤ k−k′), together with k−k′−` parity symbols (out
of d parity symbols), and further decode the k symbols as previously described.
If there are still no successful decodings, then return failure.

5. Return the successfully decoded file Fi.

Fig. 2: VLCG: an R-DPDP scheme

them (g and ϕ are keyed with a new key K ′). PrepareUpdate
then calls the PrepareUpdate DPDP algorithm of DPDP to
further process the data Pi||B. The output of PrepareUpdate
is sent to S. S runs PerformUpdate and sends back the proof
for updating the corresponding data correctly. C then runs
VerifyUpdate to check the proof. If successful, C discards
Pi−1, B, and the old key K ′, and updates the (n, k) parameters

ComputeParityData(sk, pk,B, Pi−1, flag):
(run by the client to compute the parity in Setup phase or update the parity in
Update phase)
1. If flag = 0 /*compute the parity for the original file in Setup phase. B

represents the original file*/
• For each symbol b in file B, compute hK(b) to determine to which

constraint group will b be assigned
• For each constraint group with k symbols (k may be different for different

groups), apply a (k + d, k) RS code
• Let Pi be the collection of all the md parity symbols
• All the parity symbols in Pi are masked using PRF g and permuted

using PRP ϕ, both keyed with K′

• Return Pi
2. Else if flag = 1 /*insertion, B represents the block to be inserted*/
• For each symbol b in block B: update in Pi−1 the constraint group with

index hK(b) by appending b to the data symbols of this constraint group
• Pi = Pi−1

3. Else if flag = 2 /*deletion, B represents the block to be deleted*/
• For each symbol b in block B: update in Pi−1 the constraint group with

index hK(b) by modifying b to the zero symbol
• Pi = Pi−1

4. Else if flag = 3 /*modification of B′ to B, B = B′||B*/
• For each symbol b in block B′: update in Pi−1 the constraint group

with index hK(b) by setting b to be the zero symbol
• For each symbol b in block B: update in Pi−1 the constraint group

with index hK(b) by appending b to the data symbols of this constraint
group

• Pi = Pi−1

5. All the parity symbols in Pi are masked using PRF g and permuted using
PRP ϕ, both with a new key K′ (the previous K′ will be discarded after
having verified the update successfully)

6. Return Pi

Fig. 3: Computing the parity symbols in VLCG

for the corresponding constraint groups to (n + 1, k + 1);
otherwise, C aborts the protocol and raises an alarm.

Delete a data block B′. After having downloaded the whole
parity data Pi−1 and the block B′ that is to be deleted (i.e.,
∆Di−1 = Pi−1||B′), C runs PrepareUpdate. It first restores
the original order of the parity symbols in Pi−1 and strips off
PRF g from them. For each symbol b in B′, it updates the
constraint group with index hK(b) by modifying the value of
b to be zero (cf. Sec. III-B). C obtains Pi by using PRF g
to mask all the symbols in the file parity P and by using
PRP ϕ to permute them (g and ϕ are keyed with a new
key K ′). PrepareUpdate then calls the PrepareUpdate DPDP
algorithm of DPDP to further process Pi. The output of
PrepareUpdate is sent to S. PerformUpdate and VerifyUpdate
are run just like in the insert a block operation above, except
that there is no need to update the (n, k) parameters after C
verifies the update successfully.

Modify a data block B′ to B. Modifying a data block B′

to B is equivalent to first deleting the old block B′ and then
inserting the new block B.

For each of these operations (insert, delete, modify a
block), the client discards the previous key K ′ after running
VerifyUpdate and replaces it with the new K ′. Thus, C only
stores a constant amount of key material.

Retrieve. C downloads Di (the latest version of the encoded
file D) and metadata Mi. C then applies the Decode algorithm.
If Decode returns failure, C should raise an alarm.

The Decode algorithm relies on brute force decoding to
recover the file (VLCG can tolerate up to d − 1 erasures in
each constraint group). We argue this is not a major concern
because, first of all, file recovery is usually a rare event;



11

secondly, in Sec. IV-D we present an optimization that trades-
off client computation during decoding for additional server
storage. We also note that during Decoding, verification tags
are used to determine the healthy data blocks and only symbols
in healthy data blocks are assigned to their constraint groups
(thus, if the server swaps two symbols in the data file, the
corresponding blocks will be considered corrupted).

D. Discussion

Unlike πR-D in which all the constraint groups have the
same fixed size, in VLCG the length of each constraint group
is variable. The client can determine which symbols belong
to the same constraint group by keeping track of the set Φ
of (n, k) parameters for all the constraint groups. A basic
approach is to store Φ at the client, which will result in O(m)
additional client storage. An alternative approach is to store Φ
at the server and securely manage it using a Merkle hash tree;
the client only stores the root of the tree, thus preserving the
O(1) client storage overhead; the communication overhead is
increased by O(m) during challenges of data possession, and
by O(logm) during updates.

The number k of data symbols in a constraint group should
be kept relatively small, so that the (n, k) RS code can be
computed efficiently over the constraint group. Once the n and
k parameters are fixed, the number of constraint groups m is
determined as m = f/k. As updates are performed, m remains
the same, but the number of data symbols k in each constraint
groups may change (though the level of fault tolerance d =
n− k is preserved). Since delete operations do not reduce the
size of the (n, k) RS code, k will increase over time due to
insert/modify operations. To avoid a prohibitive increase of k
and keep the (n, k) RS codes efficient to compute, as well as
keep the zero symbols as few as possible (to keep the brute
force computation in the Decode algorithm at a minimum), the
client C should periodically perform a dynamic adjustment:
after a certain number of updates C retrieves the file and runs
Setup to pre-process the file again; in this process, C may pick
a different m, depending on the size of the updated file. The
amortized bandwidth factor for updates will remain α = |P|

|D| .
We now describe one step that was previously omitted to

simplify the description of the VLCG scheme. The assignment
of data symbols to constraint groups is done based on the value
of each symbol. To ensure robustness, the server should not
know which symbols belong to the same constraint group.
The client applies a layer of encryption before storing the
file at the server in order to hide that two equal symbols are
mapped to the same constraint group. Specifically, in the Setup
phase, the succession of steps for the client is: (1) encode the
file and obtain the parity, (2) encrypt the file blocks (using
randomized encryption), (3) mask and permute the parity,
(4) generate verification metadata over the encrypted file and
parity, (5) store the encrypted file, parity, and metadata at the
server. As a result, the client needs to remove this encryption
layer whenever it gets file data from the server, and add the
encryption whenever it stores blocks at the server.

Finally, we remark that our VLCG construction is better
suited for files with random data in order to ensure that PRF

h provides a balanced distribution of symbols into constraint
groups. For instance, files could be encrypted before applying
the PRF, and then be stored encrypted at the server (this may
be desirable anyway if the data is of sensitive nature).

Security analysis for VLCG. The main difference between
VLCG and πR-D in the Setup phase is that VLCG determines
the constraint groups by applying a PRF over the content of
data symbols, whereas πR-D determines them by applying
a PRF over the indices of the data symbols. The security
properties of the PRF used to decide the constraint groups and
of the randomized encryption applied on the file data before
being stored at the server, ensure that the server can infer
which symbols are in the same constraint group with negligible
probability. Moreover, VLCG masks and permutes the parity
in a similar fashion with the permuting and encrypting of the
parity in πR-D, ensuring a similar δ-robustness guarantee as
for πR-D (see security analysis for πR-D).

The security of the Challenge and Update phases in VLCG
relies on the security of the underlying DPDP scheme (which
ensures that large corruptions will be detected based on spot-
checking and that the server possesses the latest version of the
file based on the authenticated structure).

In the Update phase, for insert/delete operations, VLCG
only downloads the parity, updates the corresponding parity
symbols, then re-masks and re-permutes the parity with a new
key, which is comparative to πR-D, in which although the
whole file data is downloaded (for the purpose of re-computing
the parity), only the newly generated parity is re-permuted
and re-encrypted with a new key; for modify operations, both
VLCG and πR-D only download the parity (rather than the
whole file data) and update the parity correspondingly. In the
Retrieve phase, both schemes rely on the same mechanisms
(metadata and authenticated data structure) to detect corrup-
tion. This implies that VLCG and πR-D provide a similar
security level. We leave a rigorous security analysis of VLCG
as future work.

Performance analysis for VLCG. For every update operation
(insertion, deletion, and modification), the update bandwidth
factor α for VLCG is approximately |P||D| , whereas for πR-D α

is approximately |F||D| for insertion/deletion. Since d is usually
small compared to k (i.e., |P| is a lot smaller than |F|), the
communication overhead for updates in VLCG is significantly
smaller than in πR-D.

The encoding computation for VLCG is close to that of
πR-D, as expressed in the following theorem (proof provided
in App. A):

Theorem 4.2: Let f be the number of symbols in the file
F. If C1(f) is the computation for encoding in πR-D, and
C2(f) is the computation for encoding in VLCG, then we
have: C2(f) = Θ(C1(f)).

Optimizing the worst-case computation for decoding in
VLCG. The Decode algorithm in VLCG has a high worst-
case computation, since we do not know the correct positions
of healthy data symbols in their corresponding constraint
groups. We propose to record the position of each data symbol
in its constraint group. For a file F with f symbols, we
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maintain V a vector of positions with f elements. The vector
V is stored encrypted at the server (each element in V
is encrypted independently), which prevents the server from
learning information about constraint groups. V is regarded
as part of the file data during the Setup and Challenge phases
(thus, there will be verification tags computed over blocks
made of elements of V).

In the Update phase, changes on the file symbols should be
mirrored by changes in V: whenever symbols are inserted,
deleted, or modified in the file, a corresponding element
in V should be inserted, deleted, or modified, respectively
(reflecting the symbol’s new position in its constraint group).

In the Retrieve phase, V is retrieved together with all the
data D. After having checked the verification tags on D||V,
the elements in V which have been found corrupted are
discarded. The healthy elements in V will indicate the position
of each symbol inside its constraint group. A lightweight
brute force computation may still be required because, first
of all, for the corrupted elements in V, the client will lose
the position information of the corresponding (healthy) data
symbols, thus, the positions of these symbols in their constraint
groups would have to be determined by brute force; secondly,
symbols with 0 value introduced by “delete” and “modify”
operations may exist in some constraint groups, and the right
positions for such symbols (if needed) will be determined by
brute force search. The parameters of the RS code should be
selected to ensure that the brute force search during Decode
remains reasonable (e.g., for a code with n = 140, k = 128,
d = 12, which requires to spot-check 1188 blocks in the
Challenge phase to guarantee high probability of corruption
detection [2], the worse case running time for brute force
is
(

140
12

)
, which is approximately 238). This computation is

reasonable considering that data retrieval is a rare event.

Further optimizing the update communication. Compared
to πR-D, which requires to download the entire file for every
update, VLCG only needs to download the parity symbols.
Although the parity is usually very small compared to the
whole data, the asymptotic communication per update is O(f),
where f is the number of file symbols. To further optimize
the update communication to O(log2 f), we can use Oblivious
RAM (ORAM) techniques [33]. To update one symbol, instead
of downloading the parity P over the entire file, we use ORAM
over P to only retrieve the d parity symbols of the constraint
group corresponding to the updated symbol. These symbols are
updated (cf. Sec. IV-C1) and then written back to the server
using ORAM. For example, when using the ORAM scheme
in [34], the amortized communication for every update will be
reduced to O(log2 f), at the cost of a slight increase in server
storage (asymptotically, the server storage remains O(f)) and
server computation (by O(log2 f)).

Verification tags in VLCG. Remote data checking schemes
designed for the static case [1], [4] embed the index of a
block (i.e. its position in the file) inside the corresponding
verification tag. In order to support efficient dynamic updates,
verification tags in DPDP [10] are fundamentally different, as
they do not embed the block indices inside the verification
tags. In DPDP, the tag for a block B is computed as gB mod

N , where N = pq is a product of two large primes p, q, and
g is an element of high order in Z∗N . Since N should be at
least 1024 bits, when the block size is smaller than 1024 bits
the size of a tag will be larger than the size of a data block,
which may result in an undesirably high additional storage
overhead. [22] provides another tag construction which can
avoid this issue, but the tags will be of the same size as the
data blocks and the verification process is based on expensive
bilinear maps. In Appendix B, we provide an alternative to
compute the verification tags in a prime-order field and the
size of the verification tags will be smaller than the data even
when choosing the block size as small as a few hundred bits.

V. CONCLUSION

Adding protection against small corruptions to remote data
checking schemes that support dynamic updates extends the
range of applications that rely on outsourcing data at untrusted
servers. In this paper, we have proposed the first Robust
Dynamic Provable Data Possession (R-DPDP) schemes that
provide robustness and, at the same time, support dynamic
data updates, while requiring small, constant, client storage.
The main challenge that had to be overcome was to reduce the
client-server communication overhead during updates under an
adversarial setting. This work initiates the study of R-DPDP
schemes, but more investigation is required in order to improve
the efficiency of our VLCG construction (such as further
reducing the update bandwidth factor and the computation
required by the brute force search during data retrieval).
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APPENDIX A
PROOF OF THEOREM 4.2

In πR-D, the encoding computation of one constraint group
is approximately c( fm )2 (the computation for Cauchy RS
encoding is approximately quadratic. d is small compared to
f
m ), while c is constant, thus, C1(f) ≈ m ∗ c( fm )2 = c f

2

m .
In VLCG, the f symbols are distributed to m groups by

using PRF h. Assume the number of data symbols in the m
constraint groups are k1, k2, ..., km. Then, C2(f) ≈ c(k2

1 +
k2

2 + ...+ k2
m).

Let X be a random variable that denotes the number of data
symbols in one constraint group. We have:

The expected value of X: E(X) = f
m

The variance of X: V ar(X) = E(X2)− (E(X))2

C2(f) ≈ c(k2
1 + k2

2 + ...+ k2
m) ≈ c(mE(X2))

= cm(E(X)2 + V ar(X)) = cm((
f

m
)2 + V ar(X))

= c(
f2

m
+mV ar(X))

limf→∞(C2(f)
C1(f) ) = limf→∞(1 + V ar(X)m

2

f2 ) ≈ 1 (if h is a
good PRF and the input for h is random enough, V ar(X)
will be approximately constant). Thus, C2(f) = ΘC1(f).

APPENDIX B
AN ALTERNATIVE FOR COMPUTING THE VERIFICATION

TAGS FOR DPDP

We adopt the tag construction method from [36]. Suppose
every file block contains s symbols (i.e., block mi consists
of symbols mi1,mi2, ...,mis). Choose a group G of prime
order p, with p > max(2λ, 2w) (λ is a security paramter, and
w is the length of the symbol). Choose generators gi

R← G
for i = 1, .., s. The public key pk = (p), and secret key
sk = (g1, ..., gs).

In the Setup phase, the tag Tmi for the block mi is
computed as Tmi = Πs

k=1g
mik
k .

In the Challenge phase, the client sends to the server pairs
(ij , aj), for 1 ≤ j ≤ C, where C is the number of blocks
to be challenged. The server runs Prove DPDP and returns a
proof (T, µk), where

T = ΠC
j=1T ajmij , µk =

C∑
j=1

ajmijk

for 1 ≤ k ≤ s (mijk is the k-th symbol in block mij ).
The client runs Verify DPDP and accepts if T = Πs

k=1g
uk
k

and if Mc verifies.
Proof of correctness:

T = ΠC
j=1T ajmij = ΠC

j=1(Πs
k=1g

mijk

k )aj = Πs
k=1g

∑C
j=1 ajmijk

k

= Πs
k=1g

uk
k


