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Abstract—As the Online Social Networks (OSNs) amass un-
precedented amounts of personal information, the privacy con-
cerns gain considerable attention from the community. Apart
from privacy-enabling approaches for existing OSNs, a number
of initiatives towards building decentralized OSN infrastructures
have emerged. However, before this paradigm becomes a serious
alternative to current centralized infrastructures, some key design
challenges, often conflicting with each other, have to be addressed.
In this paper, we explore such design objectives concerning
various system properties, namely availability, replication degree,
user online times, privacy, and experimentally study the trade-
offs among them based on real data sets from Facebook and
Twitter. We introduce different mechanisms to model user online
times in the OSN from their activity times. We demonstrate how
different profile replica selection approaches significantly affect
the system performance.
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I. INTRODUCTION

The unprecedented success of Online Social Network
(OSN) applications, such as Facebook, Twitter, etc., has re-
sulted in a vast amount of personal information being available
online. This information, on one hand, is of great business
value to the service provider, e.g., personalizing ads, but on the
other hand, makes the users vulnerable to privacy breaches and
malicious exploitation, e.g. burglars locating vacant houses. As
a result, serious privacy concerns were raised in the past, by
the research community [1], [2], [3]. Several proposals exist
in the literature that aim to increase user privacy on the OSNs
without altering the existing social network infrastructures, e.g.
[4]. Alternatively, semi-/fully-decentralized OSN infrastruc-
tures such as, Peerson [5], My3 [6], and Diaspora [7] are also
pursued. To the best of our knowledge, no prior work has done
a thorough empirical study of the various system properties
of decentralized OSNs and the parameters that influence
them. In this paper, we experimentally explore these trade-
offs using data traces from two real social networks Facebook
and Twitter. We first define key efficiency metrics of such
systems, namely availability, availability-on-demand, update
propagation delay and replication degree. To be explained
later, an important parameter that affects all these metrics, is
the online time of the user.

Since privacy is a serious concern in decentralized OSNs,
in this paper, we explore the case where profile replicas are
placed only on trusted friend nodes in the social network, as
opposed to a general Peer-to-Peer system, which replicates
on any arbitrary nodes. Furthermore, decentralized OSNs that

are built only on Friend-to-Friend (F2F) networks do not
necessitate any complicated encryption mechanisms for data
management. Employing different replica selection schemes
and different realistic models to approximate users online
times in Facebook and Twitter, we experimentally establish
that i) in order to achieve acceptable availability of profiles, a
certain replication degree has to be met, ii) there is a trade-
off between data availability, the data freshness, and degree
of replication, iii) the number of replicas and their placement
choice significantly affect the OSN’s efficiency.

The rest of the paper is organized as follows: Section II
introduces various efficiency metrics for decentralized OSNs.
In Section III, we deal with the replica placement strategies.
Experimental methodology is discussed in Section IV followed
by the results in Section V. Related work and conclusion are
presented in Sections VI and VII, respectively.

II. THE CONTEXT

A well-designed decentralized OSN application should
promise user experience and functionality similar to that of
existing centralized OSNs. A typical OSN allows its users to
post messages or content onto his profile (like the “wall” in
Facebook) or on other people’s walls, send personal messages,
chat with online friends, discover new friends, and retrieve
feed of updates on friends profiles etc. In addition, the user
should receive updates of the activities on his profile by his
friends while he is offline. To this end, profile replication
should be employed to keep the profiles available even when
the owner users are offline in the system. As we explain later,
the online time of users is an important parameter of the system
that significantly affects profile availability.

A. Online Time Connectivity

Let OT,, denote the online time period of user w. This is a
continuous/discrete time period, with a predefined granularity
(e.g., minutes, hours), during which the user is active on the
network and contributes bandwidth, storage, etc. through his
OSN client. This parameter can be either a user input to the
client or approximated by the client from the user’s online
history (for example, as done in the later part of the paper).

Let NG, be the set of his friends (i.e. neighbors) in the
social graph. Assume that the profile of user w is replicated
at some friends R, C NG,. In our study, we assume all
friends of a user to be trusted for hosting the user’s profile
replica. This allows us to explore the best case performance



of F2F based decentralized online social networks. Studying
issues such as breach of trust or node compromise is beyond
the scope of the paper.

The profile of user w is accessible by an arbitrary user v
only if 3 j € R, such that OT,,NOT; # (. i.e., the user v and
replica j must be connected in time. Hence, the replicas in R,
can be either connected in time or unconnected. In the former
case (referred to as C'onRep), each replica of the user w’s
profile should overlap in time with at least one other replica,
ie.Vie Ry, 3j€ R, such that OT;NOT; # (. In the latter
case (referred to as Uncon Rep), replicas have to communicate
among themselves using a third-party storage or a content
delivery network (CDN). A decentralized OSN inherently
privacy-conscious, should adopt the C'on Rep approach for the
replica selection.

B. Technical Requirements

For the decentralized OSN platforms to become viable
alternatives to centralized siblings, a number of technical
requirements need to be realized, which are discussed below:

1) Storage requirements: The profile of a user should be
highly available regardless of the user’s own connectivity to
the system, which can be achieved by profile replication.
In order for all the friends of a user to eventually access
the user’s activity in the OSN, all the updates should be
communicated across all the replicas with certain guarantee
on data consistency. We believe that a requirement of even-
tual consistency would be adequate for decentralized OSNs.
Addressing the problem of consistency in detail is beyond
the scope of the paper. In addition, the replica selection
should ensure fairness among the replicas by balancing the
storage and communication overhead involved in hosting a
replica uniformly. Another requirement concerning the data
freshness requires that any updates on a user’s profile should
be accessible by all his friends as soon as possible, with an
upper bound on the delays incurred in reaching consistency,
especially when the replicas are not online always.

2) Privacy requirements: Typically in a privacy-aware
OSN, semi-private part of a user’s profile is configured to be
accessible only by the 1-hop friends in the network. Hence,
the replication mechanism should be optimized to increase the
availability of the profile to the 1-hop friends. Since delegation
of the profile access control to other nodes (even trusted nodes)
poses a potential privacy breach to the profile, the degree of
replication should be minimized. Storing the user profiles in
encrypted form on untrusted nodes may be needed to improve
availability, but it involves complicated key management and
distribution, especially to enforce access control on the profile
content.

C. Efficiency Metrics

In the following, we define several performance metrics for
measuring the efficiency of decentralized OSNs.

1) Availability: The fraction of time in a day, a user’s
profile is accessible through the replicas. Note that maximum
achievable availability for a certain user is limited by the union
of the online times of his friends in an F2F model.

2) Availability-on-Demand: This metric quantifies the ac-
cessibility of the profile for the friends of a user. We introduce
two variations of the metric:

Availability-on-Demand-Time: Fraction of the union of the
online times of the friends of the user, the profile is available
through the replicas. It should be noted that these friends are
expected to access the profile during their online time, by
definition. Second,

Availability-on-Demand-Activity: Fraction of the times there
was an activity on a user’s profile in a specific time interval
in the past and the profile was available.

3) Update Propagation Delay: The latency between the
end of an update event at a certain replica of a user and its
arrival on another replica is the update propagation delay be-
tween these two replicas. This delay depends on the length of
the online time overlap between them. In the case of connected
replicas (C'onRep), a weighted replica time connectivity graph
is computed with the replicas as the nodes and edges between
two replicas if they are connected in time. The weight of each
edge set to the update propagation delay between the two end
nodes. Updates among replicas are propagated via a multi-hop
shortest path on this graph.

We explain the calculation of this delay in the example
of Fig. 1. We assume three replicas of a certain user’s (say
user v) profile residing at nodes vi, vo, and vs with different
continuous online times represented with begin (¢5) and end
(t,) times as OT,, = [tg”l) té’“l)], oT,, = [tg@) t&w)],

e U1 k) 2 K
orT,, = [tﬁ”“, £”3>], for which the replica time connectivity
graph is also shown in the figure. Let an update event happen at
replica vy at time ¢. Then, this update would be communicated
to vy at time ¢/, which would take 24 — d; hours, where d; is
number of overlapping hours between v; and ve. Furthermore,
since at time ¢’ node v3 is not online, in order for the update to
reach the replica vs, it would take an additional 24 —ds hours,
where ds is the gap between ¢’ and th) in hours. Thus, in
total the update propagation delay between v; and vz would
take 48 — dy — do hours, which is the worst possible case for
communicating a profile replica update at node v; to node vs.
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Fig. 1: Propagation of update from replica v; to vs.

The Update Propagation Delay for a user is the maximum
of propagation delays between all pairs of the replicas. It
is the weight of the longest of the shortest paths among all
pairs of replicas in the above graph. Hence, in above example,
the update propagation delay for the user v is 48 — d; — ds
hours. This metric captures the maximum/worst case update



propagation delay for transferring updates among replicas of
a given user profile. This metric directly impacts the data
freshness.

The Update Propagation Delay has two aspects to be
considered: one, the end-to-end delay as explained above and
second, the actual delay as observed by a user (friend) who
can experience the delay only in relation to his online time
window i.e., the time when the friend is offline should be
excluded from the above update propagation time. To this
end, we refer the former delay as the actual and the latter
as the observed propagation delay. In the above example, the
observed delay for the node vs is ¢ 42"3) whereas the actual
delay is 48 — dy — ds hours.

4) Replication Degree: It is the number of replicas hosting
a user’s profile. This metric expresses the storage and com-
munication overhead involved in replicating the user’s profile.
Moreover, it can be seen as a degree of potential privacy breach
of user’s profile, which can occur with or without the replica
host node being aware of the breach. Higher the replication
degree, more is the level of potential exposure of personal
information to others. An extremely privacy-conscious user
wants to ideally have a replication degree of 0 for his profile.

ITI. REPLICA SELECTION POLICIES

In order to choose a set of replica points for a user’s profile
from all of the user’s social network friends, we employ
various criteria which are described in detail in the following:

A. Maximizing the availability (MaxAv)

In this approach, we choose as replica locations the user
friends, which maximize the availability of the user profile.
Since each user’s online time is known a priori, the maximum
availability achievable for a user u in a F2F model can be
computed a priori as | Ureng,OTr |- Hence, the replica
selection algorithm should choose the minimum number of
replicas/friends that jointly achieve this availability. We model
this problem as the conventional set cover problem with the
set to be covered (the universe) chosen as Ureng, OTy. The
online hours of the friends (OTY) represent the family of
the subsets of the universe in the set cover problem. Since
finding an optimal solution for the set cover problem is NP-
hard, we solve the problem in a greedy way that chooses
replicas incrementally until no improvement is observed in
the achieved availability. The algorithm, at each step, chooses
the friend who is online for the highest number of remaining
uncovered hours.

In the ConRep case, at each step of the greedy heuristic,
while choosing the next replica/friend, only the friends which
are connected in time to any of the already chosen replicas,
must be considered. Out of all such overlapped friends, the
one whose online time has the least overlap with the current
covered set, is chosen as the replica.

The replica selection algorithm for maximizing the
availability-on-demand-activity (resp. availability-on-demand-
time) is again modeled as a set cover problem where the
universe is the union of the activity times of all friends

observed during a pre-defined time in the past (resp. union
of online times of all the friends).

B. Most active friends as replicas (MostActive)

This approach prioritizes the most active friends for placing
the replicas. The intuition is to improve the availability of the
profile to the friends who need/access it the most. As a side-
effect, the availability-on-demand-time will be maximized.
The top-k most active friends where the activity is measured as
the number of times interaction happened between the user and
his friend in a predefined-time frame in the past, are chosen
as replicas. In case, there are no sufficient number of friends
with non-zero activity, random friends are chosen.

C. Random friends (Random)

In this approach, friends of the user are randomly chosen
to place the user profile replicas, which should be connected
in time in the case of ConRep.

IV. EXPERIMENTAL METHODOLOGY

In this section, we describe the methodology we used for
the experimental analysis of the performance trade-offs of
decentralized OSNs w.r.t different replica placement policies
described in the Section III, based on real data traces from
Facebook and Twitter.

A. Dataset description

For our study, we needed social networks datasets which
include 1) the social graph, ii) the user activities happened
among the users and iii) the timestamp of each activity, which
helps to approximate online times as explained below. Most
of the datasets in the literature lack at least one of these
requirements. We employed two datasets that meet our needs:
a Facebook [8] and a Twitter dataset [9]. The user degree
distribution of both the datasets is presented in Fig. 2, which
is the number of friends (resp. followers) in the social network
Facebook (resp. Twitter).

The activity considered were the wall posts (for Facebook
dataset), the user’s tweets (for Twitter dataset). We believe that
considering even richer set of activities like passive profile
viewing, personal communication or chats will not alter the
experimental methodology and the mechanisms used in the
algorithms. In addition, more types of activities chosen will
enhance the performance of the algorithms w.r.t the metrics.
For example, in Sporadic model explained below, an extra
activity would increase the user’s online time and thus avail-
ability of his profile.

1) Facebook: The Facebook dataset employed is the
NewOrleans Network dataset [8], which has a total of 63,731
users creating a total of 876,994 wall-posts. A wall-post has
a receiver, a creator, and a timestamp.

In a decentralized Facebook, a user’s profile is accessed (by
his friends) from any of the profile replicas which are online
at that instant.
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Fig. 2: User degree distribution of the datasets

2) Twitter: We employed a simplified version of the Twitter
dataset of [9], which originally included 158,324 tweets made
by a total of 23,162 users in Twitter between 10-Sep-2009
and 24-Sep-2009. From this dataset, we excluded all the users
whose followers are not present in the dataset. A tweet has
a receiver, a creator, and a timestamp, similar to a wall-post
described before.

In a decentralized Twitter, we chose to replicate a user’s
profile on his followers. This is a natural choice as the majority
of the information flow in Twitter is from the user to his
followers. When a user is offline, his replicas are used by
his followers to access his tweets and by his followees (users
followed by him) to communicate their tweets to him.

We filtered out users with very little activity (less than 10
wall-posts or tweets) from the above datasets. We ended up
with a total number of 13884 users for Facebook, with the
average degree 41 (i.e. friends) and an average number of 50
activities per user. For Twitter, the filtered dataset contains
14,933 users with average degree of 76 (i.e. followers).

B. Simulation

We built a Java-based simulator that processes the Facebook
and Twitter datasets and computes the profile replication
points for the users in either dataset according to the replica
placement algorithms of Section III. Then, all user activities
are replayed in the system and the efficiency is measured in
terms of the metrics specified in Section II-C, as the replication
degree is varied. The user online times are approximated by
applying different models as explained in next subsection.

In each case, the replication degree is varied from 0 (i.e.
only the user stores his profile) to the maximum limit: the
number of friends/followers of the user. In both ConRep and
UnconRep cases, for a user, some of his friends may have
online times which do not overlap with any of the replicas. It
should be noted that the number of such disconnected friends
is indirectly reflected in the availability-on-demand-time. In
the case of most active friends as replicas (MostActive), a
friend who created most of a user’s received activity (in the
activity dataset) is considered as the most active friend.

Once the user online times are computed, part of the user
activity in the datasets falls within this online time (we term it
as expected activity) while the remaining falls outside (termed
as unexpected activity). The metric availability-on-demand-
activity (shown in the plots) captures availability of profiles
for both the activities together. Availability of user profile for

unexpected activity will have positive effect on the users of
the system as they perceive the system to be available even
when it is not expected, as per the definition.

C. User online time models

As mentioned earlier, users online time is an important
metric that affect the performance. However, approximating
the same from the known datasets, is a challenge in itself and
we model the online times based on user activities in three
different ways:

1) Sporadic: This model assumes that user is online in the
OSN several times a day sporadically, and each appearance
can be seen as a session. We consider sessions of fixed length
with each user activity performed at a random point in the
corresponding session duration. As found for Orkut in [10],
most active users stay online for more than an hour in a
session, while 22% of the sessions last less than 20 minutes.
The study in [11] found an average session length of 40
minutes for the case of Facebook, with some sessions even
lasting for several days. To this end, we employed a fixed
session length of 20 minutes, as a conservative choice for both
the Facebook and Twitter studies. Unless specified otherwise,
Sporadic refers to a 20 minute session length. In addition,
we explore in detail, the effect of the session length on the
performance metrics for different session lengths for the case
of Facebook dataset.

2) Continuous- Fixed Length: In this model, all the users in
the network are assumed to be online, each day of the week,
during a continuous time window of a fixed length (we chose
2, 4, 6 and 8 hours as the duration lengths). The actual time-
of-day for each user is centered around the majority of their
activity times as per the datasets. The intuition behind this
model is that users stay online for continuous time periods
in which they perform activities arbitrarily, as observed for
Skype [12]. This model is denoted as FixedLength in the
results (Section V).

3) Continuous- Random Length: This is same as the above
model, except that each user randomly chooses his own length
of the online time window from the range [2,8] hours. This
is denoted as RandomLength in the results.

Out of all, we believe that Sporadic is the most realistic as it
approximates online times very close to that of the real-world.

D. Limitations

As with any empirical studies, our results and conclusions
are, invariably limited by the limitations and inconsistencies
of the datasets we choose. First, we consider only one form of
activities among users in the social network: wall-posts (Face-
book) and tweets (Twitter). Second, as already mentioned,
online times of the users are not included in the datasets, and
are approximated by different models, as explained in IV-C.
Nevertheless, we believe that, since the considered activities
constitute the majority of the overall activities in Facebook and
Twitter [13], our datasets can be considered representative for
obtaining results of general applicability.



V. RESULTS

In this section, we illustrate the results of our empirical
study for the Facebook and Twitter datasets, in terms of
the efficiency metrics as the replication degree varied for all
online time models of Section IV-C. For the sake of clarity of
presentation, we have smoothed the plots using Bezier curves
to emphasize the different trends. Unless specified otherwise,
we present, the averaged results for the users with a particular
degree and we chose degree 10, as both the datasets have
the most number of users (Facebook:~ 300 and Twitter:
~ 550) with this degree. Hence, replication degree is varied
from 0 to 10. More generic results, e.g. unsmoothened can
be found in [14]. For the FixedLength, only the 2hour
and 8hour online duration cases are presented, for brevity.
Experiments involving randomness, i.e. Random placement or
Random Length model, are repeated 5 times and averages are
presented. Availability is computed as the fraction of number
of distinct online hours (resp. minutes for Sporadic) of repli-
cas over 24 hours (resp. 1440 minutes), while the availability-
on-demand-time is the fraction of number of distinct online
hours of replicas over that of his friends.

A. Facebook

1) Availability vs. Replication degree: Availability in-
creases with replication degree as is illustrated in Fig. 3 and
Fig. 4 for the cases of connected and unconnected repli-
cas respectively. As expected, MazAv replication scheme
outperforms others, while achievable availability stabilizes
after replication degree 6, 5, 4 for the online time models
Sporadic, FizedLength and RandomLength respectively.
MostActive replication is better than the naive Random
placement and achieves the availability of MaxAv, but with
a higher number of replicas being used. Also, observe that
achievable availability for FixzedLength for 2 hours case is
very low.

Note that the actual number of replicas chosen may be
much lower than the maximum allowed replication degree
in ConRep case, as enough connected replicas can not be
always found. However, for UnconRep case, the achievable
availability is higher as expected, since the replica locations
can be selected regardless of their online time connectivity.
This can be seen in Fig. 4a and 4b for the FizedLength case
(for other online time models cf. [14]).

2) Availability-on-Demand vs. Replication Degree: As we
have seen, availability does not reach 100% even if all the
friends are employed for replication. Instead, availability-
on-demand-time reaches 100% with only 5 replicas (for
M ax Av placement and Sporadic), as shown in Fig. 5a, while
MostActive and Random replica placements require 7 and
9 (thus employing 70% and 90% of friends).

The achievable availability-on-demand-activity is even
higher than the above, as depicted in Fig. 6 for all online
time models. This result is important, as it means, for a
small replication degree, a user’s profile can be made highly
available during friends’ activity times. We also noticed higher
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performance of the MostActive replica placement approach.
For the case of UnconRep, it is even higher (cf. [14]).

3) Update Propagation Delay vs. Replication Degree:
Nonintuitively, the update propagation delay increases with
the replication degree, as depicted in Fig. 7. However, this
can be understood, as explained in Section II-C3, this metric
represents the maximum delay for an update to reach all
replicas; hence, increases with number of replicas, if their total
non-overlapping time increases. As M az Av replica placement
algorithm chooses replicas with lesser overlapping times, it
incurs the highest delay, as compared to the other placement
approaches. The delay is lower for Sporadic as compared
to the other online time models, since the replica nodes
can contact each other more often due to their intermittent
online connectivity. Note that, even though the delay seem to
be unacceptably high, in general, the observed delay (refer
Section II-C3) would be much lower. The delay is expected
to be lower for UnconRep case, as external communication
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the effect of length of a session in Sporadic on the perfor-
mance metrics in Fig. 8 for the case of Facebook. The session
length is shown in log scale. We considered a fixed replication
degree of 3 as we observed a flattened performance for higher
replication degrees (see Fig. 3). The plots (in Fig. 8) affirm that

Sporadic model for replication degree 3

5) Effect of user degree in sporadic model: In Fig. 9, we
explore the performance behavior of the algorithms as the
user degree (i.e. number of friends (followers) in Facebook



(Twitter)) is varied. We considered all the users with a fewer
number of friends (i.e. between 1 to 10) while allowing the
replication degree to be the highest possible for a given user
degree. The plots suggest that the availability for users with a
fewer friends is lower and increases with the user degree. Yet,
we observed an availability-on-demand-time/activity of 1 for
all the user degrees (plots are excluded for brevity reasons).

Since all the friends are allowed to be used as replicas, all
the algorithms achieved the same availability as shown in the
Fig. 9a. But the actual number of replicas used by different
algorithms to achieve this availability is found to be different,
which is implied by the varied propagation delays (shown in
Fig. 9b). The M ax Av uses lower number of replicas compared
to other algorithms (and hence, a lower delay).
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Sporadic model for replication degree 3

B. Twitter

We observed similar trends in the results for the Twitter
dataset for all the metrics. The plots for the availability metric
are presented in Fig. 10. The availability-on-demand-time, in
the case of FizedLength (8hrs) (Fig. 11d), does not reach
the maximum (like the case of Facebook Fig. 5) because
friends of some users are not at all connected to any of the
users replicas, but still considered for the metric computation.
Such disconnected friends can access the corresponding users
profile if and only if the user extends his online time. Remain-
ing plots can be found in [14].

C. Discussion

Availability is a critical concern for decentralized OSN
infrastructures. From the empirical evaluations above, we
justify the feasibility of decentralized online social networks
for privacy-conscious users that typically expect their pro-
files available only to their friends in the network (i.e.
high availability-on-demand-time/activity). We observed that
typically a low replication degree (~40%) achieves high
availability-on-demand for Sporadic, RandomLength and
FizedLength(8hours), i.e. for realistic online time modes
in which the users are online for reasonable durations.

Also, note that, ideally higher availability-on-demand-
time/activity and lower availability are desirable for privacy-
aware OSN design; higher availability of profile replicas can
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be seen as higher potential exposure (for example, from secu-
rity attacks) to non-friend users and thus higher vulnerability.
In the above study, we proved that decentralized OSNs using
F2F-based replication are ideal candidates for this purpose.
Also, MostActive replica placement is a promising ap-
proach for decentralized OSNSs as it is computationally simpler
and does not require knowledge of the user online times, as
opposed to MaxAv. Activities of friends and online time
connectivity among them can be estimated locally based on



historical data. M ostActive also achieves a good compromise
between availability-on-demand and update propagation delay.

The update propagation delay seems to be a big challenge
towards the realization of decentralized OSNs; we empirically
found delays of ~2 days for some online time models.
Although, the observed delay would be lower, it may be
still unacceptable to most users. In order to reduce the delay,
the non-overlapping times among profile replicas have to be
reduced; this could be achieved with longer online times of a
certain core group of friends. Alternatively, the decentralized
OSNs can make use of a third-party services (e.g. CDN,
DHT, cloud storage etc.) for exchanging updates. However,
this would require encryption of the updates exchanged.

VI. RELATED WORK

In the literature, there are many proposals on privacy-aware
decentralized social networks. PeerSon [5] adopts encryption
mechanisms for content storage and access control enforce-
ment. [15] addresses privacy in OSNs by storing encrypted
profile content in a P2P storage infrastructure. Each user in
the OSN defines his own view (“matryoshka”) of the system.
In this view, nodes are organized in concentric rings, having
nodes at each ring trusted by the nodes in its immediate
inner ring, with the user node being the center of all rings.
The user’s profile data is stored encrypted at the innermost
ring, which is accessed by other users through multi-hop
anonymous communication across this set of concentric rings.
LifeSocial [16] is a P2P-hosted OSN where users employ
public-private key pairs to encrypt profile data that is stored
in a distributed way and is indexed in a DHT. In [6], we have
dealt with the design of a high-available decentralized OSN
system. Finally, although still under development, Diaspora [7]
is currently a decentralized OSN prototype system where each
user maintains his profile available through a locally-hosted
web server. However, all of the above works, do not aim at
experimental evaluation of availability or other performance
metrics. In [17], a decentralized OSN is proposed, where a
user’s profile content is stored at his own machine called as
virtual individual server (VIS). VISs self-organize into P2P
overlays. Three different storage environments, namely, cloud
storage, P2P storage on top of desktops, a hybrid storage
were considered, and various performance issues: availability,
cost, and privacy were studied. In desktop-only storage model,
profiles are replicated on a user’s friend nodes. However,
this paper neither considers the online times of peers nor
replication placement policies and their implications on the
performance of the system.

The authors in [18], [19] deal with friend-to-friend storage
systems and our work complements to them. The work in
[18] justifies that F2F systems are more reliable alternatives
over conventional P2P systems storage by providing analytical
and experimental evaluation. A more recent empirical study of
availability of F2F systems is pursued in [19], which uses a
dataset of an instant messaging service. Our study systemat-
ically analyzes the challenges for realizing the decentralized
OSNs and employs data traces from two real and well-known

OSN applications: Facebook and Twitter. We also consider
two separate cases of connected and unconnected replicas.

VII. CONCLUSION

In this paper, we introduced the important performance
metrics for decentralized OSNs, experimentally analyzed the
trade-offs and derived feasibility conditions for their realiza-
tion in practice. Based on the experimental evaluation and
our user online time modeling, we conclude that the imple-
mentation of a decentralized friend-resident social network is
feasible under certain realistic requirements on the user online
times, which determine the necessary replication degree and
the resulting availability of the system.
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