arXiv:1407.5074v2 [cs.SE] 10 Dec 2015

An Alloy Verification Model for Consensus-Based Auction Protocols

Saber Mirzaei
smirzaei @cs.bu.edu

Computer Science Department

Boston University, MA

Abstract— Max Consensus-based Auction (MCA) protocols
are an elegant approach to establish conflict-free distributed
allocations in a wide range of network utility maximization
problems. A set of agents independently bid on a set of
items, and exchange their bids with their first hop-neighbors
for a distributed (max-consensus) winner determination. MCA
protocols have been proposed, e.g., to solve the task allocation
problem for a fleet of unmanned aerial vehicles, in smart grids,
or in distributed virtual network management applications.
Misconfigured or malicious agents participating in a MCA
or an incorrect combination of policy instantiations can lead
to oscillations of the protocol, causing, e.g., Service Level
Agreement (SLA) violations.

In this paper we propose a formal, machine-readable, Max-
Consensus Auction model encoded in the Alloy lightweight
modeling language. The model consists of a network of agents
applying the MCA mechanisms instantiated with potentially dif-
ferent policies, and a set of predicates to analyze its convergence
properties. We were able to verify that even when all agents
follow the protocol, MCA is not resilient against rebidding
attacks, and that the protocol fails (to achieve a conflict-free
resource allocation) for some specific combinations of policies.
Our model can be used to verify, with a “push-button’ analysis,
the convergence of the MCA mechanism to a conflict-free
allocation under a wide range of policy instantiations.

I. INTRODUCTION

Resource allocation problems are ubiquitous in distributed
systems. The Max Consensus-based Auction (MCA) protocol
is a recent approach that allows a set of communicating
agents to rapidly obtain a conflict-free (distributed) allocation
of a set of items, given a common network utility maximiza-
tion goal. Without calling it MCA, recent work [8], [10]
demonstrated how max-cosnensus auction protocols provide
desirable performance guarantees with respect to the optimal
network utility. The MCA protocol consists of two mecha-
nisms: a bidding mechanism, where agents independently
bid on a single or on multiple items, and an agreement (or
consensus) mechanism, where agents exchange their bids for
a distributed winner determination.

The use of MCA protocols was proposed to solve re-
source allocation problems across several disciplines. To our
knowledge, its first use appeared to solve the distributed
task assignment problem [8], where a fleet of unmanned
aerial vehicles bid to assign a set of tasks (geo-locations
to be covered.) MCA protocols were also proposed for
distributed virtual network management applications [10],
where federated infrastructure providers bid to host virtual
nodes and virtual links on their physical network, in attempt
to embed a wide-area cloud service. More recently, MCA
protocols have been also proposed to solve the economic

Flavio Esposito
fesposito@exegy.com

Exegy Inc.
St. Louis, MO

dispatch problem in a distributed fashion, i.e., the problem
of allocating power generation tasks among available units
in a smart-grid [5].

Each (invariant) mechanism of the MCA protocol may
be instantiated with different policies. An MCA policy is a
variant aspect of the bidding or the agreement mechanism,
and represents an high-level application goal. Examples of
policies for the bidding mechanism are the (private) utility
function used to generate bids, or the number of items on
which agents simultaneously bid on, in each auction round.
Note that MCA does not require a centralized auctioneer [8],
[101.[1

Earlier work on protocols verification established how
certain combinations of policy instantiations may lead to
incorrect behaviors of a protocol [3], [26]. Similarly, in this
paper we analyze the convergence properties of the MCA
protocol under various settings using a lightweight, machine-
readable, Alloy [16] verification model. Our aim is to show
how certain combinations of MCA policies, obtained by
design, resulting from misconfigured or malicious agents,
may break the convergence of the MCA protocol causing
the application to fail and inducing e.g., Service Level
Agreement (SLA) violations, energy inefficiencies, or the
loss of expensive unmanned vehicles (whose software may
fail under an MCA instability.) By MCA convergence, we
mean the attainment of a distributed conflict-free assignment
of the items on auction.

In particular, we present the following contributions: () we
identify the common mechanisms of several existing max-
consensus auction protocols, renaming MCA such unifying
set of mechanisms, and we separate them from their policies
in our Alloy model. We then verify the impact of some of the
policy combinations on correctness of the protocol. (i7) We
describe the Max-Consensus Auction mechanism, and some
applications to motivate its versatility in Section|ll} As a case
study, we dissect one particular application: the distributed
virtual network mapping problem (defined in Section|ll), i.e.,
the NP-Hard problem of assigning, or mapping, constrained
virtual nodes and virtual links (items) to physical nodes
(agents) and loop-free physical paths, belonging to multiple

Variation of policies may induce different behavior. For example, second
price auctions on a single item are known to have the strong property of
being truthful in dominant strategies, <.e., the auction maximizes the revenue
of the bidders who do not have incentives to lie about their true (utility)
valuation of the item. In the MCA settings however, truthful strategies may
not work as there is uncertainty on whether more items are to be assigned

in the future; bidders may have incentives to preserve resources for stronger
future bids.

federated infrastructure providers. (i¢z) In Section we
overview the basic concepts of the Alloy Modeling Language
and the Alloy Analyzer in context with our model, described
in Section and available at [1]. The model consists of
a network of agents together with the set of rules used to
asynchronously resolve conflicts, and a set of predicates to
analyze the convergence property, when agents are instan-
tiated with different MCA policies. (tv) In Section [V| we
present the analysis of the convergence properties of the
MCA protocol. In particular, we present a set of counter-
examples to show how the MCA protocol fails to reach
a conflict-free assignment of the items on auction, for a
particular combination of policy instantiations (Section [V])
We finally discuss some relevant work in Section [VI] and
conclude our paper in Section

Once released, both our static and dynamic models will
serve as a baseline tool for a deeper investigation of the
MCA convergence properties, when the bidding agents are
instantiated with possibly conflicting policies.

II. THE MAX-CONSENSUS AUCTION PROTOCOL

In this section, we first introduce the Max Consensus-
based Auction mechanisms, and then we describe few mo-
tivating applications on which such a protocol may be, or
was already applied, with particular attention to the virtual
network mapping application, that we use as a case study
for the rest of the paper.

A. The Mechanisms
Consider a set Z of independent agents (or nodes), that
need to allocate in a distributed fashion a set J of items.
Each agent is associated with a private utility u; € lel, that
represents the benefit (or cost) of hosting an element of 7.
As in [8] and [10], we assume that agents cooperate to reach
a Pareto optimal solution:), _; u;. A Max-Consensus Auc-
tion protocol consists of two independent mechanisms: (¢) a
bidding mechanism, where agents independently bid on the
items in 7, and (4¢) an agreement mechanism, where bids are
exchanged with the logical neighbors for a distributed winner
determination. In particular, an asynchronous agreement is
sought on the maximum bid on each item to be assigned.
During the bidding phase, using their (private) utility
function u, each agent independently assigns bid values on a
subset of . Each agent constructs a vector b, where b;; is
the bid of agent 7 on item j. The utility function u;, used to
generate the bids, may depend also on previous bids. Agents
have a limited budget, 7.e. the capacity of physical node to
host virtual nodes, and their bids on current items depend
on how many items they have won in the past. Formally, the
max-consensus on a set of items is defined as follows [19]:
Definition 1: (max-consensus). Given a network of agents
G, composed by a set of agents Z, an initial bid vector of
nodes b(0) = (b1(0),...,b7/(0))VI Pl a set of neighbors
N; Vi € Z, and the consensus algorithm for the communi-
cation instance ¢ + 1:
bi(t + 1) = ;

2The notation implies that each vector b;(0) has size | J|.

b;(t)} Vie T, 1
erfvlfbx{i}{ i(t)} Vi (1

Bidding with Sub-modular ltems States after agreement
b1 = (10,--,30) ! b1=(20, 15, 30)
={A, C} : ={C}
=(1,-1) | bar=(2,2,1)
be = (20,15, --) i 5 be = (20, 15, 30)
me = {A, B} @ . me={A, B}
az=(2,2,-) az=(2,2,1)

Fig. 1. Two agents (1,2) independently bid on three items (A,B,C),
and exchange their bid and allocation vectors applying a distributed max-
consensus auction protocol.

Max-consensus on the bids among the agents is said to be
achieved with convergence time 7, if 3 7 € N such that
Vt>r7and Vi,i' €Z,

b;(t) = by (t) = max{by(0),...,bi7(0)}, 2)
where max{-} is the component-wise maximum.

During the bidding phase, agents also save the identity of
the items in a bundle vector m; € J Ti where T; is the
target number of items that can be assigned to agent ¢, and
a vector of time stamps t, i.e., the time at which the bid
was generated. The bid generation time-stamps are used in
the agreement phase to resolve assignment conflicts in an
asynchronous fashion; when transmitted among agents, bids
can in fact arrive out of order. After the bidding phase, each
physical node exchanges the bids with its neighbors, updating
an assignment vector a; € Z!7| with the latest information
on the current assignment of all items.

Example 1: Consider Figure [I} agents 1 and 2 inde-
pendently bid on three items (A, B,C). Agent 1 assigns
a value of 10 on item A, and a value of 30 on item C,
by = (10, —, 30); then agent 1 stores the identity of items A
and C in its bundle vector, m1 = (A, C), and assigns itself
as a winner for both items, i.e., sets the allocation vector a;
with its own identifier for items A and C'. The bidding phase
of agent 2 is similar. After bidding, the agents exchange their
bids and allocation vectors. Agent 1 learns that there is a
higher bid for item A, and stores such higher bid in its bid
vector, and the identity of the overbidding agent 2 in its
allocation vector (see Figure[l] right column). The protocol
has reached consensus. An additional agent 3, connected to
agent 1 but not agent 2, would receive the maximum bid
so far on each item, as well as the latest allocation vector
a=a; = as.

In Example (I), an agreement is found after the first
bidding phase. In general, for more elaborate (non-fully
connected) networks of agents, the mechanism iterates over
multiple node bidding and agreement (consensus) phases.
Note how a successful distributed allocation needs to be
conflict-free, 7.e., the protocol can only assign each item to
a single agent, while agents may win multiple items.

Remark 1: (no-rebidding allowed on lost items). A nec-
essary condition to reach an agreement in an MCA protocol
is that agents do not bid again on items on which they were
overbid in previous auction rounds.

Remark 2: (rebidding is convenient on items subse-
quent to an outbid.) Note how bids generated subsequently
to an outbid item are outdated, because they were generated

assuming a lower budget. Hence, agents may rebid assigning
a higher utility to the items already in their bundle, but
subsequent to an outbid item.

Remark 3: (sub-modularity of the bidding function).
Assigning a set of items to a set of agents is equivalent
to a Set Packing Problem, which is NP-hard [22]. Earlier
work [8], [10] has shown that if agents generate their bids
using a sub-modular function u, then the network utility
cannot be arbitrarily low. In particular, in [10] it has been
shown that the allocation resulting from the MCA protocol
has an approximation ratio of (1 — 1) with respect to the
optimal network utility . u;.

In the context of the MCA protocol, a sub-modular func-
tion is defined as follows:

Definition 2: (sub-modular function.) The marginal utility
function u(j, m) obtained by adding an item j to an existing
bundle m, is sub-modular if and only if

u(j,m’) > u(j,m) Vm' C m. (3)
If an agent uses a sub-modular utility function, a value of
a particular item j cannot increase because of the presence
of other items in the bundle m; (the data structure keeping
track of the items currently assigned to bidder 7). This implies
that bids on subsequent items cannot increase. An example
of sub-modular utility function is the residual capacity of
a physical node bidding to host virtual nodes; the residual
(CPU) capacity can in fact only decrease as virtual nodes to
be supported are added to the bundle vector m.

B. MCA Case Study: the Virtual Network Mapping Problem

MCA protocols have been used across a wide range of
networked applications, (see, e.g., [5], [8], [10]). In this
subsection, we define the virtual network mapping problem,
the application that we have chosen as a case study for our
MCA Alloy model.

Given a virtual network (VN) H = (Vy, EFy,Cy) and a
physical network G = (Vz, Eq, Cq), where Vi and Vi are
the sets of virtual and physical nodes, respectively, and Ex
and Fg are the set of virtual and physical links, respectively.
Each node or link e (physical or virtual) is associated with a
capacity constraint C'(e). P’| The virtual network mapping is
the problem of finding at least a mapping of H onto a subset
of G, such that each virtual node is mapped onto exactly
one physical node, and each virtual link is mapped onto at
least one loop-free physical path p while maximizing some
utility or minimizing a cost function. Formally, the mapping
is a function M : H — (Viz,P) where P denotes the set
of all loop-free paths in G. M is called a valid mapping
if all constraints of H are satisfied, and for every H =
(sf,rf) € Ey, exists at least one physical loop-free path
p:(s9,...,r%) € P where s is mapped to s and r¥ is
mapped to 7¢. The MCA protocol is not necessarily applied
to virtual links, as physical nodes (infrastructure provider
processes) can merely bid to host virtual nodes, and later
run k-shortest path to map the virtual links.

Remark 4: In the rest of the paper, our notation refers

3Each C(e) could be a vector (Cy(e),...,Cy(e)) containing different
types of constraints, e.g. physical geo-location, delay, or jitter.

to the VN mapping problem, but our verification results
are independent from the application running on top of the
MCA protocol. Adapting to other MCA applications merely
requires a change of variable names.

III. ALLOY OVERVIEW

In this section we describe how the Alloy [16] language

and analyzer work, and we give few examples of primitives
that we used to model the MCA protocol.
What is Alloy and how does it work? The term “Alloy”
refers to both a formal language and an automated analyzer.
The Alloy Analyzer translates the user models into SATS,
i.e., boolean satisfiability problems. The Alloy language is
a declarative specification language for modeling complex
structures and behaviors in a system. Alloy is based on first
order logic, and is designed for model enumeration. The
Alloy language is is based on the notions of relations and
sets. For example, a physical link can be modeled with a
relation between two members of a physical node set. A
relation is a particular set whose members are tuples with a
specific arity.

To verify the satisfiability of the SAT representing the
model, the Alloy Analyzer uses a constraint solver [24].
Checking satisfiability of a large SAT instance may be
intractable (or in general, time consuming); In general,
checking the satisfiability of the translated SAT instance is
exponential (unless P = NP) [9], however, the scope of
the Alloy Analyzer can be customized and limited to ensure
termination of the checking process in a timely fashion.
How can we build a model using the Alloy language?
The Alloy language is lightweight, and shares standard
features and elements with most programming languages,
e.g., modules and functions; some features have been instead
introduced by Alloy, such as the concepts of signature
or scope [16]. A signature declaration is denoted by the
keyword sig, and models the sets of elements of the system.
For example when the MCA protocol is applied to solve a
virtual network mapping problem, a basic signature for a
physical node with a given hosting CPU capacity and some
capacitated connections with other physical nodes can be

modeled as follows:

sig pnode{
pcp: one Int, // Physical Cpu Capacity
id: one Int, // ID of pnode
pconnections: Int -> pnode // set of Connections

}

Signatures may contain some properties that model rela-
tions between elements. For example, the signature pnode
has three relations, two binary (pcp and id), as they relate
two signatures, and one ternary relation. The Alloy language
also allows us to express constraints on sets and relations.
Such constraints are defined with constraint paragraphs,
labeled by the keyword fun, as in function, 7.e., a reusable
expression that always outputs a relation, pred, as in
predicate, whose output is always a boolean, and fact i.e.,
a constraint valid for any instance of the model.

For example, to impose the constraint of non negative
physical links capacity, in our model we define a fact
positiveCap as follows:

fact positiveCap{

all n:pnode | (n.pconnections) .pnode >= 0

}
T3]

where the operator “.” is the inner join in relational algebra.
To check that the model satisfies specific properties, the
Alloy language supports assertions. Assertions are labeled
with the keyword assert. For example, to assert that
two disjoint agents (physical nodes) nl1 and n2 have non
equivalent identifiers, we use the following assertion:

assert uniquelID({
all disj nl, n2: pnode | nl.id != n2.id
}

Note that assertions are not enforced rules, but merely
properties that we are interested in verifying.

The Alloy language also supports commands, i.e., calls
to the Alloy Analyzer. For example, to verify whether
an assertion holds on a previously defined model, within
a user-defined scope, we use the command check. The
command run instead instructs the Alloy Analyzer to find a
satisfying instance of the SAT of the model. To check if the
assertion uniqueID holds in all instances of a model scope
containing up to three physical nodes, we run the following
Alloy command: check uniqueID for 3.

IV. THE ALLOY MODEL FOR CONSENSUS-BASED
VIRTUAL NETWORK MAPPING

In this section we overview our MCA Alloy model,
applied to the virtual network mapping problem (defined in
Section [[I-B]) Our Alloy code is logically divided into a static
and a dynamic sub-model: the static sub-model refers to the
underlying hosting physical network, and the virtual nodes to
be mapped with the max-consensus based auction protocol,
while the dynamic sub-model captures the state transitions.
Static Model. A simplified version of the signature pnode
was explained in Section We extend this signature to

include some biding policies and other ternary relations:

sig pnode({
pcp: one Int,
pid: one Int,
initBids: vnode->Int,
initBidTimes: vnode->Int,
pconnections: some pnode,
p_T: one Int,
p_u: one utility,
p_RO: one release_outbid
// add your policy here

}

In this signature, initBids models the initial values that
an agent (physical node) assigns when bidding on a subset of
items (a virtual node is modeled as vnode), and the ternary
relation initBidTimes models the corresponding bidding
time on the virtual nodes, used for the MCA asynchronous
conflict resolution mechanism. The bidding policies are
modeled using the binary relations e.g., p-T, p_u, and p_RO.
p-T models the target capacity of an agent (pnode) imposing
a limit on the number of items (vnodes) that an agent can bid
on. p-u models the utility function, that can be sub-modular
or not. E]

4In the definition of relation pcp, the keyword one refers to each
physical node being in relation with exactly one integer, e.g., the physical
capacity. Similarly, the relation pconnections models the fact that in a
network, each node is connected to some other nodes.

The virtual network mapping problem maps constrained
virtual networks on a constrained physical network, eventu-
ally owned by multiple, federated infrastructure providers.
Our model can be extended to capture any constraints in the
form of an Alloy fact. As a representative example, we
show in this paper how to model the fact that physical
nodes can bid on virtual nodes only if they have enough

physical capacity to host them:

fact pcapacity({

all p: pnode | (sum vnode. (p.initBids)) <= p.pcp

}

In Alloy relations are modeled by ordered tuples; this
means that unordered relations must be explicit, e.g, our
pconnectivity fact shows how an undirected link has
to be modeled using two (directed) relations:

fact pconnectivity({
all disj pnl,pn2:pnode | (pnl.pid != pn2.pid) and
(pnl in pn2.pconnections <=> pn2 in pnl.pconnections)

}

Our static model includes several other facts that regulate
basic networking properties. The full Allow model code can
be downloaded at [1].

Dynamic Model. The dynamic behavior of the network is
modeled as a transition system, and the sequence of state
changes is regulated by the MCA protocol. Network states

are captured in our model using the following signature:
sig netState {
bidVectors: some bidVector,
time: one Int,
buffMsgs: set message }

The state of the physical network is updated as bid
messages are exchanged among agents (or physical nodes.)
The bidVectors relation contains the current view of
each agent, i.e., the vectors a, b, t, and m (defined in
Section and depicted in Figure [T}) The relation time
models the time generation of each state, while the set
of unprocessed messages is modeled with the buffMsgs
relation. This relation captures the correspondence between
states and the buffer of messages in transit. The signature

message is modeled as follows:

sig message({
msgSender: one pnode,
msgReceiver: one pnode,
msgWinners: vnode->(pnode + NULL),
msgBids: wvnode->Int,
msgBidTimes: vnode->Int

}

Aside from defining the sender and the receiver physical
node, the bid message signature contains: the view of
the sender about the maximum bid known so far on every
virtual node (msgBids), their winners (msgWinners),
and the time at which the highest bids were generated
(msgBidTimes.) Note how, when a message is being
processed, these relations are used to update the states a,
b, t, and the bundle vector m for each physical node.

The core of the MCA protocol is modeled by
some constraint paragraphs. In particular, the Alloy fact
stateTransition models the sequence of message pro-

cessing, and the transitions from state s to s':
fact stateTransition({
all s: netState, s’: s.next | one m:message
messageProcessing[s, s’, m]

Using the built-in library ordering, we can model the

states of the system as an ordered sequence which keyword
next in s.next represents the state subsequent to s in the
transition.
Abstractions Efficiency. The model we have presented so
far, contains integer variables and ternary relations; see e.g.,
the three signatures pnode, bidVector and message.
Ternary relations and integers were introduced for the sake of
explaining our model, but lead to inefficiencies of the Alloy
Analyzer. Using such elements, our model containing the
conflict resolution table of the asynchronous MCA protocol
generated over 259K SAT clauses, for a scope as limited as
3 physical nodes and 2 virtual nodes.

We obtained a more efficient model by (¢) replacing each
ternary relation with two binary relations, and by (i¢) defining
our own values —combinations of signatures and facts—
instead of using integers —predefined and more complex
abstractions in Alloy. As an example of signature introduced
to reduce the complexity of the ternary abstractions, we show
bidTriple:

sig bidTriple{

bid_v: one vnode,

bid_b: one Int,

bid_t: one Int,

bid_w: one (pnode + NULL)
}

To avoid using the Alloy’s predefined integers (signature
Int) we model natural numbers with the signature value:

sig value{
succ: set value,
pre: set value

}

Each instance of the signature value only models relations
between numbers. Using the two relations succ and pre we
model binary operators <, <, > and >, respectively, using
the binary predicates valL[,],vallE[,], valG[,] and
valGE[,]. For two instances v1 and v2 of the signature
value, we model the inequality v1 < v2 with the predicate
vallLE([vl, v2] (which in our Alloy model is equivalent
tovl in v2.pre).

Using these more efficient abstractions, for the same
scope, we were able to reduce the number of SAT clauses
from circa 259K to circa 190K, reducing the running time
of our consensus assertion from circa a day to less than two
hours. [l

V. USING ALLOY TO ANALYZE MCA CONVERGENCE

Our model enables the study of the convergence properties
of the MCA protocol. In this section we first introduce the
assertion for checking such convergence property, and then
we show how specific combinations of the MCA policy
instantiations may or may not lead to convergence.

Checking the convergence property in Alloy means check-
ing whether or not the consensus assertion holds. All the
agents (physical nodes) need to reach an agreement on (%)
the assignment vector, containing the identity of the winner
agents (virtual nodes), (¢¢) and the bid vector. The assertion

5Qur experiments were carried out on a Linux machine running Intel core
i3 CPU at 1.4GHz and 4 GB of memory.

Utility Iteration 1 Iteration 2 Iteration 3

Agreement
b,=(20},m,=[4]
b,=(20),m,=(C)

Both PNs outbid on first VN
Non b,=(10,30},m,=(4,C) b,=(), m=()
}

b,=(20,10}, m,=(4,C}
b,=(20,10},m,=(C, 4)

Sub-modular

identical to iteration 1
b,=(10,30},m,=(4,C}
b,=[10,20], m,=(C, 4]

Sub-modular
b,={10,20},m,=(C, 4}

Fig. 2. The policy of releasing outbid items, combined with the non sub-
modularity policy lead to instability of the MCA: with non sub-modular
utility, after the first round both agents have been outbid on the first item, and
their bids on the second item have been invalidated. Even bids subsequent
to an outbid (see Remark 2) are released seeking a Pareto optimality.

consensus is coded in Alloy as follows [}

assert consensus{
(# (netState) >= val) implies consensusPred[]
}
pred consensusPred{
some s: netState | all disj bvl,bv2: s.bidVectors |
(
(bvl.winners = bv2.winners) and
(bvl.winnerBids = bv2.winnerBids)
)
}

From the consensus literature [19], and from previous

studies on the MCA [8], [10], we know that the number
of messages required to reach consensus is upper bounded
by D - |Vy| where |Vg| is the size of the item set, and D
is the diameter of the network of agents. Intuitively, this is
because the maximum bid for each item, only has to traverse
the network of agents once. We use this bound to set our val
parameter in the consensus assertion: after val number of
messages is being processed, a max-consensus on the bid
has to be achieved.
Result 1: We checked the assertion consensus over sev-
eral scopes, for a key representative combinations of policies.
We found that MCA always reaches consensus, except when
the utility function policy p_u is set to non sub-modular, and
the agents release (and rebid) all subsequent items to an
outbid item i.e., the p_RO policy is set to true.

To understand why the MCA protocol fails for this com-
bination of policies, consider the scenario in Figure [2| (first
row): the agent’s bids do not increase as items are added to
the bundle, as bids have been generated using a sub-modular
function. After exchanging the bids, item C' is won by agent
2, and item A is won by agent 1. When instead MCA uses a
non sub-modular function (as in Figure |2 second raw), bids
can increase as items are added to the bundle, and releasing
items (subsequent to an outbid node to refresh their bids)
causes oscillations, and hence the MCA failure to reach a
conflict-free assignment.

Result 2: We also tested the consensus property under
circumstances of protocol misbehavior or misconfiguration.
In particular, we removed from our model the necessary
condition discussed in Remark [/} allowing physical nodes
to re-bid after they were outbid on a virtual node and,
as expected, we found instances in which, consensus (a
conflict-free assignment) is not reached. A consequence of
this sanity-check for our model is that the MCA protocol
is not resilient to rebidding attacks, i.e., malicious agents

%The model presented in this paper is a simplified version of the full
model described at [1].

can perform a denial of service attack by rebidding even on

outbid items. []
VI. RELATED WORK

Protocol Verification with Alloy. Theorem proving and
model checking tools have been widely used to analyze
and verify (distributed) algorithms and protocols [4], [13],
[26], [23] for a wide range of (networked) applications, as
they allow with minimal implementation efforts to verify
complicated properties. The attention towards lightweight
model-finding tools [14], [16], as an alternative to model
checking tools [25], [11] has only recently increased, due
to the ease of use, and to the automation that they have
introduced. We only cite a representative set of references to
define our work in context. In [26] and [23], the authors study
with an Alloy model Chord [15], a peer-to-peer distributed
hash table protocol.

Alloy has been applied to model and study the properties

of other protocols as well [3], [7], [21]. In [3] for example,
Alloy is used to analyze the properties of the Stable Path
Problem (SPP), and to verify sufficient conditions on SPP
instances.
Verifying Correctness of Networking Mechanisms. Recent
work has been also carried out to verify the correct behavior
of many networking mechanisms. For example, there has
been interest in verifying that network forwarding rules
match the intent specified by the administrator [17], [18],
or even in building tools to debug the network forwarding
plane in the context of Software-Defined Networks [12].

Approaches that verify the correct behavior of the rout-
ing [20] or the forwarding [2], [6] mechanisms have also
been investigated. The authors in [20] for example, propose
via SAT instances to statically analyze the router configura-
tions of the data plane, to check isolation errors and network
disconnections caused by misconfigurations.

Similar to all these approaches, our work also aims to
verify the correctness of a network mechanism, but our
focus is on the Max Consensus Auction; in particular, on
the virtual network mapping, a management application that
infrastructure providers use during the creation of a virtual
network, not after a (virtual) network has been instantiated.

VII. CONCLUSIONS

Max Consensus-based Auction protocols are a recent
solution that allows a set of communicating agents to obtain
a conflict-free (distributed) allocation of a set of items, given
a common network utility maximization goal. We extracted
the common mechanisms of such protocols, renaming them
MCA: a bidding mechanism, where agents independently
bid on a single or on multiple items, and an agreement
(consensus) mechanism, where agents exchange their bids for
a distributed winner determination. Each MCA mechanism

7 A thorough analysis on how to design and implement solutions to detect
or prevent malicious MCA agents is left as an open research question.
However, singular malicious user behavior can be isolated by requiring
every agent to sign their messages before broadcasting, using a unique ID.
By keeping track of the bidding history of their first hop neighborhood,
agents could then detect rebidding attacks (condition in Remark [T), ignoring
subsequent invalid bid messages.

can be instantiated with a wide-range of policies that lead to
different behaviors and protocol properties.

In this paper, we used the Alloy Language to model the
MCA protocol, and verify its convergence properties under
a range of different policies. Our MCA model is application
agnostic, but we described our result in context of the virtual
network mapping problem. With our model, we were able
to show how given combination of MCA policies lead to
instability (oscillations) ¢.e., no convergence to a conflict free
assignment is guaranteed, and that MCA is not immune to
denial of service attacks as rebidding attack. Our released
Alloy model can be used to verify the correctness of the
MCA protocol, for a wide range of policies and applications,
or extended to include property-checking features for large
instance of the model.

REFERENCES

[1] MCA Alloy model code. http://csr.bu.edu/alloy/.

[2] Al-Shaer, E. and Al-Haj, S. Flowchecker: Configuration analysis
and verification of federated openflow infrastructures. In Proc. of
SafeConfig, pages 37-44, New York, NY, USA, 2010. ACM.

[3] M. Arye, R. Harrison, R. Wang, P. Zave, and J. Rexford. Toward a
lightweight model of BGP safety. Proc. of WRIiPE, 2011.

[4] K. Bhargavan, D. Obradovic, and C. A. Gunter. Formal verification of
standards for distance vector routing protocols. Journal of the ACM
(JACM), 49(4):538-576, 2002.

[5] Binetti, G. et al. A distributed auction-based algorithm for the
nonconvex economic dispatch problem. Industrial Informatics, IEEE
Trans. on, 10(2):1124-1132, May 2014.

[6] Canini, M. et al. A NICE Way to Test Openflow Applications. In

Proc. of NSDI, pages 10-10, Berkeley, CA, USA, 2012.

C. Chen, P. Grisham, S. Khurshid, and D. Perry. Design and validation

of a general security model with the alloy analyzer. In Proc. of the

ACM SIGSOFT, pages 3847, 2006.

[8] Choi, Han-Lim et al. Consensus-based decentralized auctions for
robust task allocation. IEEE Trans. on Robotics, Aug 2009.

[9] S. A. Cook. The complexity of theorem-proving procedures. In Proc.
of ACM Theory of comp., pages 151-158, 1971.

[10] F. Esposito, D. Di Paola, and I. Matta. On distributed virtual network
embedding with guarantees. ACM/IEEE Transactions on Networking.
Accepted (to appear), Nov 2014.

[11] Groote, J. E. et al. The formal specification language mCRL2.

[12] Handigol, Nikhil et al. Where is the debugger for my software-defined
network? HotSDN 12, pages 55-60, 2012.

[13] K. Havelund and N. Shankar. Experiments in theorem proving and
model checking for protocol verification. In FME’96, pages 662—681.
Springer, 1996.

[14] G. Holzmann. Spin Model Checker, the: Primer and Reference
Manual. Addison-Wesley Professional, first edition, 2003.

[15] 1. Stoica et al. Chord: A scalable peer-to-peer lookup service for
internet applications. In SIGCOMMOI, pages 27-31.

[16] D. Jackson. Software Abstractions: Logic, Language, and Analysis.
The MIT Press, 2006.

[17] Kazemian, Kazemian et al. Real time network policy checking using
header space analysis. In Proc. of the 10th USENIX, nsdi’13, pages
99-112, Berkeley, CA, USA, 2013.

[18] Khurshid, Ahmed et al. Veriflow: Verifying network-wide invariants
in real time. In Proc. of HotSDN ’12, pages 49-54, NY, USA, 2012.

[19] N. A. Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

[20] Mai, Haohui et al. Debugging the data plane with anteater. In Proc.
of the ACM SIGCOMM 11, pages 290-301, NY, USA, 2011. ACM.

[21] S. Mirzaei, S. Bahargam, R. Skowyra, Kfoury, a., and A. Bestavros.
Using alloy to formally model and reason about an openflow network
switch. CS Dept., Boston University, Tech. Rep. 2013-007, 2013.

[22] R.M. Karp. Complexity of Computer Computations. In Reducibility
Among Combinatorial Problems, Miller and Thatcher., 1972.

[23] H. Sadeghian, A. Samadi, and H. Haghighi. Formal analysis of pure-
join model of chord using alloy. In ICSESS, May 2013.

[24] E. Torlak and D. Jackson. Kodkod: A relational model finder. In Tools
and Algorithms for the Construction and Analysis of Systems, pages
632-647. Springer, 2007.

[25] S. Yovine. Kronos: A verification tool for real-time systems. Inter-
national Journal on Software Tools for Technology Transfer, pages
123-133, 1997.

[26] P. Zave. Lightweight verification of network protocols: The case of
chord. 158, 2009.

[7

—

http://csr.bu.edu/alloy/

	I Introduction
	II The Max-Consensus Auction Protocol
	II-A The Mechanisms
	II-B MCA Case Study: the Virtual Network Mapping Problem

	III Alloy Overview
	IV The Alloy Model for Consensus-based Virtual Network Mapping
	V Using Alloy to Analyze MCA Convergence
	VI Related Work
	VII Conclusions
	References

