
QROSS: QUBO RELAXATION PARAMETER OPTIMISATION VIA
LEARNING SOLVER SURROGATES

A PREPRINT

Tian Huang1, Siong Thye Goh2, Sabrish Gopalakrishnan2, Tao Luo1, Qianxiao Li1, and Hoong Chuin Lau2

1Institute of High Performance Computing, Agency for Science Technology and Research, Singapore
2School of Computing and Information Systems, Singapore Management University, Singapore

March 22, 2021

ABSTRACT

An increasingly popular method for solving a constrained combinatorial optimisation problem
is to first convert it into a quadratic unconstrained binary optimisation (QUBO) problem, and
solve it using a standard QUBO solver. However, this relaxation introduces hyper-parameters that
balance the objective and penalty terms for the constraints, and their chosen values significantly
impact performance. Hence, tuning these parameters is an important problem. Existing generic
hyper-parameter tuning methods require multiple expensive calls to a QUBO solver, making them
impractical for performance critical applications when repeated solutions of similar combinatorial
optimisation problems are required. In this paper, we propose the QROSS method, in which we
build surrogate models of QUBO solvers via learning from solver data on a collection of instances
of a problem. In this way, we are able capture the common structure of the instances and their
interactions with the solver, and produce good choices of penalty parameters with fewer number of
calls to the QUBO solver. We take the Traveling Salesman Problem (TSP) as a case study, where we
demonstrate that our method can find better solutions with fewer calls to QUBO solver compared with
conventional hyper-parameter tuning techniques. Moreover, with simple adaptation methods, QROSS
is shown to generalise well to out-of-distribution datasets and different types of QUBO solvers.

1 Introduction

The Quadratic Unconstrained Binary Optimisation problem (QUBO) has become a unifying formulation for a wide
range of combinatorial optimisation problems [1, 2]. Its objective form is closely related to the Hamiltonian of the Ising
model in statistical physics [3], where a variety of sampling methods based on Markov Chain Monte-Carlo have been
developed to probe the energy landscape and find its ground states [4]. These form the basis of commercially available
QUBO solvers, such as those implemented on quantum annealers [5] and quantum-inspired computers [6].

Many combinatorial optimization problems can be expressed in the form of minx∈{0,1}n x
TQx subject to Cx = d

where decision variables are binary and the constraints are linear. The conversion of such problem into a QUBO form is
straightforward where the problem can be rewritten as minx∈{0,1}n x

TQx+A‖Cx− d‖2 [3], where A is referred as
the relaxation parameter. The challenge is that the quality of the solutions found by a QUBO solver is sensitive to the
choice of the parameter value. Inappropriate choice of relaxation parameter value could lead to a solution that is either
infeasible or far from optimal. Hence, relaxation parameter optimisation is an important step in this problem-solving
process.

In the context of emerging computing technology and new QUBO solvers, existing methods do not capture the common
structure shared by instances of a problem. For industry applications like vehicle route planning [7] and resource
allocation [8], instances of the same problem are solved repeatedly. We argue that there is valuable information in the
history of solved instances that can be extracted as prior knowledge for a relaxation parameter optimisation method.

ar
X

iv
:2

10
3.

10
69

5v
1

 [
cs

.L
G

]
 1

9
M

ar
 2

02
1

QROSS: QUBO Relaxation Parameter optimisation via Learning Solver Surrogates A PREPRINT

In this paper, we propose a QUBO Relaxation parameter Optimisation method based on QUBO Solver Surrogates
(QROSS) to mitigate these issues. As indicated by its name, QROSS relies on a surrogate model that approximates
important characteristics of a QUBO solver. We build the surrogate model using machine learning on data obtained
from the QUBO solver when applied to solve instances of a problem. QROSS then proposes promising relaxation
parameters using the surrogate model on new instances, effectively reducing the number of calls to QUBO solver.

The solver surrogate in QROSS only models certain aspects of the original QUBO solver that are necessary for relaxation
parameter tuning. Given a problem instance and a relaxation parameter, the solver surrogate predicts the probability
that the QUBO solver finds a feasible solution, as well as the objective energies. Note that no explicit solutions are
predicted by the solver surrogate. An evaluation on the solver surrogate, which we will model as a carefully designed
neural network, is much cheaper/faster than a call to a QUBO solver.

Based on the solver surrogate, we propose two search strategies that will provide the trial values of the relaxation
parameters. Hence, given a new instance of a problem, QROSS can propose promising relaxation parameters that can
be used to form the QUBO problem that is then solved by a QUBO solver.

QROSS has the following features that make it unique among other hyper-parameter tuning methods:

• QROSS captures the common structure of a class of problems. This is achieved by learning a solver surrogate
from a history of problems. Knowledge in previous problems help to solve new problems of the same type.
With QROSS, users are expected to find better relaxation parameters and solutions with fewer calls to the
QUBO solver;

• Given a new problem of the same class, QROSS is able to predict the landscape of the objective function and
help users understand the expectations without resorting to the expensive QUBO solving step;

• QROSS allows trade-off between optimality and number of calls to a QUBO solver. If an application only
allows one call per problem, QROSS produces one parameter candidate, which has a good chance to satisfy
the constraints of the problem. If a user can afford more calls for a problem, QROSS can change the strategy
and propose more candidates to find better parameters and solutions.

Our contributions are as follows:

1. We introduce QROSS, a machine learning method to extract knowledge from QUBO problem instances solved
in the past to facilitate the relaxation parameter optimisation process for a new instance of the same problem.

2. We propose two offline and one online parameter selection strategies. Offline strategies learn from instances in
the past and propose promising parameters without calling QUBO solvers. The online strategy learn from the
instance-to-solve and improves parameter by exploiting results from QUBO solvers.

3. We take Traveling Salesman Problem (TSP) as a case study to demonstrate that QROSS learns knowledge
from history effectively and proposes promising parameters.

In experiments, we use Fujitsu Digital Annealer (DA) as a QUBO solver and compare QROSS with representative
optimisation methods. Results show that QROSS outperforms these methods by a large margin. We train QROSS
on synthetic dataset and find it is also adequate on out-of-distribution and real-world problem settings. We repeat all
experiments with another QUBO solver, the hybrid solver Qbsolv from DWave Quantum Annealer. Results suggest that
QROSS generalises well for the different QUBO solvers we used.

2 Related Work

Many parameter-sampling methods have been proposed in the literature, for example, SMAC [9] uses random forest;
GPyOpt [10] and Spearmint [11] use Gaussian Process, and Hyperopt [12] uses tree-structured Parzen estimator. Optuna
[13] allows the user to dynamically construct the search space.

While the above papers are generic in that they do not take problem specific features into consideration, SATzilla [14]
is an automated approach for constructing per-instance algorithm portfolios for the Satisfiability Problem (SAT) that
uses the so-called empirical hardness models to choose among their constituent solvers. Instance-Specific Algorithmic
Configuration (ISAC) [15] predicts the impact of different parameters and the performance by learning from instances.
In [16], ISAC was proposed to choose appropriate MAXSAT problem. In [17], a per-instance configurable portfolio
which is able to adapt itself to every planning task was proposed.

Parameter tuning aside, generic constraint programming solvers have been proposed, for example [18] and [19], that
perform local search by taking the constraints explicitly into the consideration.

2

QROSS: QUBO Relaxation Parameter optimisation via Learning Solver Surrogates A PREPRINT

All methods mentioned above are typically not concerned with feasibility of solutions, since feasibility is guaranteed
through the algorithm itself. However feasibility is not guaranteed by a QUBO solver. Tuning QUBO relaxation
parameters will need to take feasibility into consideration.

3 The QROSS Method

QROSS exploits knowledge learned from past instances of a problem when solving a new instance. In this section,
explain what is the knowledge, why is it useful, how to learn it, and finally how to exploit it.

3.1 Motivation

As noted in the Introduction, the choice of the relaxation parameter value directly impacts feasibility. In other words,
the concern is whether a solution for the QUBO model instantiated with a particular parameter value can be found
that satisfies the constraints of the original constrained problem. We first investigate the relation between feasibility
and parameter value. We denote the relaxation parameter as A, a problem instance as g, and define the probability of
feasibility as the proportion of feasible solutions produced by the QUBO solver. Eq.1 gives an estimate of it when
evaluated on a large number of solutions on a common parameter setting:

Pf ≈
number of feasible solutions

number of solutions
(1)

The value of Pf lies in the range [0, 1]. The relation between A and Pf is shown in the left column of Fig.1. The upper
part of the figure shows the results from a QUBO solver, which is the Digital Annealer from Fujitsu [6]. For each point,
there are 128 solutions returned by the QUBO solver, given a problem instance g and a relaxation parameter A. Because
of the stochastic nature of QUBO solvers, the result could be different even if the input is the same. The dashed line
that we fitted to the points looks like a sigmoid shape. The QUBO solver for the lower part of the figure is Simulated
Annealing on CPU. The same shape can be observed from the lower part.

Relaxation parameter
0.0

0.2

0.4

0.6

0.8

1.0

P f

Relaxation parameter480

490

500

510

520

530

540

En
er

gy

Digital Annealer

25 30 35 40 45 50
Relaxation parameter

0.0

0.2

0.4

0.6

0.8

1.0

P f

25 30 35 40 45 50
Relaxation parameter

480

490

500

510

520

530

540

En
er

gy

Simulated Annealing on CPU

Figure 1: Probability of Feasibility and Objective Energy

3

QROSS: QUBO Relaxation Parameter optimisation via Learning Solver Surrogates A PREPRINT

The relaxation parameter A is also closely related to the objective energy of a solution. The upper right part of Fig.1 is
produced by Fujitsu DA. Each point represents the minimum of fitness of 128 solutions from the QUBO solver, given
an instance g and a parameter A. The orange dashed line sketches the envelope of the points and presents as a dipper
shape. The red star-shaped marker is the bottom of the dip, where the optimal solution appears. The parameter that
leads to near optimal solution is called optimal parameter. The lower right part of the figure is for Simulated Annealing,
the dipper shape is not as obvious as the upper part. This is because SA gets stuck in local minima more often for the
current parameter setting and has an almost flat landscape.

We explain the intuition behind the observation as follows. As one increases the relaxation parameter value, the
constraints, in the form of penalty, gradually dominates the QUBO objective. Thus, A QUBO solver will be more
likely to find feasible solutions. Meanwhile, the part of the QUBO objective corresponding to the original objective
becomes less prominent and sometimes even disappears. The QUBO solver will not be able to respond to the tiny
difference presented by the objective part and fails to find (near-)optimal solutions. 1 On the other hand, if one
decreases the relaxation parameter over a certain threshold, i.e., to the left part of the dip, there will be fewer feasible
solutions, and therefore fewer chances for the QUBO solver to find a solution with a smaller fitness value. An analytic
approximation of "expectation of minimum fitness" will be given in section Minimum Fitness Strategy, show that a
promising relaxation parameter balances the weight of objective and feasibility.

Through these observations we arrive at the following Hypothesis: Optimal solutions appear within 0 < Pf < 1, i.e.,
on the slope of the Sigmoid shape. With more experiments we confirm this hypothesis holds true for all instances
in TSPLIB [20] with Fujitsu DA and QAPLIB [21] with SA on CPU. 2 Hence, if one can effectively predict Pf
and objective energy, the parameter optimisation process would be much easier. This is especially useful when the
objective landscape is flat, because conventional parameter optimisation methods cannot effectively find clues from a
flat landscape.

Fortunately, instances of a problems share common structure. For example, a car company has to do vehicle routing in a
city many times a day. A logistic company has to manage [7] allocations in a warehouse repeatedly [8]. For instances of
a problem, the relation between relaxation parameter A, Pf and objective energy are learnable. With these knowledge,
we can select promising parameter values before calling the QUBO solver. The selection of parameter value does not
involve exact-solution-finding process, thus it is much cheaper and faster than using the QUBO solver.

3.2 Network Architecture

Next we describe the network architecture for the surrogate. We have two inputs for the solver surrogate: the problem
instance, denoted as g, and relaxation parameter, denoted as A. A could be a scalar of vector, depending on the number
of relaxation parameter of a problem. Learning from g is tricky because the size of an instance could vary largely. We
use an feature extraction layer that handle problems of different sizes. After the feature extraction, instances of different
sizes are converted into fixed-size feature vectors. The feature vectors, together with the relaxation parameter A, are
passed to a fully connected (FC) layer for further calculation.

We use the surrogate to predict two types of outputs. The first one is the probability of feasibility Pf , which is a
function of g and A. Pf (g,A) is in the range [0, 1]. We can use sigmoid function as the activation of the last layer of
the FC network and use Binary Cross Entropy loss (BCE) to learn Pf (g,A). The other target is to predict fitness, i.e.,
the objective energy of a solution that satisfies the constraints of the original problem. Predicting the fitness is tricky.
When there is no feasible solutions, there will be no fitness available for the instance, and this is problematic for neural
network training. Our workaround is to predict the statistics of QUBO objective energy, Eavg(g,A) and Estd(g,A).
Eavg(g,A) and Estd(g,A) are functions of g and A. Any reasonable loss criteria for regression should work for the
learning these functions. We use Huber loss as we are expecting many outliers in the dataset, due to the stochastic
nature of a QUBO solver. Once we have Pf (g,A), Eavg(g,A) and Estd(g,A), we can calculate the fitness using the
analytical expression given in section Minimum Fitness Strategy. A detailed description of the architecture can be
found in Appendix.

The training workflow of the QROSS is described in the upper part of Fig.2. Given an instance g and a parameter A, we
find the prediction and the ground truth of Pf , Eavg and Estd by QUBO solver and solver surrogate. The difference
between the prediction and the ground truth, i.e., the loss, can be used to train solver surrogate.

1This holds true for classical computers and quantum computers. Please refer to Appendix for detailed explanation.
2We do not examine problems with size over 100 because solving these problems on hardware with limited memory requires

decomposition into smaller problems, which is out of the scope of this paper.

4

QROSS: QUBO Relaxation Parameter optimisation via Learning Solver Surrogates A PREPRINT

Solver
Surrogate

QUBO
Solver

Solver
Surrogate

Parameter
Selection Strategy

(Training) (Inference)

Figure 2: Training and Inference

3.3 Data Preparation

To train the solver surrogate, we prepare a dataset from past instances and solutions of a solver. Because heuristic
QUBO solvers have a stochastic nature, it usually returns a batch of solutions and corresponding objective energy for an
instance g and parameter A. One can check the feasibility of each solution and calculate Pf for the batch. We observed
that the objective energy in a batch usually follows a bell-shaped distribution. Therefore, we use Gaussian sufficient
statistics Eavg(g,A), Estd(g,A), i.e., mean and standard deviation, to characterise the objective energy.

A good coverage of sampling in terms of A helps to improve training. Since the slope of the sigmoid shape is the region
that we are interested in, we make sure that {A | 0 < Pf (g,A) < 1} are well sampled for each problem. Including the
plateau region of the sigmoid shape helps to prevent model overfitting and improves accruacy. Hence, we make sure
that at least a sizable number of samples in {A | Pf (g,A) = 0 or 1} for each problem are included in the dataset.

Data augmentation also helps the training. For example, pre-processing techniques, e.g. shifting or scaling, moves A of
different problems to the same order of magnitude so that learning and prediction become easier. Normalisation helps
the convergence of the training curve. These techniques are applied in our experiments.

3.4 Inference

Next, we describe how to exploit the knowledge in the surrogate. The diagram of the inference is shown in the lower
part of Fig.2. Given an instance g and a parameter A, the solver surrogate predicts Pf , Eavg and Estd. Parameter
selection strategies try different A, until it finds a promising Ã. We propose two offline strategies, which do not need
to call a QUBO solver. Since now we focus on optimising A for one instance g, we drop g and use notation Pf (A),
Eavg(A) and Estd(A) for the sake of simplicity.

3.4.1 Minimum Fitness Strategy

First, we propose Minimum Fitness Strategy (MFS), which attempts to predict the optimal relaxation parameter Ã
that leads to minimum fitness. Given Pf (A), Eavg(A) and Estd(A), with a Gaussian assumption on the conditional
distribution of Eavg(A) and Estd(A) given A, we are able to calculate the expectation of minimum fitness analytically:

E
(
d̄
)
≈
∫ ∞
0

(
1− Φ

(
z;Eavg(A), Estd(A)2

))Pf (A)×B
dz (2)

where E
(
d̄
)

represents the expectation of minimum fitness. Φ is the Cumulative Distribution Function of Gaussian
function. B is the number of soltuions in a batch. (see appendix for the details of derivation and calculation). Therefore

5

QROSS: QUBO Relaxation Parameter optimisation via Learning Solver Surrogates A PREPRINT

the expectation of minimum fitness Dmin can be seen as a function of Pf (A), Eavg(A) and Estd(A). Then, the optimal
relaxation parameter Ã can be found by conventional optimisation method.

We use shgo optimiser from scipy to search parameter search. The search is based on the solver surrogate and does not
involve QUBO solver. The search can be done on the CPU within a few seconds.

3.4.2 Pf -based Strategy

Since Pf provides clue for the location of optimal solution, we can use Pf -based Strategy (PBS) to find promising
parameters. PBS allows customisable parameter search. The equation for searching the parameters is shown as eq.(3)

Ã = argmin
A

|Pf (A)− p| (3)

Here, p is a user-defined parameter representing the desired feasibility probability and Eq.(3) finds parameter A that
corresponds to the desired value. As before, it does not involve QUBO solvers. This strategy is useful for a variety
of application scenarios. For example, if obtaining a feasible solution in one trial is of primary importance and its
objective value is of secondary importance, then p = 90% Would be a reasonable choice. If the user can afford a few
trials for each instance, say 5 trials, one could set p = 90%, 70%, 50%, 30%, 10%, and find the corresponding A for
each instance.

4 Travelling Salesman Problem as A Case Study

The travelling salesman problem (TSP) is a classical combinatorial optimisation problem, where we are given a list of
vertices and their pairwise distances, and we want to visit every vertex exactly once and return to the starting vertex.
The goal is to minimize the distance of the tour, i.e., we want to find the shortest Hamiltonian cycle.

4.1 QUBO Form and Relaxation Parameter

In [22], a QUBO formulation that only involves a quadratic number of terms in the number of cities is proposed.
Without loss of generality, we can focus on the case where the graph is fully connected, as we can always introduce
edges of infinite distances otherwise. We let duv be the distance between city u and city v. We require n2 variables for
an n-city instance. The first subscript of x represents the city and the second indicates the order that the city is going to
be visited at. Let xv,j be the indicator variable that the city v is the j-th city to be visited. Notice that the constraint
implies that this satisfies the permutation condition. The formulation is as follows:

min
x
HB(x) +AHA(x) (4)

where

HB(x) =
∑

(u,v)∈E

duv

n∑
j=1

xu,jxv,j+1 (5)

describes the total distance travelled and

HA =

n∑
v=1

1−
n∑
j=1

xv,j

2

+

n∑
j=0

(
1−

n∑
v=1

xv,j

)2

(6)

describes the constraints to be a feasible cycle.

To find the optimal relaxation parameter A for a TSP instance, conventional methods require a few calls to QUBO
solvers. Meanwhile QROSS is designed to work without calling a QUBO solver. In order to have comparable
experiments, we design an online strategy and evaluate it along with the two offline strategies we proposed in section
Inference.

6

QROSS: QUBO Relaxation Parameter optimisation via Learning Solver Surrogates A PREPRINT

4.2 Online Fitting Strategy for Case Study

Online Fitting Strategy (OFS) exploits results of an instance from QUBO solvers to improves parameter search for the
same instance. As the relation of A and Pf resembles the sigmoid shape shown in Fig.1, We can approach promising
parameter through the process of curve fitting. The ansatz function to fit is:

S(A, θs, θo) =
1

1 + e−Aθs+θo
(7)

where θs and θo represent the scaling and the offset of the sigmoid shapes in the direction of A, respectively. As
more hyper-parameters are evaluated, the parameters θs and θo will be estimated more accurately and facilitates the
hyper-parameter optimisation better. We use Pf (A) and F(A) to represent the ground truth of probability of feasibility
and fitness with respect to A found by a QUBO solver. The pseudo algorithm for the Online Fitting Strategy is listed in
Algorithm 1.

Algorithm 1: Online Fitting Strategy

Result: Near optimal parameter Ã
1 Find approximated Aleft s.t. Pf (Aleft) = 0;
2 Find approximated Aright s.t. Pf (Aright) = 1;
3 while not reach max num of trials do
4 Fit S(A, θs, θo) with history of Pf ;
5 Draw Anext ∼ U (A | 0 < S(A, θs, θo) < 1) ;
6 Evaluate Pf (Anext) and F(Anext);
7 Update Aleft or Aright with Anext if applicable;
8 end
9 Return the best A among history of F;

Line 1 and 2 find the left bound and right bound of {A | 0 < Pf (A) < 1}. The bound does not have to be accurate, as
a QUBO solver has stochastic nature in its results. The approximated left bound can be found by evaluating a sequence
of {A, A2 ,

A
4 , . . .} on the QUBO solver, until Pf (Aleft) = 0 is found. A similar way applies for the right bound. The

offline strategies in section Inference is able to provide good guess of initial A without calling QUBO solvers.

The search for Aleft and Aright forms a history of Pf , i.e., a collection of points {(A0,Pf (A0)), (A1,Pf (A1)), . . .}. The
history of Pf can be used to fit S(A, θs, θo) in Line 4. In Line 5 and 6, A randomly-picked candidate Anext is evaluated
on the QUBO solver to find Pf (Anext) and F(Anext). Then Pf (Anext) will join the history of Pf for the Sigmoid fitting
(Line 4) in the next iteration. The loop terminates when maximum iteration is reached.

5 Experiments

In the experiments we compare QROSS with baseline methods on synthetic and real-world datasets. We evaluate the
generalisation of QROSS on Fujitsu DA and Qbsolv from DWave. 3 All results are summarised in Table 1.

Dataset We construct a synthetic TSP dataset for the experiments. The whole dataset consists of 300 TSP instances
with number of cities ranging from 20-30. The detailed generation method of the dataset is given in the Appendix. We
use 270 instances for training the solver surrogate. The remaining 30 instances are used for testing.

Strategy One can use any of the strategies we proposed depending on application requirements. For the purpose of
benchmarking, we use a mixture of the three strategies in the experiments. The composed strategy is shown as the
following list.

1. Use MFS to proposes the first candidates
2. Then use PBS to proposes the next two candidates {A | Pf (A) = 80% and 20%}
3. Use OFS to proposes more candidates

The candidates proposed by the composed strategy are evaluated on a QUBO solver in sequence. The {A | Pf (A) =
80% and 20%} in the second step is just an example of the usage. One can use other probability setting that suits the
application. The trials in the first two step can be used for curve fitting in the third step.

3For Qbsolv we are using a simulator backend, instead of a true quantum device backend, due to budget limitation.

7

QROSS: QUBO Relaxation Parameter optimisation via Learning Solver Surrogates A PREPRINT

5.1 Comparison with Generic Methods

We compare QROSS with three popular methods on the synthetic dataset for testing. The baseline methods are Bayesian
Optimisation (BO), Tree-structured Parzen Estimator (TPE), and Random Search. We choose BO and TPE because
they are famous for finding optimal solutions with fewer trials. Random Search is also included as a representative of
exhaustive methods.

The optimal relaxation parameters of the instances in the synthetic dataset are all within the range [1, 100]. Therefore
we restrict the exploration of relaxation parameter space to [1, 100] for all baseline methods. BO requires some random
samples before the actual exploration and exploitation. For each instance, we draw 5 random samples from a uniform
distribution U(1, 100), as we are only comparing the quality of the first 20 trials of baseline methods.

3 6 9 12 15 18
Number of trials

0.00

0.02

0.04

0.06

0.08

Op
tim

al
ity

 g
ap

, n
or

m
al

ise
d

Method
QROSS
TPE
BO
Random

Figure 3: Comparison on test instances of the synthetic dataset. X-axis is the number of trials a method has taken.
Y-axis is normalised gap between the near-optimal fitness and the best fitness found so far by a method. The normalised
gap is averaged across all test instances.

Fig.3 shows the comparison between QROSS and baseline methods. The blue solid curve for QROSS outperforms
other baseline methods by at least 5% at the first trial and 2.9% at the third trial. This means MFS and PBS find better
relaxation parameter. We emphasise that the parameters proposed by QROSS so far require no calls to the QUBO
solver, whereas TPE and BO improve the parameters based on the results from the QUBO solver. Then the blue curve
continue to decline gradually and stay below all other curves. This suggests OFS are also working well on the synthetic
dataset. The shade around the curve represents 95% confidence interval. QROSS has a narrower confidence interval,
which suggests that it generalise better to the synthetic dataset than other methods do.

5.2 Performance on A Real-world Dataset

The real-world dataset contains eleven TSP instances from TSPLIB [20]. We exclude TSP instances with number of
cities N >= 90 because decomposition technique is not the focus of this paper. TSP with N <= 14 is also excluded
because they are not challenging enough for QUBO sovlers. We use techniques mentioned in section Data Preparation
to pre-process these instances. Fig.4 shows the comparison. The plot settings are the same as Fig.3.

From Fig.4 we know that the blue curve for QROSS outperforms all other baselines by a large margin of at least 8%
at the first trial and 2.9% at the third trial. We emphasise that the parameters QROSS proposes in the first three trials
require no calls to the QUBO solver. for the rest of trials, QROSS with OFS retains its leading position all the way. The

8

QROSS: QUBO Relaxation Parameter optimisation via Learning Solver Surrogates A PREPRINT

3 6 9 12 15 18
Number of trials

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Op
tim

al
ity

 g
ap

, n
or

m
al

ise
d

Method
QROSS
TPE
BO
Random

Figure 4: Comparison on TSPLIB dataset

Solver Method Synthetic TSPLIB
#3 #20 #3 #20

DA

QROSS 1.7% 0.2% 3.3% 0.2%
TPE 4.6% 1.5% 6.2% 1.4%
BO 4.9% 1.9% 11.2% 5.5%

Random 5.2% 1.4% 13.5% 2.6%

Qbsolv

QROSS 3.8% 0.3% 4.9% 0.4%
TPE 3.3% 2.3% 5.3% 1.5%
BO 5.1% 2.5% 12.7% 6.2%

Random 6.8% 1.6% 15.6% 4.4%
Table 1: Comparison of Optimality Gap, Normalised

95% confidence interval of QROSS suggests that its generalisation on the real-world dataset is as good as these baseline
methods.

We emphasise that the surrogate is trained on a synthetic dataset, which has problem size of 20-30. The problem size
in the real-world dataset is 14-90. QROSS outperforms all baseline methods on this out-of-distribution dataset. This
suggests the knowledge in the previous instances generalise well to instances of different size. In other words, QROSS
benefits from the learned knowledge about general TSP instances.

5.3 Generalisation

We repeat all previous experiments on Qbsolv. The last four rows of Table 1 are based on Qbsolv. We construct the
training dataset using solutions generated by Qbsolv. The rest of the experiment settings are similar to that for DA. In
this experiments QROSS also outperforms all baseline methods on in-distribution and out-of-distribution dataset. This
suggest QROSS generalises well to different QUBO solvers.

9

QROSS: QUBO Relaxation Parameter optimisation via Learning Solver Surrogates A PREPRINT

6 Conclusion

Relaxation parameter optimisation is important for finding optimal solutions in a QUBO problem. Most existing
parameter tuning methods do not exploit knowledge from previous problem instances. In this paper, we frame the
parameter optimisation problem as surrogate model minimisation problem, in which the surrogate is learned from
instances of a problem. We capture the common structure of the problem and produce optimal relaxation parameter
with fewer calls to QUBO solver.

References

[1] Gary Kochenberger, Jin-Kao Hao, Fred Glover, Mark Lewis, Zhipeng Lü, Haibo Wang, and Yang Wang. The
unconstrained binary quadratic programming problem: a survey. Journal of Combinatorial Optimization, 28(1):58–
81, 2014.

[2] Martin Anthony, Endre Boros, Yves Crama, and Aritanan Gruber. Quadratic reformulations of nonlinear binary
optimization problems. Mathematical Programming, 162(1-2):115–144, 2017.

[3] Fred Glover, Gary Kochenberger, and Yu Du. A tutorial on formulating and using qubo models. arXiv preprint
arXiv:1811.11538, 2018.

[4] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of markov chain monte carlo. CRC
press, 2011.

[5] Catherine C McGeoch. Adiabatic quantum computation and quantum annealing: Theory and practice. Synthesis
Lectures on Quantum Computing, 5(2):1–93, 2014.

[6] Maliheh Aramon, Gili Rosenberg, Elisabetta Valiante, Toshiyuki Miyazawa, Hirotaka Tamura, and Helmut G
Katzgraber. Physics-inspired optimization for quadratic unconstrained problems using a digital annealer. Frontiers
in Physics, 7:48, 2019.

[7] Phil Goddard, Susan Mniszewski, Florian Neukart, Scott Pakin, and Steve Reinhardt. How will early quantum
computing benefit computational methods? In Proc. SIAM Annu. Meeting, 2017.

[8] Masataka Sao, Hiroyuki Watanabe, Yuuichi Musha, and Akihiro Utsunomiya. Application of digital annealer for
faster combinatorial optimization. Fujitsu Scientific and Technical Journal, 55(2):45–51, 2019.

[9] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for general
algorithm configuration. In International conference on learning and intelligent optimization, pages 507–523.
Springer, 2011.

[10] J González and Z Dai. Gpyopt: a bayesian optimization framework in python, 2016.
[11] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning

algorithms. Advances in neural information processing systems, 25:2951–2959, 2012.
[12] James Bergstra, Dan Yamins, and David D Cox. Hyperopt: A python library for optimizing the hyperparameters

of machine learning algorithms. In Proceedings of the 12th Python in science conference, volume 13, page 20.
Citeseer, 2013.

[13] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-generation
hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 2623–2631, 2019.

[14] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Satzilla: portfolio-based algorithm selection for
sat. Journal of artificial intelligence research, 32:565–606, 2008.

[15] Yuri Malitsky. Instance-specific algorithm configuration. In Instance-Specific Algorithm Configuration, pages
15–24. Springer, 2014.

[16] Carlos Ansótegui, Joel Gabas, Yuri Malitsky, and Meinolf Sellmann. Maxsat by improved instance-specific
algorithm configuration. Artificial Intelligence, 235:26–39, 2016.

[17] Isabel Cenamor, Tomás De La Rosa, and Fernando Fernández. The ibacop planning system: Instance-based
configured portfolios. Journal of Artificial Intelligence Research, 56:657–691, 2016.

[18] Pascal Van Hentenryck and Laurent Michel. Constraint-based local search. The MIT press, 2009.
[19] Thierry Benoist, Bertrand Estellon, Frédéric Gardi, Romain Megel, and Karim Nouioua. Localsolver 1. x: a

black-box local-search solver for 0-1 programming. 4or, 9(3):299, 2011.
[20] Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA journal on computing, 3(4):376–384, 1991.

10

QROSS: QUBO Relaxation Parameter optimisation via Learning Solver Surrogates A PREPRINT

[21] Rainer E Burkard, Stefan E Karisch, and Franz Rendl. Qaplib–a quadratic assignment problem library. Journal of
Global optimization, 10(4):391–403, 1997.

[22] Andrew Lucas. Ising formulations of many np problems. Frontiers in Physics, 2:5, 2014.
[23] Michael Booth, Steven P Reinhardt, and Aidan Roy. Partitioning optimization problems for hybrid classical.

quantum execution. Technical Report, pages 01–09, 2017.
[24] Daniel Vert, Renaud Sirdey, and Stephane Louise. On the limitations of the chimera graph topology in using

analog quantum computers. In Proceedings of the 16th ACM international conference on computing frontiers,
pages 226–229, 2019.

[25] James H Wilkinson. Error analysis of floating-point computation. Numerische Mathematik, 2(1):319–340, 1960.
[26] John L Gustafson. The End of Error: Unum Computing. CRC Press, 2017.
[27] Rami Barends, Julian Kelly, Anthony Megrant, Andrzej Veitia, Daniel Sank, Evan Jeffrey, Ted C White, Josh

Mutus, Austin G Fowler, Brooks Campbell, et al. Superconducting quantum circuits at the surface code threshold
for fault tolerance. Nature, 508(7497):500–503, 2014.

[28] Rolf Landauer. Is quantum mechanics useful? Philosophical Transactions of the Royal Society of London. Series
A: Physical and Engineering Sciences, 353(1703):367–376, 1995.

[29] Adam Pearson, Anurag Mishra, Itay Hen, and Daniel A Lidar. Analog errors in quantum annealing: doom and
hope. NPJ Quantum Information, 5:1–9, 2019.

[30] Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network technique for
the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

[31] Shoma Miki, Daisuke Yamamoto, and Hiroyuki Ebara. Applying deep learning and reinforcement learning to
traveling salesman problem. In 2018 International Conference on Computing, Electronics & Communications
Engineering (iCCECE), pages 65–70. IEEE, 2018.

[32] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial optimization
algorithms over graphs. In Advances in Neural Information Processing Systems, pages 6348–6358, 2017.

[33] Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuristics for solving
the travelling salesman problem. arXiv preprint arXiv:1912.05784, 2019.

[34] Michael Held and Richard M Karp. The traveling-salesman problem and minimum spanning trees. Operations
Research, 18(6):1138–1162, 1970.

[35] Shengbin Wang, Weizhen Rao, and Yuan Hong. A distance matrix based algorithm for solving the traveling
salesman problem. Operational Research, pages 1–38, 2018.

11

QROSS: QUBO Relaxation Parameter optimisation via Learning Solver Surrogates A PREPRINT

A Ablation Study

In our experiments, QROSS works well with DA and Qbsolv solver because it is trained on dataset generated by Fujitsu
DA [8] and Qbsolv [23] from DWave respectively. Next we cross these experiments, i.e., train QROSS on DA-based
dataset and test it on Qbsolv, to check if it is something else other than the knowledge in the dataset helps QROSS to
outperform all baseline methods. The experiment is carried out on the 30 testing instances of the synthetic dataset. The
comparison is shown in Fig.5.

3 6 9 12 15 18
Number of trials

0.00

0.02

0.04

0.06

0.08

Op
tim

al
ity

 g
ap

, n
or

m
al

ise
d

Method
QROSS
TPE
Solver
Digital Annealer
Qbsolv

Figure 5: Comparison between QUBO Solvers. All blue curves are for QROSS that trained on DA-based dataset. The
blue solid curve is tested with DA, whereas the blue dashed curve is tested with Qbsolv.

We know from Fig.5 that the optimality gap achieved by QROSS on Qbsolv is larger than TPE achieves on Qbsolv.
This is because Fujitsu DA and Qbsolv work differently, the knowledge from DA would not be able to generalise to
Qbsolv. The performance lag is what we expected for the ablation study.

B The choice of Penalty Weight

Due to the limitation of manufacturing and computation technique, the quantum computers and classical computers
we have today are not oracle computers. Errors in these computers could spoils the solutions they produced. In the
context of QUBO problem, the choice of penalty weight is critical to the quality of the solutions. We use Minimum
Vertex Cover (MVC) problem to demonstrate the vulnerability of classical computers and quantum computers to large
penalty weights.

B.1 Introduction to Minimum Vertex Cover (MVC)

The MVC problem is a classical NP-hard optimisation problem. Given an undirected graph with a vertex set V and
an edge set E, a vertex cover is a set of vertices such that every edge of the graph has at least one endpoint in this
set. A minimum vertex cover is the vertex cover of the smallest size. A standard optimisation model for MVC can
be formulated as follows. Let vj = 1 if vertex j is in the cover (i.e., in the subset) and vj = 0 otherwise. Then the
standard optimisation model for this problem is:

Minimize
∑
j∈V

uj

12

QROSS: QUBO Relaxation Parameter optimisation via Learning Solver Surrogates A PREPRINT

subject to
ui + uj ≥ 1, ∀(i, j) ∈ E

. The constraints ensure that at least one of the endpoints of each edge will be in the cover and the objective function
seeks to find the cover using the least number of vertices.

The constraints in the standard MVC model can be represented by a penalty of the form σ · (1− ui − uj + uiuj). A
QUBO form for MVC is

Minimize
∑
i∈V

ui + σ
∑

(i,j)∈E

(1− ui − uj + uiuj)

where σ represents a positive scalar penalty. A common extension of this problem allows a weight wi to be associated
with each vertex i. The QUBO form for the weighted minimum vertex cover problem is

Minimize
∑
i∈V

wiui + σ
∑

(i,j)∈E

(1− ui − uj + uiuj)

The choice of σ is application specific. For example, if wi = 1, σ = 2, adding every additional vertex into a minimum
vertex cover will increase the objective energy by three. Removing every vertex from a minimum vertex cover will
increase the objective energy by one. Theoretically, any σ > max(wi) would ensure that a solver can find feasible
solutions to the weighted MVC problem.

B.2 Quantum and Simulated Annealer on MVC

We are using Quantum Annealer DW_2000Q [24] from DWave (qa) and Simulated Annealing on CPU (sa) in this
experiment. The MVC problem instances are randomly generated graphs with 65 nodes and 50% probability of
connections between any pair of nodes. 4 Fig. 6 shows the relation between penalty weight A and normalised objective
energy for a MVC problem on DWave DW_2000Q and Simulated Annealing on a classical computer.

100 101 102 103 104

Penalty weight

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

En
er

gy
 n

or
m

al
ise

d
to

 o
pt

im
al

SA
QA

Figure 6: Penalty weight v.s. energy normalised. X axis is the penalty weight in log scale. Y axis is the objective energy
normalised to the minimum energy state discovered in a run of the experiment. The result is an average over 4 runs for
different random seeds. qa is DWave quantum annealer DW_2000Q. sa is simulated annealing on classical computer.
The MVC problem instances are randomly generated graphs with 65 nodes and 50% probability of connections between
any pair of nodes. The weights of nodes are random numbers following uniform distribution over [0, 1).

4The number 65 comes from the restrictions of chimera architecture from DWave. The biggest complete graph that can be
mapped onto chimera architecture has 65 nodes. In order to ensure a randomly generated graph can be mapped onto the chimera
architecture, the number of nodes is set to 65 for our experimental setting.

13

QROSS: QUBO Relaxation Parameter optimisation via Learning Solver Surrogates A PREPRINT

From Fig.6 we understand that the objective energy increases along with the increase of penalty weight. Although this
is true for both QA and SA, the reason behind the phenomenon is different for them.

For classical computers, one of the reason is due to the limited range and precision of the numbers and error in floating
point operations [25]. The widely used double precision floating point numbers has floating point error in the calculation
could accumulates and spoils the results. The floating point error problem is especially prominent when the penalty
term dominates the objective energy, as demonstrated in Fig.6. Fujitsu DA uses FP64. We have similar observation in
the main body of the paper as well. The workaround is to tune the penalty weight to mitigate the issue, which one of
main focus of this paper. The other is to use Unums representation [26] in the cost of additional hardware/software
complexity.

The choice of penalty weight is critical to Quantum computers as well. The imperfections in the quantum hardware is
one of the reasons to the degradation in the quality of solutions. More specifically, all physical implementations of
quantum computers suffer from analog control errors, in which the coefficients of the Hamiltonian implemented differ
from those intended. [27] If the penalty term dominates the Hamiltonian, the objective of the original problem could
be overwhelmed by the analog control error. The analog control error threatens to spoil the results of computations
due to the accumulation of small errors. This problem was recognized early on in the gate model [28] and later in the
annealing based model [29].

C Feature Extraction

In order to learn the common structure of problem instances, we employ deep neural network as it is able to extract
feature related to the task in an automatic way. The following literature focus on feature extraction for Traveling
Salesman Problem, which is taken as a case study in this paper.

[30] uses deep Graph Convolutional Networks to build TSP graph representations and output tours in a non-
autoregressive manner via beam search algorithm. The representations in [30] is the probability of each edge being in
the route of the optimal solution. [31] approaches this edge-level features from a different route. [32] and [33] uses
reinforcement learning technique to facilitate the heuristic search processing for TSP.

These methods aim to estimate solutions and/or objective energies, whereas QROSS is for relaxation parameter tuning.
We apply the feature extraction technique in [30, 31] to capture the common structure shared by TSP.

D TSP Problem Generation

To create augmented data set, We use uniform distribution and exponential distribution as our random number
generators to create the coordinates of the cities. The parameter for the exponential distribution is generated from
uniform distributions over a range. The uniform distribution is generated on a bounded domain. After we generated the
coordinate data, we then compute the corresponding Euclidean distance.

E TSP problem pre-processing and post-processing

In [34], it is shown that by changing the distance matrix,

d′ij = dij − πi − πj ,
, an optimal tour corresponding to the original distance matrix is also the optimal tour for the updated distance matrix.
In [35], Minimizing the Variance of Distance Matrix (MVODM) is proposed where πi is chosen such that the resulting
distance matrix has minimal variance. It is shown empirically that such procedure improve greedy search algorithm.
We perform such pre-processing to our distance matrix.

After we solve the TSP instance using the solver, we use the original distance matrix to compute the original distance of
the original Hamiltonian cycle.

F Calculate Expectation of Minimum Fitness

Suppose the number of solutions in a batch is B for a given problem instance g and a relaxation parameter A, the
number of feasible solutions in the batch is:

m = Pf (A)×B (8)

14

QROSS: QUBO Relaxation Parameter optimisation via Learning Solver Surrogates A PREPRINT

Let di represent the ith feasible solution in a batch, d̄ is the minimum fitness in batch, then

d̄ = min(d0, d1, . . . , dm) (9)

We define the expectation of minimum distance Dmin (·) as a function of Pf (A), Eavg(A) and Estd(A):

E
(
d̄
)

= Dmin (Pf (A), Eavg(A), Estd(A)) (10)

where E stands for expectation operator. All the input of eq.(10) can be obtained from the output of the surrogate model.
Next we are going to find the analytical expression to estimate the expectation of minimum fitness. We use Φ (z) to
represent the probability of a fitness di in a batch of replicas being smaller than a given value z:

Φ (z) = P (di < z) (11)

Then we have the analytical expression of P (di > z) and P
(
d̄ < z

)
:

P (di > z) = 1− Φ (z) (12)

P
(
d̄ < z

)
= 1− (1− Φ (z))

m (13)

The expectation of d̄ can be expressed by:

E
(
d̄
)

=

∫
z
∂P
(
d̄ < z

)
∂z

dz (14)

The fitness (d0, d1, . . . , dm) are non-negative random variables, which means eq.(14) could be approximated as:

E
(
d̄
)
≈
∫ ∞
0

1− P
(
d̄ < z

)
dz (15)

The exact distribution of di is unknown. We observed in our experiments that the distribution is a bell shape in most of
cases. Therefore, we assume the di follows Gaussian distribution, which can be expressed in the following equation:

(d0, d1, . . . , dm) ∼ N
(
Eavg(A), Estd(A)2

)
(16)

Then Φ could be expressed as the cumulative density function of the Gaussian distribution:

Φ = CDF
(
Eavg(A), Estd(A)2

)
(17)

One can plug eq.(17) into eq.(15) to calculate the expectation of minimum fitness. Please note that when Pf is very
close to zero, there is no feasible solutions in a batch of replicas. the calculation of P

(
d̄ < z

)
would be meaningless.

We set limPf→0 Dmin = +∞. Lastly we can solve the following equation using off-the-shelf optimiser to find the
optimal hyper-parameter Ã:

Ã = argmin
A

Dmin(Pf (A),Eavg(A),Estd(A)) (18)

G Surrogate model

The structure of the neural network is shown in Fig.7. It takes two inputs: 1. a problem instance g; 2. a relaxation
parameter A. It predict probability of feasibility Pf , statistics of objective energy Eavg and Eavg , as functions of g and
A.

g goes through feature extraction first. The choice of the feature extraction layer depends on the representation of a
problem. Possible choices are convolutional networks for matrix representations, graph convolutional networks for

15

QROSS: QUBO Relaxation Parameter optimisation via Learning Solver Surrogates A PREPRINT

Neural
Network

Feature
Extractor

Feature
vectorsProblem,

denoted as g

Relaxation
Parameter,

denoted as A

Figure 7: The structure of solver surrogate

graph representations or recurrent networks for sequential representations. Good examples for TSP are [30, 31], in
which the authors take adjacency matrix of TSP as fully connected graph and apply graph convolutional neural network
to extract features.

Our experiments are based on the pre-trained model for feature extraction in [30]. The edge-level features cannot be
directly applied in our case. Still, we can aggregate the edge-level features into graph-level ones, which is what we
needed for QROSS method.

Then the feature vectors of g, together with the A, goes into fully connected layer for prediction. Since the nature of Pf
is different from that of Eavg and Estd, we train these target separately. We use Binary Cross Entropy (BCE) loss for
Pf and use Huber loss for Eavg and Estd.

H Comparison Between QUBO Solver and Solver Surrogate

Constrained
Combinatorial
Optimization
Problem

Relaxation
Parameter

QUBO
Solver

Solution

Solver
Surrogate

in
QROSS

Objective
Energy

(a)

(b)

Objective
Energy

Feasibility

QUBO

Constrained
Combinatorial
Optimization
Problem

Relaxation
Parameter

Figure 8: Comparison between a QUBO solver and the solver surrogate in QROSS

Fig.8 compares a QUBO Solver and the Solver Surrogate in QROSS. A QUBO solver finds exact solutions, given a
QUBO problem. The surrogate does not find exact solutions. Instead, it predicts the Pf and objective energy. Because

16

QROSS: QUBO Relaxation Parameter optimisation via Learning Solver Surrogates A PREPRINT

the prediction is much cheaper than the solution-find process in terms of time and energy, QROSS is able to find
promising parameters.

17

	1 Introduction
	2 Related Work
	3 The QROSS Method
	3.1 Motivation
	3.2 Network Architecture
	3.3 Data Preparation
	3.4 Inference
	3.4.1 Minimum Fitness Strategy
	3.4.2 Pf-based Strategy

	4 Travelling Salesman Problem as A Case Study
	4.1 QUBO Form and Relaxation Parameter
	4.2 Online Fitting Strategy for Case Study

	5 Experiments
	5.1 Comparison with Generic Methods
	5.2 Performance on A Real-world Dataset
	5.3 Generalisation

	6 Conclusion
	A Ablation Study
	B The choice of Penalty Weight
	B.1 Introduction to Minimum Vertex Cover (MVC)
	B.2 Quantum and Simulated Annealer on MVC

	C Feature Extraction
	D TSP Problem Generation
	E TSP problem pre-processing and post-processing
	F Calculate Expectation of Minimum Fitness
	G Surrogate model
	H Comparison Between QUBO Solver and Solver Surrogate

