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Abstract—The InterPlanetary File System (IPFS) is a popular
decentralized peer-to-peer network for exchanging data. While
there are many use cases for IPFS, the success of these use
cases depends on the network. In this paper, we provide a
passive measurement study of the IPFS network, investigating
peer dynamics and curiosities of the network. With the help of
our measurement, we estimate the network size and confirm the
results of previous active measurement studies.

Index Terms—Network Measurement, IPFS, P2P Networks

I. INTRODUCTION

In the last years, new peer-to-peer (P2P) data networks
emerged, providing new opportunities for distributed and de-
centralized storage and exchange of files [1]. A prime example
is the InterPlanetary File System (IPFS) [2]. By combin-
ing ideas from BitTorrent, Kademlia, Git, and information-
centric networking, IPFS has become a major supplement for
distributed storage solutions. IPFS is often combined with
blockchains serving as off-chain storage [3, 4, 5]. Furthermore,
IPFS is the originator and a major user of the libp2p library [6],
which could become a quasi-standard for P2P communication.

In this paper, we take a look at a key component of IPFS:
the P2P network. Our goal is to gain a better understanding
of the dynamics of the IPFS network, with the help of passive
measurements. In particular, the churn rate is an important
aspect for identifying possible protocol and configuration
weaknesses. Furthermore, we investigate changes in peer roles
and are interested in finding an answer to a seemingly simple
question: How large is the IPFS network? In contrast to
active measurement, e.g., crawler [7, 8], which might influence
a peer’s connection limit, triggering connection trimming,
passive measurements are less intrusive. Due to the usage
of the libp2p library, insights in the IPFS network might be
applicable to other P2P projects as well.

By deploying two passive measurement clients (go-ipfs,
hydra-booster), we record basic information about the net-
work’s characteristics. We perform multiple short-term mea-
surements, spanning a period of 1 d to 3 d in December 2021.
Concerning the network dynamics, we found that the default
configuration, which defines certain thresholds for connection
trimming, causes a high connection churn rate for DHT-
Servers, resulting in very short-lived connections. While the
client did not have more than ≈ 16k simultaneous connections,
the client established connections to 40k–65k different peer
IDs (PID). This indicates either a high amount of nodes with
changing PIDs, very volatile nodes, or many one-time users.

The meta data of PIDs remains mostly constant. Naturally,
the client version changes over time due to the appearance of
new versions, however, we observed up- and downgrades. A
small part of the PIDs changes their role in the network, by
switching from a DHT-Server to a DHT-Client and vice versa.
We also identified some anomalies, e.g., go-ipfs clients not
supporting Bitswap or an Ethereum client.

With our passive measurement study, we contribute a novel
perspective on IPFS peer dynamics that we utilize to approx-
imate the network size. To this end, we explore two methods:
distinguishing peers based on meta data and classifying peers
based on their connection behavior. As a result, we conclude
that during our measurement period the network consisted of
roughly 48k peers. Based on the classification the core network
of IPFS has at least a size of 10k nodes. With our results,
we can also confirm the general observations of the overlay
network made by Henningsen et al. [9].

The remainder is structured as follows. In Section II, we
give a brief overview of related work. The measurement
method and setup is described in Section III. We present an
overview of the measurement results in Section IV, before at-
tempting to estimate the network size in Section V. Section VI
concludes the paper and shows our future research direction.

II. RELATED WORK

There exists some literature evaluating IPFS metrics, e.g.,
Bitswap [10] or in general I/O performance [11]. Here, we
focus mainly on paper investigating the IPFS P2P network.
Guidi et al. [12] investigated the data persistence mechanisms
and made a similar analysis about origin, distribution, and
usage of transport protocol of peers. Prünster et al. [13]
analysed an earlier version of the IPFS client software identi-
fying the libp2p’s connection manager’s scoring system as a
potential vulnerability, allowing a Sybil attack. The presented
attack is mitigated in later versions (≥v0.5). Balduf et al. [14]
investigate the nature and information of Bitswap messages,
focusing on content privacy. Henningsen et al. [9] estimated
the size of the network and structure of the overlay network.
The authors first get an impression of the default behavior
with passive measurements and compare the results with
results from a developed crawler [7]. They further report peer
distribution, and uptime of peers. The measurements of the
developed crawler is ongoing and the results are publicly
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available1. Another crawler monitoring peer availability and
liveness is the libp2p DHT “Nebula Crawler” [8].

Our passive measurement study is similar to the passive
method of [9]. Through our measurements we can confirm
their results and provide a more recent and closer look at peer
dynamics. Furthermore, due to the passive approach of the
measurement, we provide a different perspective on the IPFS
network compared to different ongoing active measurements.

III. MEASUREMENT SETUP

In general, a network can be measured actively or pas-
sively. In an active measurement, probing packets are sent
to participants in the network. While this allows for detailed
information on nodes at almost any time, it can disrupt normal
node behavior. A passive measurement records data without
creating additional or modified traffic in the network. Due to
the decentralized nature of a P2P network, the horizon, i.e.,
the amount of reachable nodes at a time, is limited: there
is no node which knows the exact amount of nodes in the
network. While active nodes aggressively try to maximize their
horizon by seeking peers, the passive nodes’ horizon is mainly
dependent on its neighbors. Fig. 1 visualizes the different net-
work perspectives. In case of IPFS, active measurements like
crawlers, which explore and search the Kademlia-based DHT,
only gain information about peers actively participating in the
DHT (DHT-Server). A passive measurement can potentially
see all peers independent of their participation in the DHT
routing, which also includes clients (DHT-Client). The horizon
of a “normal” node, e.g., go-ipfs, also depends on its position
in the DHT, which determines the priority of other nodes to
maintain or establish a connection to the node. Special nodes,
e.g., Hydras, can establish multiple identities providing the
node with a broader horizon.

Passive measurements are a common method for gaining
an understanding of peer-to-peer networks [15, 16]. The basic
procedure of a passive measurement is the same for any
P2P network. A node conforming to the protocols behavior
is deployed. This measurement node itself behaves normally,
i.e., answering requests. At most a node tries to establish and
maintain as many connections as possible, with the goal to
ideally connect to all nodes in the network. Internally, the
node records data about the network.

For our measurement, we deployed two different measure-
ment nodes on a VM hosted in Hesse, Germany by Google
Cloud. The VM had 32GB RAM, 8 cores, Intel(R) Xeon(R)
CPU @ 2.20GHz, and Ubuntu 21.10. as the operating sys-
tem (OS). During the measurement the VM had a public IPv4
address and was not externally reachable via IPv6. Toward
the outside, the measurement nodes were a go-ipfs v0.11.0-
dev2 and a hydra-booster v0.7.4 node. The clients were mostly
deployed simultaneously on port 4001 for go-ipfs and started
by port 3001 for hydra-booster. Additionally, we deployed
another go-ipfs v0.13.0-dev3 on a different VM reachable via

1https://trudi.weizenbaum-institut.de/ipfs crawler.html (2022-05-30)
2Commit: 0c2f9d5950c4245d89fcaf39dd1baa754587231b
3Commit: b2efcf5ce3bba997997962122f85d12500962927

Hydra0

Hydra1

go− ipfs

DHT-Client DHT-Server Measurement

Fig. 1. Illustration of network horizons for passive measurements with
different measurement clients: go-ipfs with a single identity and Hydra with
multiple simultaneous identities.

TABLE I
OVERVIEW AND DURATION OF THE MEASUREMENT PERIODS. USED

VERSIONS: GO-IPFS V0.11.0-DEV/V0.13.0-DEV (P3), HYDRA V0.7.4

Period Measurement Duration Low High go-ipfs Hydra

P01 2021-12-03 – 2021-12-06 600 900 Server –
P02 2021-12-03 – 2021-12-06 1.2k 1.8k – 3
P1 2021-12-09 – 2021-12-10 2k 4k Server 2
P2 2021-12-13 – 2021-12-14 18k 20k Server 2
P3 2022-02-16 – 2022-02-17 18k 20k Client –
P4 2021-12-10 – 2021-12-13 18k 20k Server –

IPv4 and IPv6. This VM had 16GB RAM, 8 cores, Intel(R)
Xeon(TM) CPU 3.20GHz, and Debian 9 as the OS.

We conducted five measurements with durations between
≈ 1 d and ≈ 3 d. Between the measurement periods, we
adjusted LowWater and HighWater values of the connection
manager to reduce connection trimming. Connections are
selectively trimmed to the LowWater value, once the number
of simultaneous connections reaches the HighWater threshold.
An overview of the measurement periods and the used con-
figuration is provided in TABLE I.

A. Go-IPFS

Go-ipfs refers to the go reference client4 maintained by
Protocol Labs. The reference client is open source and can
be deployed by anyone to join the IPFS network or build a
private IPFS network. It supports a wide range of functions to
exchange and distribute data.

The client is started utilizing the default configuration, a
random 2048 bit key, and a temporary repository. Neither key

4https://github.com/ipfs/go-ipfs (2022-05-30)

https://trudi.weizenbaum-institut.de/ipfs_crawler.html
https://github.com/ipfs/go-ipfs


nor repository persisted over different measurement runs. For
the measurements only the LowWater and HighWater values
of the swarm connection manager were adjusted.

After the initial bootstrap, no further user activity was
introduced such as actively connecting to specific peers or
requesting data. During the deployment every 30 s peer and
connection data was recorded and updated. It recorded for
the PID of all known peers in the Peerstore, agent version,
protocols, and multiaddresses. Furthermore, changes to the
information were recorded with a timestamp. Additionally, in-
formation of all PeerHost connections per connection-id, e.g.,
direction, multiaddress, opened, connectedness were checked.
The whole information was exported periodically to a json-file.

The go-ipfs client can be deployed as a DHT-Server or DHT-
Client, determining its participation in the Kademlia-based
DHT routing. Depending on the setting the clients significance
in the network changes. Other nodes rather connect and main-
tain a connection to a DHT-Server since the node can answer
routing requests and is detectable via the DHT. Due to the
Kademlia-based DHT peers actively seek a connection with
the measurement node. The view of a single node, however,
is limited due to its location based on the PID.

B. Hydra-booster

Hydra-booster, in the following Hydra, refers to a node type
designed to accelerate IPFS content provision and routing5.
The node’s main purpose is the provision and collection of
DHT records by deploying multiple “heads”, which provide
basic networking functionality and DHT management, and
the same “belly” for storing records. The heads of the Hydra
have different PIDs, allowing the heads to be responsible for
different parts of the DHT.

For our measurement, we added two new PeriodicTasks to
the Hydra, to update and export measurement data. The client
was configured to record and update peer data every 1min.
The Hydra recorded each head’s known PIDs in the Peerstore,
agent version, protocols, and multiaddresses. Furthermore,
changes to the information were recorded with a timestamp.
Additionally, during a connection and disconnection event
information about the connection, e.g., duration, timestamp,
and direction was logged. All information was periodically
exported to a json-file.

Due to the nature of the Hydra, the node is a DHT-Server
participating in the Kademlia-based DHT routing. Since every
head is located in a different location of the DHT, the Hydra
can cover a broader range of the network, increasing its range
by increasing the number of heads. As indicated in Fig. 1,
a head’s view on the network is not distinctly different from
other heads and peers might be observed by multiple heads.

C. Measurement Horizon

As previously mentioned, passive measurements can have
a limited view on the network. To determine if our passive
measurement covers a sufficient range of the network, we

5https://github.com/libp2p/hydra-booster (2022-05-30)
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Fig. 2. Comparison of the number of peers for active and passive measure-
ments. Showing the number of DHT-Server PIDs (solid) and total PIDs (whole
bar) for the passive measurement and a range of min. (solid) and max. (whole
bar) PIDs for the active measurement.

compare our measurement results with public crawler results6

(WB Crawler). Fig. 2 shows the total number of observed PIDs
(whole bar) and the number of identified DHT-Server nodes
(solid) for our passive approaches and an active crawler. Since
crawls are executed every 8h, the crawler reports varying
number of nodes. We therefore decided to show the results
as a range with the reported min. (solid) and max. (whole
bar) values. The number of PIDs for the Hydra are the union
of all heads. It should be noted that the crawler can only
see DHT-Server nodes and our measurement node can only
determine if a node is a DHT-Server, if protocol information
were exchanged between the nodes.

In order to get a complete view of the network, we should
deploy multiple vantage points. Therefore, we expect to see
the least amount of nodes with the go-ipfs client, more clients
with the hydra, and almost all nodes with the crawler. If we
compare the numbers, we can see that for the measurement
periods lasting more than 1 d the passive nodes see more DHT-
Server nodes than the crawler. For the measurement periods of
1 d the Hydra sees more than the go-ipfs client. The crawler
sees a similar amount of PIDs as the Hydra with two heads.
In P0 with three heads, the amount of nodes seen by the
Hydra is much higher. One explanation for the difference are
disappearing nodes. The crawler provides a fresh snapshot
of the network and does not consider results of previous
runs. When peers remove a node’s DHT entry, the crawler
cannot gain information about the node, even though it was
previously seen. Our passive measurement node provides a
historic snapshot, keeping the record of all nodes once seen
over time independent of their activity.

In general, the numbers show a similar range of PIDs. It
therefore seems that one passive measurement node is enough
to reach a reasonable sample of DHT-Server nodes. Assuming
that the crawler covers most of the network and considering
the results shown by the Hydra, two measurements nodes with
strategically placed keys should be sufficient to cover almost

6https://trudi.weizenbaum-institut.de/ipfs crawler.html (2022-05-30)

https://github.com/libp2p/hydra-booster
https://trudi.weizenbaum-institut.de/ipfs_crawler.html


the whole network. The geolocation of the measurement nodes
should not have an influence on the number of seen nodes
as IPFS does not enforce any geographic clustering of nodes.
However, it is possible that the geolocation of the measurement
node has an influence on the peer dynamics like connection
churn.

IV. PEER DYNAMICS

In this section, we take a closer look at peer dynamics.
We investigate connection churn with the measurement data
from periods P0 – P3. P4 which has a longer duration
covers observations of data directly related to the peers. In
the following, we distinguish peers based on their PID.

A. Connection Churn
To investigate connection dynamics, we conducted different

measurements with different Low-/HighWater values. Please
note, that due to our measurement setup in go-ipfs the con-
nection information is only refreshed every 30 s and the real
values should be slightly smaller than shown. All connections
still active at the end of the measurement are considered to be
closed at that moment and are included in the statistics. An
overview of the results of the different measurement values can
be seen in TABLE II. In the statistic, we consider only peers
with recorded connection information. Type “All” means that
the results represent all connections from all peers, meaning
that some peers provide multiple values. Type “Peer” means
that the results are calculated over the average connection
duration of each peer, giving each peer exactly one value.

Overall, the measurements show similar results for the go-
ipfs DHT-Server and Hydra, except for P0 where the peer
average is much lower compared to the Hydra value. This
exception could be explained by the difference of the default
LowWater and HighWater values. For the go-ipfs DHT-Client
in P4, we see overall short connection durations.

We observe rather low connection durations lasting in
general only a few minutes up to 1h. The lower average value
of all connections indicates peers initiating many short lasting
connections. An example for such peers are crawlers, which
connect to a node query their information, e.g., DHT buckets
and then close the connection.

The increase of the connection duration between measure-
ment periods indicates, however, that more connections are
closed due to connection trimming than due to nodes leaving
the network. Taking a closer look at the connection type, we
observe vastly more inbound than outbound connections. In all
periods, the duration of inbound connections is longer than the
duration of outbound connections, which confirms the assump-
tion that the connections are mainly closed due to connection
trimming. With higher threshold values, the measurement node
no longer trims its own connection, however, the connection
still gets trimmed by the other nodes which most likely use
the default threshold values.

B. Meta Data
To increase the versatility and for a better understanding

of the roles of specific nodes, nodes reveal information about

TABLE II
CONNECTION STATISTICS FOR THE THREE MEASUREMENT PERIODS.

Period Type Sum Avg. Median

go-ipfs
P0 All 1’285’513 196.556 s 73.732 s
P0 Peer 55’258 695.946 s 83.008 s
P1 All 355’965 802.617 s 130.464 s
P1 Peer 41’880 2′428.966 s 580.312 s
P2 All 285’357 3′883.828 s 85.404 s
P2 Peer 42’038 19′676.930 s 3′017.252 s
P3 All 47’571 120.613 s 75.192 s
P3 Peer 10’004 182.043 s 72.964 s

Hydra H0
P0 All 1’733’511 302.257 s 78.833 s
P0 Peer 56’465 2′445.300 s 124.226 s
P1 All 422’164 660.900 s 76.530 s
P1 Peer 43’550 2′512.923 s 541.492 s
P2 All 416’711 2′941.519 s 65.181 s
P2 Peer 52’134 16′553.299 s 1′923.119 s

Hydra H1
P0 All 1’851’308 285.506 s 78.204 s
P0 Peer 64’147 2′122.097 s 117.375 s
P1 All 538’366 524.595 s 77.110 s
P1 Peer 43’810 2′099.077 s 439.847 s
P2 All 408’621 3′003.313 s 65.339 s
P2 Peer 48’889 18′049.269 s 2′365.113 s

Hydra H2
P0 All 1’890’556 280.438 s 79.585 s
P0 Peer 63’981 1′883.970 s 113.643 s

themselves, e.g., agent version, supported protocols, and reach-
able multiaddresses. This information can be used to, e.g.,
identify DHT-Server nodes. It can also be used to estimate
node behavior and identify anomalies.

From the data set, we observe overall 323 different agent
strings and 101 different supported protocols. Fig. 3 and Fig. 4
show the occurrences of the different agents and protocols. For
a better overview, agents used by 100 or less and protocols
supported by 300 or less are grouped as other. The go-ipfs
versions are grouped by their version number. From the 323
different agent strings 263 are different versions of go-ipfs and
61 are other agent strings. Overall from the 65’853 known
PIDs, 50’254 claim to use some sort of go-ipfs version, 1’028
are Hydra nodes, 586 are some kind of crawler, 10’926 use a
different agent, and from 3’059 no version string was obtained.
One of the agents claimed to be a go-ethereum node.

However, agents are prone to change. During the three days,
we could observe some version changes, mainly affecting go-
ipfs clients. Surprisingly, we could identify not only upgrades
but also downgrades. An overview of the version changes can
be seen in TABLE III. As an upgrade, we define an increase in
the version number. A downgrade is, therefore, a decrease in
the version number. A change is indicated by a change of the
commit part of the go-ipfs version string. A dirty version is
a version, containing changes from the release’s main version
as indicated by the commit message, e.g., our used go-ipfs
versions are dirty versions. The version of agents other than
go-ipfs did not change in the observed time period. Once the
agent changed from a non-go-ipfs agent to a go-ipfs agent.



m
is

si
ng

0.
10

.0
0.

11
.0

0.
11

.0
-d

ev
0.

4.
21

0.
4.

22
0.

4.
23

0.
5.

0-
de

v
0.

6.
0

0.
7.

0
0.

8.
0

0.
9.

0
0.

9.
1

an
t/0

.2
.1

/f
e0

27
af

go
-q

kfi
le

/0
.9

.1
/

hy
dr

a-
bo

os
te

r/
0.

7.
4 io
i

ip
fs

cr
aw

le
r

ne
bu

la
-c

ra
w

le
r

ot
he

r
st

or
m

102

103

104

Agent

N
um

be
r

Fig. 3. Occurrences of the different agent version strings.
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The announced agent can be used as an indicator, for
peers’ behavior. This should be further distinguishable by
the announced protocol. Almost all of the clients support
the basic IPFS protocols like ipfs/id and ipfs/ping. A few
custom protocols are used by only a distinct number of peers.
Surprisingly, only 44’463 support ipfs/bitswap when 50’163
use go-ipfs. There are 7’498 go-ipfs v0.8.0 clients which do
not support Bitswap and instead support sbptp, a protocol,
which is otherwise only supported by storm nodes. Further-
more, libp2p/circuit/relay is support by almost all clients. The
ipfs/kad protocol, which should indicate an IPFS DHT-Server,
is supported by 18’845 peers.

The combination of agent version and supported protocol
can be used to detect unusual behavior. In case of curiosities
like a go-ipfs agent, which does not support ipfs/bitswap,
it reveals information about the configuration or reveals an
attempt to hide potentially malign agents, e.g., storm nodes,
identified to be part of a botnet [17].

During normal operation, we do not expect a change in the
announced supported protocols, except when the used client

TABLE III
OVERVIEW OF GO-IPFS VERSION CHANGES.

Version Type

Upgrade 218 main–main 291
Downgrade 107 dirty–main 9
Change 205 main–dirty 5

dirty–dirty 225

changes. In general, only a few nodes changed their supported
protocols. However, we observed many changes concerning
/ipfs/kad/1.0.0 and /libp2p/autonat/1.0.0. 2’481 peers changed
in sum 68’396 times their support announcement of the
/ipfs/kad/1.0.0 protocol switching their roles from a DHT-
Server to DHT-Client. 3’603 peers changed in sum 86’651
times their support announcement of /libp2p/autonat/1.0.0.
While autonat is not a crucial feature, switching roles from a
DHT-Server to a DHT-Client could have a negative influence
on the network, e.g., due to many control messages.

While the meta data is useful for the operation of the
network, it shows potential for misuse. Due to the almost
homogeneous distribution of agent versions and supported
protocols, exotic combinations or exotic names could be used
to re-identify or track specific peers independent of their PID.
Furthermore, the meta data seems to be rather constant, which
means that this information could be further utilized for peer
identification. However, long term observations are necessary
to confirm or deny this assumption.

V. NETWORK SIZE

Previously, we differentiated peers by their PID. Therefore,
the network size would be equal to the number of PIDs.

Looking at the number of PIDs in TABLE II, we see
between 40k–65k peers. Since the position in the network
and the day of the measurements vary, it is plausible that the
number of peers vary as well. However, looking at the number
of simultaneous connections provides a different perspective
on these numbers. A comparison of the number of connections
over time for the different periods can be seen in Fig. 5. For
better comparison, the figure shows only the connections of
the first 24h. In case of P0 and P1, we can directly see our
nodes’ connection trimming due to the configured threshold
values. For P2, we can see around 15k–16k simultaneous
connection, which does not even reach the LowWater thresh-
old. P4 probably shows other nodes’ connection trimming,
since even peak values are below the default go-ipfs LowWater
value. The passive DHT-Client node, which does not even
provide any files is a prime candidate for connection trimming.
Naturally, not every peer needs to establish a connection to our
measurement node. Investigating the number of PIDs over a
longer time, however, shows a certain trend. In Fig. 6, we can
see the number of PIDs over time and the number of PIDs that
were more than three days disconnected from the measurement
node and never returned. To this end, we conducted an
additional measurement of approximately 14 d (from 2022-03-
29 to 2022-04-12). The measurement shows a continuous grow
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in the number of seen PIDs and a plateau of connected PIDs.
The difference between simultaneous connections, connected
peers, and the amount of seen PIDs over time are indicators
for a possible misinterpretation of one peer as one PID.

In general, one participant can use multiple PIDs, e.g., to use
a different outer profile, different IPNS entries, or increasing
the privacy against nodes monitoring the Bitswap traffic [14].
The difference between simultaneous connections and known
PIDs in our measurement would suggest that every peer has
around two PIDs.

To determine the size of the network, it is therefore neces-
sary to group PIDs or find a different method to distinguish
peers. In the following, we discuss two approaches to estimate
the network size: based on the multiaddress and based on the
connection time and number of connections.

A. Multiaddress

A simple approach to group PIDs is the usage of the
connected multiaddress, especially, the IP address part. PIDs
establishing a connection from the same IP address belong

to the same group. In case of the data of P4 with 65’853
PIDs, we had a connection with 62’204 PIDs, communicating
from 56’536 different IP addresses. Grouping the PIDs by
connected IP address results in 47’516 different groups, with
44’301 groups consisting of only one PID and overall 40’193
PIDs with unique IP addresses.

This method can detect non-persistent or rotating PIDs to
some degree. For example, we observed one IP address with
2’156 PIDs, where all PIDs have the same agent version and
support the same protocols. However, the amount of groups
are still three times the amount of simultaneous connections.
Additionally, this method has some serious flaws: Hydra nodes
operate a multitude of heads not necessarily deployed on
different IP addresses. In our data set, the 1’028 Hydra nodes
1’026 operate from 11 IP addresses 9 with 100, one with 98,
and one with 28 nodes. The last two are run on one IP address
with two go-ipfs nodes. These are most likely simultaneously
active peers but would be grouped to 12 peers. Other problems
consist in non-persisting PIDs in combination with NAT, NAT
in general, smaller Cloud provider sharing IP addresses, or
one-time users.

B. Connection Time

In addition to distinguish peers based on IP addresses, we
also make an attempt to classify peers based on connection
information. To this end, we will consider the number of
connections established by a peer and duration of a connection
with a PID. This goes beyond differentiating between clients
and non-clients [9] and is able to identify the core network.

To see if there are certain trends, we use the data of P4.
The left side of Fig. 7 shows the cumulative distribution
function (CDF) for the maximum duration per PID for DHT-
Clients, DHT-Server, and all PIDs. Around 53 % are connected
less than 1h and around 16 % of the nodes maintained a
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Fig. 7. CDF of the maximum connection duration of all PIDs, grouped into 30 s intervals and the CDF of the number of connections.

TABLE IV
CLASSIFICATION OF PEERS IN THE P4 DATA SET.

Class Time # Conn. Peers DHT-Server

Heavy > 24h – 10’540 1’449
Normal > 2h – 15’895 1’420
Light ≤ 2h ≥ 3 16’880 9’755
One-time < 2h < 3 18’889 6’108

connection longer than 24h. The trend for shorter durations of
DHT-Server nodes, might be due to the connection trimming
as also experienced by our node. On the right side of Fig. 7,
we can see the CDF for the number of connections a PID had
with the measurement node. The figure shows that only around
10 % have more than 15 connections and around 50 % have
one connection. From the results of Fig. 7, we can conclude
that most PIDs connected only a few times and a small amount
of nodes maintained the connection for a long time.

In order to classify peers based on connection information,
we define four classes: heavy, normal, light, and one-time. We
consider heavy peers to be stable and constantly active i.e.,
more than a day. Normal peers have comparably shorter but
still somewhat long connection durations, e.g., more than two
hours but less than a day. Light peers have many short con-
nections i.e., repeatedly connecting to the networking, which
summarizes recurring, experimental, faulty, or malicious peers.
Lastly, one-time peers connect once or twice to the network
in a short time frame for a short period of time (max. 2h).

TABLE IV shows the classification of peers. We observed
≈ 1.5k heavy DHT-Server nodes, yielding ≈ 9k heavy DHT-
client nodes. Since the DHT clients do not participate in DHT
routing, we can also refer to them as the core user base. The
number of heavy DHT-Server nodes seems rather low, which is
not surprising as it represents a subset of all core nodes only.
That is, some light and one-time DHT-Server nodes might
be core nodes as well. This misclassification of nodes is a
weakness of the passive measurement approach, because we
can only see connection churn and not node churn. Connection
churn can be triggered by connection trimming, due to new
nodes joining the network, or new connections caused by file
exchange and search. While the number of core nodes might
be higher, it is, however, unlikely that the number is lower.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a passive measurement study
of the IPFS network, revealing a different perspective of the
network compared to previous active measurements. While in
many other P2P networks connection churn can be expected to
be approximately equal to node churn, it is different in IPFS:
We identify a rather high connection churn. Instead of nodes
joining and leaving the network, we believe that the reason
for the high connection churn is IPFS’s connection trimming
mechanism. Due to these results, we recommend to investigate
the default threshold values for DHT-Server nodes further and
possibly adjust it to a higher value.

Moreover, we show the complexity of determining the
network size. To this end, we presented two methods for
estimating network size and conclude that both methods
cannot capture the full complexity. Additionally, the short
measurement period, cannot capture long-term behavior. In
the future, we will investigate, if it is possible to improve
our method to distinguish peers by utilizing a wide range of
peer meta data, e.g., latency, agent version, and history of
announced multiaddresses. However, the possibility of a clear
distinction of every peer can be cause of concern considering
the privacy of users.
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