
25 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Machine Learning for Aggregate Computing: a Research Roadmap / Aguzzi G.; Casadei R.; Viroli M.. -
STAMPA. - (2022), pp. 119-124. (Intervento presentato al convegno 42nd IEEE International Conference
on Distributed Computing Systems Workshops, ICDCSW 2022 tenutosi a ita nel 2022)
[10.1109/ICDCSW56584.2022.00032].

Published Version:

Machine Learning for Aggregate Computing: a Research Roadmap

Published:
DOI: http://doi.org/10.1109/ICDCSW56584.2022.00032

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/916970 since: 2023-05-08

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/ICDCSW56584.2022.00032
https://hdl.handle.net/11585/916970

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

G. Aguzzi, R. Casadei and M. Viroli, "Machine Learning for Aggregate Computing: a
Research Roadmap," 2022 IEEE 42nd International Conference on Distributed
Computing Systems Workshops (ICDCSW), Bologna, Italy, 2022, pp. 119-124.

The final published version is available online at:
https://dx.doi.org/10.1109/ICDCSW56584.2022.00032

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/ICDCSW56584.2022.00032

Machine Learning for Aggregate Computing: a
Research Roadmap

Gianluca Aguzzi, Roberto Casadei, Mirko Viroli

ALMA MATER STUDIORUM—Università di Bologna, Cesena, Italy
Email: {gianluca.aguzzi, roby.casadei, mirko.viroli}@unibo.it

Abstract—Aggregate computing is a macro-approach for pro-
gramming collective intelligence and self-organisation in dis-
tributed systems. In this paradigm, a single “aggregate program”
drives the collective behaviour of the system, provided that the
agents follow an execution protocol consisting of asynchronous
sense-compute-act rounds. For actual execution, a proper aggre-
gate computing middleware or platform has to be deployed across
the nodes of the target distributed system, to support the services
needed for the execution of applications. Overall, the engineering
of aggregate computing applications is a rich activity that spans
multiple concerns including designing the aggregate program,
developing reusable algorithms, detailing the execution model,
and choosing a deployment based on available infrastructure.
Traditionally, these activities have been carried out through ad-
hoc designs and implementations tailored to specific contexts and
goals. To overcome the complexity and cost of manually tailoring
or fixing algorithms, execution details, and deployments, we pro-
pose to use machine learning techniques, to automatically create
policies for applications and their management. To support such
a goal, we detail a rich research roadmap, showing opportunities
and challenges of integrating aggregate computing and learning.

Index Terms—aggregate computing, machine learning, multi-
agent learning, self-organising systems

I. INTRODUCTION AND BACKGROUND

Aggregate Computing (AC) [1]–[3] is an approach for pro-
gramming Collective Intelligence (CI) [4], [5] in distributed
systems, having its roots in field-based coordination [2],
[6] and spatial computing [7]. AC is based on a macro-
programming model [7]–[9] whereby the collective behaviour
of a system of neighbour-interacting agents is expressed
through a single “aggregate program” specifying both data
processing and data exchange by a global perspective. Ag-
gregate programs are written using AC languages, such as
ScaFi [10], that are implementations based on the field cal-
culus [2], a core language which provides the means for
formal study of AC and aggregate programs. Indeed, aggregate
programs express global, adaptive computations in terms of
fields, namely distributed data structures that associate a value
to each device over time. For collective adaptive behaviour to
unfold, the full program has to be played by all the agents of
the system through asynchronous sense-compute-act rounds,
hence somewhat mimicking self-organisation processes in
natural systems [11]. That is, AC builds on a flexible, best-
effort aggregate execution model whereby every device in the
system repeatedly (i) senses its local context, for environment

data and incoming messages from neighbours; (ii) evaluates
the aggregate program against its local context, and (iii) acts
upon its local context as prescribed by the program by running
actuations and sending a coordination message to neighbours.
For actual execution, a proper AC middleware or platform
has to be deployed across the nodes of the target distributed
system, to support the services needed for the execution of
applications [12], [13]. It has been shown that the approach is
especially effective for programming large-scale homogeneous
distributed systems and multi-agent systems such as crowds
of device-equipped humans [1], robot swarms [3], sensor-
actuator networks [14], and smart cities [12]. The major
benefits of AC as a programming approach include (i) reliance
on formal models; (ii) declarativity, by abstracting over several
execution details; and (iii) abstraction of collective behaviours
into reusable functions of fields and compositionality. The
reader can refer to [2] for an overall survey of AC research and
a discussion on its relationship with related works across the
fields of coordination [15], spatial computing [7], ensemble
computing [16], collective adaptive systems [17].

In summary, the engineering of AC applications is a rich
activity that spans multiple concerns including designing the
aggregate program, developing reusable algorithms [14], [18],
detailing the execution model [19], and choosing a deployment
based on available infrastructure [12] (see Figure 1 for the full
AC “stack”). Traditionally, these activities have been carried
out through ad-hoc designs and implementations created by
developers and tailored to specific contexts and goals, leading
to, e.g., self-organisation algorithms that are very reactive
under certain network assumptions [14], or round execution
frequencies tailored to the velocity of change of underlying en-
vironment phenomena [19]. To overcome the complexity and
cost of manually tailoring or devising general but inefficient
algorithms, execution details, and deployments, we propose
to use Machine Learning (ML) techniques. In particular, we
observe that automated design driven by learning can be
applied at different levels of the AC “engineering stack”. The
integration of AC and ML, which we refer to as Aggregate
Computing + Machine Learning (AC+ML), is expected to
provide a lot of opportunities and challenges, fostering a
long-term record of research contributions. Accordingly, in
this paper, we provide and discuss a research roadmap for
achieving the vision of AC+ML.

II. MOTIVATING EXAMPLE: AN INTERNET OF THINGS
(IOT) SYSTEM FOR MONITORING & CONTROL

Consider an IoT system comprising a sensor network and
other mobile nodes for the monitoring of hazardous situations
in a natural park, e.g., wildfires [20]. In this case, the nodes
should constantly assess local environmental data (e.g., humid-
ity, temperature, etc.) and collaborate to collectively perceive
macro-level phenomena. This may involve coordinating and
achieving a consensus regarding what geographical zones are
at risk or currently experiencing wildfires. Such collective
perceptions could then be used to issue warnings and promote
intervention. Indeed, using only point-wise perceptions could
incur in inaccurate warnings and false alarms [20], due to
the possible presence of local noise, variation, and sensor
failures. So, the nodes may use self-organising distributed
algorithms such as information flows [21], gradients [18], and
dynamic area formation [22], to achieve the desired global
behaviour. However, such algorithms usually admit diverse im-
plementations, based on different assumptions on the network
structure, reliability, and dynamics, and they may also have
different associated energy and cost profiles. Additionally, the
system should be able to opportunistically self-manage itself
and its execution to promote desired non-functional properties
like reactivity, efficiency, and resilience. Addressing all these
details manually can be very complex. A way to mitigate this
issue might lie in using approaches and methodologies that
combine manual design and automatic design—since the latter,
using methods like those of soft computing [23], can help to
achieve tractability of complex problems and maintainability
of solutions.

Application

MIddleware

System
Structure

API

Scheduling Communication

Algorithms

Aggregate Programs

P2P FogEdge Cloud

State

Fig. 1. The entire Aggregate Computing stack. The application level (com-
posed of API, algorithms and programs) needs to be supported by an execution
platform/middleware, to decouple the application from systems structures.
Then, this execution platform should be deployed in a particular architecture.
In our vision, Machine Learning could enhance all of these layers.

III. MACHINE LEARNING FOR AGGREGATE COMPUTING:
A RESEARCH ROADMAP

This section details motivation and directions for AC+ML
research. A summary is provided Figure 2. This section builds
on AC background; for a comprehensive introduction of AC,
the reader can refer to [2]. First, we specify goals and means
to achieve CI in aggregate computing (Section III-A); then,
we focus on the possibility of applying learning to learn
algorithms (Section III-B), execution strategies (Section III-C),
and system structures (Section III-D).

A. Goals and Means

To systematically analyse the ways in which ML can
promote the development of AC applications, it is important
to consider the goals and means of the AC framework.

The goals include:
1) functionality — achieving some collective behaviour

(e.g., environment monitoring and control through
sensor-actuator networks [12], [19], and matching
and coordinating collective tasks with worker ensem-
bles [3]);

2) non-functionality — concerning with the cost associated
to the functionality.

In particular, the latter can be further divided into multiple
sub-goals from which application-specific trade-offs can be
made:

1) time efficiency: refers to the time needed to converge to
the desired state-of-affairs;

2) communication efficiency: refers to the amount of com-
munication performed (e.g., measured in terms of mes-
sages or bandwidth);

3) execution efficiency: refers to the number of rounds of
computations performed;

4) energy efficiency: e.g. by combining communication and
execution efficiency;

5) dependability: concerns e.g. reliability or safety of a
collective and its products.

In the AC approach, these goals can be addressed through
three main means:

1) algorithms;
2) execution strategy;
3) system structure (deployment).

Now, it turns out that ML could be a powerful technique
to replace or augment those traditionally human-engineered
means.

B. Learning AC algorithms

AC algorithms take collective inputs and use computational
mechanisms to produce collective outputs. In the field cal-
culus [2], the minimal formal framework that underpins AC,
collective inputs and outputs are denoted by computational
fields (or fields for short), namely distributed data structures
mapping each device of the aggregate system to a value.
The field calculus, then, provides a set of operators for ma-
nipulating fields: essentially, operators specifying how fields

Goal

effective & efficient
aggregate
behaviours

Learning
Programs /
Algorithms

Learning
Execution
Strategy

Learning
Aggregate
Computing

Deployments

Starting Point

Hand-crafted
solutions

Challenges

Opportunities Collective
Intelligence

Green Autonomic
Computing

Multi-agent
LearningProgram Synthesis

Application

Middleware

System
Structure

ULT
SVD

FLEX

Distributed
Schedulers

Pulverised
Architectures

Fig. 2. Overview of the research roadmap aiming at efficient and effective aggregate computations. The starting point is current research, based on hand-crafted
solutions. The goal is addressed through application of ML at the program/execution/deployment levels.

evolve over time (round after round), and operators specifying
interactions with neighbours (which can be reified through
neighbouring fields). The field calculus is implemented by so-
called aggregate programming languages such as ScaFi [10],
a Scala internal Domain-Specific Language (DSL). So, in AC,
a collective adaptive behaviour is the result of an algorithm (a
function from fields to fields) expressed e.g. in ScaFi and the
concrete execution of the algorithm in a system of devices.

A typical example is the gradient algorithm [18], which
is essentially a function mapping a Boolean field of sources
(i.e. the devices where the field is true) to the field of
minimum distances from those sources. Usually, algorithms
are progressive – they take time (computation rounds and
communications) to converge to the “correct” value – and self-
healing, i.e., they can adjust their output following changes in
their inputs and the system topology. For instance, a gradient
algorithm progressively corrects the field of distances after
the set of sources change, or nodes move (hence changing the
distances between neighbour nodes) or enter/leave the system.

So, different gradient algorithms may achieve the same
functionality (i.e., the eventual computation of the field of min-
imum distances from sources) with different non-functional
outcomes. Indeed, they may: (i) take different time or a
different number of rounds to converge, for the same initial
condition; (ii) require a different amount of data to be ex-
changed; (iii) take different trade-offs e.g. regarding reactivity
and smoothness (cf. the stability of values during change) [14],
[18]; or (iv) take different assumptions regarding the execution
model or the environment [14], which may affect applicability.

Designing efficient and versatile AC algorithms can be
complex [14], [18]: therefore, it is interesting to explore
whether algorithms can be learnt or synthesised given high-
level functional goals. Program synthesis [24] goes in this
direction. It consists of a set of techniques in which a model
explicitly generates programs from a high-level specification.
Particularly, these research areas gains interest in the last
years, when novel techniques consider using as model neural
networks (e.g. GitHub Copilot / Codex [25]). In our case,
an idea could be to combine the program synthesis tech-
nique called sketching [26] with machine learning. With this
approach, the designer could provide an algorithm template
with holes corresponding to actions to be learnt by the agents
or the whole collective, e.g., through reinforcement learning
or/and evolutionary algorithms. In this case, learning would be
used to search for an optimal policy. The resulting algorithm,
then, would need extensive testing (e.g. by simulation) in a
representative set of environments and dynamics. First efforts
in this direction exploit Multi-Agent Reinforcement Learning
(MARL) [27], [28] (i.e., learning algorithms where multiple
agents learn a distributed policy through interaction with
the environment) approaches to learn an improved gradient
algorithm that self-heals faster than the classical baseline
solution [29]. However, research is needed to identify what
synthesis techniques, learning algorithms, frameworks, and
methodologies can support the learning of algorithms able to
achieve performance similar to or better than state-of-the-art
solutions.

C. Learning execution strategies and adaptations

For a given AC program or algorithm, multiple execution
strategies can be applied, affecting aspects like the scheduling
of computation rounds, the scheduling of communications, the
retention of messages from neighbours. In particular, a first
distinction can be made between static and dynamic execution
strategies. The latter approaches adapt the execution choices at
runtime depending on factors which may include the speed of
environmental change, the energy level of a device, incentives
in volunteering settings, or the desired Quality of Service
(QoS). Moreover, these factors may be diverse in diverse
portions of the system; so, it is in general important to also
consider the local context of each device or set of devices.

Note that adaptive behaviour could be achieved via static
execution strategies, e.g., by using reactive approaches trigger-
ing behaviours when specific context conditions apply [19].
However, again, since it is in general hard to design static
or dynamic execution strategies able to adequately take into
account all the factors and goals, it could make sense to
let a system (and its components) learn how to efficiently
execute algorithms according to a set of given high-level
objectives. Indeed, true adaptiveness comes from changing the
behavioural rules, and learning is a premier tool for changing
for the better. In this context, also bio-inspired optimisation
techniques, such as evolutionary computing [30], could be
leveraged to devise controllers that optimise for multiple
objectives, e.g., related to a set of QoS metrics. This is a long-
standing approach in swarm robotics, lately called automatic
design. The emphasis on improving efficiency by optimising
execution of aggregate systems, hence promoting sustainability
of collective computations, could be the opportunity to open
up a vision of green autonomic computing.

D. Learning system structures and re-structuring

A logical AC system consists of a logical network of
logical devices operating as per the aforementioned execution
protocol. It is the collective digital twin [31] of a target
set of application-level physical devices (e.g., robots of a
swarm, or workers in a computing ecosystem). As shown in
recent work on pulverised architectures [12], it turns out that
different application partitioning schemas and implementations
of the digital thread associated with the aggregate system
are possible, as well as different deployments of application
components onto the available Information-Communication
Technology (ICT) infrastructure. For instance, it is possible to
embed evaluations of the aggregate program into the devices
themselves, to move the entire computational part on the cloud
(leaving devices as thin hosts dealing only with sensing and
actuation), or spread these onto a layer of edge-fog infras-
tructural devices. Different deployments may lead to different
efficiency trade-offs and non-functional outcomes [12], [31],
which, crucially, may also change dynamically due to appli-
cation and infrastructure dynamics (cf. addition or removal of
new nodes, blackouts, etc.).

In previous research, aggregate application partitioning and
deployment have been done manually at design time [12].

However, for a given set of infrastructures, it is not easy
to determine an effective mapping. The usual approach con-
sists of manually generating different deployments, simulating
these for the same set of applications, collecting various
cost metrics, and evaluating results to determine trade-offs
and guidelines. However, ML could be injected into such
a methodology to have the system learn by itself what is
a (locally) optimal deployment for an aggregate application.
Moreover, the system could be induced to learn a strategy
to self-adapt the deployment (i.e., by moving components
opportunistically across the ICT infrastructure) while trying
to preserve, e.g., certain QoS targets.

Additionally, it has been shown in [31], that changing the
logical structure of an aggregate system at runtime (e.g.,
by injecting virtual devices) could be a further means for
steering self-organisation processes, namely to improve the
collective behaviour of a system (cf. [32]). In this respect, a
challenge would be to determine how, when, and where virtual
devices should be spawned or removed from the system. In the
AC+ML vision, this problem should not be addressed through
ad-hoc solutions, but the AC system should be trained in order
to learn the best strategies for improving the efficacy and
efficiency of aggregate applications.

IV. OPPORTUNITIES AND CHALLENGES

The research delineated in Section III is rich in opportunities
and challenges—the most significant ones discussed in the
following.

Opportunities

A prominent opportunity of AC+ML research lies in po-
tentially getting insights about the automatic design of Col-
lective Intelligence (CI), renewing the partial contributions
given by Szuba’s computational collective intelligence [4]
and Tumer and Wolpert’s COIN (COllective INtelligence) [5].
However, unlike previous work, the peculiar characteristic of
aggregate computing of reifying CI into macro-level programs
(which we may refer to as CI programmability) is expected
to enable a synergic and gentle introduction of automatic
design and learning. Additionally, the other crucial aspect of
functional compositionality of aggregate behaviours (denoted
by functions operating on fields), is also expected to help,
e.g., by fostering learning processes whereby the goal is to
find suitable compositions of elementary collective behaviours.
Moreover, the ability to change execution strategies while
guaranteeing the same behaviour could also be considered a
form of CI.

Indeed, another key opportunity lies in the possibility of
fostering efficiency in large-scale intelligent systems, which is
more and more important for sustainability as advocated by
important fields like green computing [33]. The significance
of the problem is especially relevant nowadays because of
the tension between the visions of pervasive computing [34],
future-generation large-scale computational collectives [3],
and autonomic computing (promoting smarter – i.e. more com-

putationally intensive – devices) [35] and the urge of limiting
the impact of humans and technologies on the environment.

Technical Challenges

Applying learning through the AC stack (Figure 1) poses
several challenges, many of which are implied by the nature
of aggregate systems—cf. distribution, decentralisation, par-
tial observability, many-agents coordination, and the eventual
nature of collective computations,

Particularly, learning in many-agent networked system [36]
is currently an open challenge. Indeed, extending the learning
from one agent to many agents exponentially enlarges the
policy search space, due to the combinatorial nature of multi-
agent systems [28]. Consider the case study presented in
Section II: to collectively detect wildfires, the system should
be composed of hundreds of smart sensors/drones spread on
a possibly large geographical zone. If each device performs
learning to find a good policy for the given problem, the overall
policy search space grows exponentially with the number of
agents, which leads the problem to be completely intractable.
A recurrent solution in MARL for such kind of situation is
to consider the agents’ policies homogeneous [37] in order
to drastically reduce the policy search space. Moreover, the
neighbouring-based system structure is not strict and could
evolve in time, leading to time- and space-varying input
spaces. Furthermore, the agents should consider that some
information are perceived in a previously supervised zone
(i.e. space varying), therefore they could be outdated since
the nodes could be moved to another area far away from the
previous one. This complexity is particularly challenging to
handle ML methodologies, even if the novel neural models
(such as RNN [38] and GNN [39]) aim at handling both space
and time-varying information.

In many-agent systems, it is not appropriate to use a
centralised controller that orchestrates the system as a whole,
due to the typical large scale and resilience requirements.
However, using only a local vision of the system could lead to
the problem of non-stationarity, since each agent concurrently
learns and modifies the environment in the eye of the other
agents [40]. Another concern related to many-agent settings
is the multi-agent credit assignment problem [41]. This is
referred to in the difficulty of deriving local reward policy from
a global utility that measures the system as a whole [41], [42].
In the example of wildfires, consider the condition in which
the system correctly identifies a hazard/fire situation. This
behaviour must be considered correct at the collective level,
but it could be that some nodes have taken “incorrect” actions
(e.g. moving away from a dangerous situation), and these
should be penalised. However, especially when considering
emergent dynamics, it is not easy to precisely evaluate what
micro-level activities led to the collective good and which not.
This problem is historical, treated partly in COIN approaches
with difference rewards [43] and later in COMA [44], a recent
MARL and Deep Learning methodology to derive local agent
policies in cooperative settings. Besides, the reward received
is typically very delayed and sparse in time, because an action

taken in a point of large geographical space, could lead to an
influence on the whole system only when it reaches all nodes.

These challenges are mitigated by an increasing track of
research records on AC [2], the availability of formal tools
for analysing and reasoning about aggregate computations and
systems [2], and the support given by tools for developing and
simulating aggregate systems [2].

V. CONCLUSION

Developing AC applications requires addressing various
algorithmic, computational, system, and deployment concerns.
The integration of ML across the AC development stack
(cf. Figure 1) provides opportunities and challenges requir-
ing significant research (cf. Figure 2). Indeed, AC research
seems a fertile terrain for exploring techniques combining
self-adaptive/self-organising computing with machine learning
(especially MARL)—and its synergy with other research ideas
in areas like soft computing and program synthesis. Therefore,
the roadmap for AC+ML delineated in this paper is expected to
provide results and insights on the engineering of collectively
intelligent distributed systems.

ACKNOWLEDGEMENTS

This work has been supported by the EU/Italian MUR FSE
REACT-EU PON R&I 2014-2022 (CCI2014IT16M2OP005).

REFERENCES

[1] J. Beal, D. Pianini, and M. Viroli, “Aggregate programming for the
internet of things,” Computer, vol. 48, no. 9, pp. 22–30, 2015. [Online].
Available: https://doi.org/10.1109/MC.2015.261

[2] M. Viroli, J. Beal, F. Damiani, G. Audrito, R. Casadei, and
D. Pianini, “From distributed coordination to field calculus and
aggregate computing,” J. Log. Algebraic Methods Program., vol. 109,
2019. [Online]. Available: https://doi.org/10.1016/j.jlamp.2019.100486

[3] R. Casadei, M. Viroli, G. Audrito, D. Pianini, and F. Damiani,
“Engineering collective intelligence at the edge with aggregate
processes,” Eng. Appl. Artif. Intell., vol. 97, p. 104081, 2021. [Online].
Available: https://doi.org/10.1016/j.engappai.2020.104081

[4] T. Szuba, “A formal definition of the phenomenon of collective
intelligence and its IQ measure,” Future Gener. Comput.
Syst., vol. 17, no. 4, pp. 489–500, 2001. [Online]. Available:
https://doi.org/10.1016/S0167-739X(99)00136-3

[5] D. H. Wolpert and K. Tumer, “Collective intelligence, data routing
and braess’ paradox,” J. Artif. Intell. Res., vol. 16, pp. 359–387, 2002.
[Online]. Available: https://doi.org/10.1613/jair.995

[6] M. Mamei, F. Zambonelli, and L. Leonardi, “Co-fields: A
physically inspired approach to motion coordination,” IEEE Pervasive
Comput., vol. 3, no. 2, pp. 52–61, 2004. [Online]. Available:
https://doi.org/10.1109/MPRV.2004.1316820

[7] J. Beal, S. Dulman, K. Usbeck, M. Viroli, and N. Correll, “Organizing
the aggregate: Languages for spatial computing,” in Formal and Practi-
cal Aspects of Domain-Specific Languages: Recent Developments. IGI
Global, 2013, pp. 436–501.

[8] R. Casadei, “Macroprogramming: Concepts, state of the
art, and opportunities of macroscopic behaviour mod-
elling,” CoRR, vol. abs/2201.03473, 2022. [Online]. Available:
https://arxiv.org/abs/2201.03473

[9] R. Newton, G. Morrisett, and M. Welsh, “The regiment
macroprogramming system,” in Proceedings of the 6th International
Conference on Information Processing in Sensor Networks,
IPSN 2007. ACM, 2007, pp. 489–498. [Online]. Available:
https://doi.org/10.1145/1236360.1236422

[10] R. Casadei, M. Viroli, G. Audrito, and F. Damiani, “FScaFi :
A core calculus for collective adaptive systems programming,”
in Leveraging Applications of Formal Methods, Verification and
Validation: Engineering Principles - 9th International Symposium on
Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes,
Greece, October 20-30, 2020, Proceedings, Part II, ser. Lecture
Notes in Computer Science, T. Margaria and B. Steffen, Eds.,
vol. 12477. Springer, 2020, pp. 344–360. [Online]. Available:
https://doi.org/10.1007/978-3-030-61470-6 21

[11] F. Yates, Self-Organizing Systems: The Emergence of Order, ser.
Life Science Monographs. Springer US, 2012. [Online]. Available:
https://books.google.it/books?id=IiTvBwAAQBAJ

[12] R. Casadei, D. Pianini, A. Placuzzi, M. Viroli, and
D. Weyns, “Pulverization in cyber-physical systems: Engineering
the self-organizing logic separated from deployment,” Future
Internet, vol. 12, no. 11, p. 203, 2020. [Online]. Available:
https://doi.org/10.3390/fi12110203

[13] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke,
“Middleware for internet of things: A survey,” IEEE Internet
Things J., vol. 3, no. 1, pp. 70–95, 2016. [Online]. Available:
https://doi.org/10.1109/JIOT.2015.2498900

[14] G. Audrito, R. Casadei, F. Damiani, D. Pianini, and M. Viroli, “Optimal
resilient distributed data collection in mobile edge environments,”
Comput. Electr. Eng., vol. 96, no. Part, p. 107580, 2021. [Online].
Available: https://doi.org/10.1016/j.compeleceng.2021.107580

[15] F. Damiani and O. Dardha, Eds., Coordination Models and Languages
- 23rd IFIP WG 6.1 International Conference, COORDINATION
2021, Held as Part of the 16th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2021, Valletta,
Malta, June 14-18, 2021, Proceedings, ser. Lecture Notes in
Computer Science, vol. 12717. Springer, 2021. [Online]. Available:
https://doi.org/10.1007/978-3-030-78142-2

[16] T. Bures, I. Gerostathopoulos, P. Hnetynka, F. Plasil, F. Krijt,
J. Vinárek, and J. Kofron, “A language and framework for dynamic
component ensembles in smart systems,” Int. J. Softw. Tools Technol.
Transf., vol. 22, no. 4, pp. 497–509, 2020. [Online]. Available:
https://doi.org/10.1007/s10009-020-00558-z

[17] R. D. Nicola, S. Jähnichen, and M. Wirsing, “Rigorous engineering
of collective adaptive systems: special section,” Int. J. Softw. Tools
Technol. Transf., vol. 22, no. 4, pp. 389–397, 2020. [Online]. Available:
https://doi.org/10.1007/s10009-020-00565-0

[18] G. Audrito, R. Casadei, F. Damiani, and M. Viroli, “Compositional
blocks for optimal self-healing gradients,” in 11th IEEE International
Conference on Self-Adaptive and Self-Organizing Systems, SASO 2017.
IEEE Computer Society, 2017, pp. 91–100. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/SASO.2017.18

[19] D. Pianini, R. Casadei, M. Viroli, S. Mariani, and F. Zambonelli,
“Time-fluid field-based coordination through programmable distributed
schedulers,” Log. Methods Comput. Sci., vol. 17, no. 4, 2021. [Online].
Available: https://doi.org/10.46298/lmcs-17(4:13)2021

[20] O. M. Bushnaq, A. Chaaban, and T. Y. Al-Naffouri, “The role of
uav-iot networks in future wildfire detection,” IEEE Internet Things
J., vol. 8, no. 23, pp. 16 984–16 999, 2021. [Online]. Available:
https://doi.org/10.1109/JIOT.2021.3077593

[21] T. D. Wolf and T. Holvoet, “Designing self-organising emergent systems
based on information flows and feedback-loops,” in Proceedings of
the First International Conference on Self-Adaptive and Self-
Organizing Systems, SASO 2007, Boston, MA, USA, July 9-11, 2007.
IEEE Computer Society, 2007, pp. 295–298. [Online]. Available:
https://doi.org/10.1109/SASO.2007.16

[22] D. Pianini, R. Casadei, M. Viroli, and A. Natali, “Partitioned integration
and coordination via the self-organising coordination regions pattern,”
Future Gener. Comput. Syst., vol. 114, pp. 44–68, 2021. [Online].
Available: https://doi.org/10.1016/j.future.2020.07.032

[23] D. Ibrahim, “An overview of soft computing,” Procedia Computer
Science, vol. 102, pp. 34–38, 2016. [Online]. Available:
https://doi.org/10.1016/j.procs.2016.09.366

[24] S. Gulwani, O. Polozov, and R. Singh, “Program synthesis,” Found.
Trends Program. Lang., vol. 4, no. 1-2, pp. 1–119, 2017. [Online].
Available: https://doi.org/10.1561/2500000010

[25] M. Chen, J. Tworek, H. Jun et al., “Evaluating large language
models trained on code,” CoRR, vol. abs/2107.03374, 2021. [Online].
Available: https://arxiv.org/abs/2107.03374

[26] A. Solar-Lezama, Program synthesis by sketching. University of
California, Berkeley, 2008.

[27] L. Busoniu, R. Babuska, and B. D. Schutter, “Multi-agent reinforcement
learning: A survey,” in Ninth International Conference on Control,
Automation, Robotics and Vision, ICARCV 2006, Singapore, 5-8
December 2006, Proceedings. IEEE, 2006, pp. 1–6. [Online].
Available: https://doi.org/10.1109/ICARCV.2006.345353

[28] P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “A survey and critique
of multiagent deep reinforcement learning,” Auton. Agents Multi
Agent Syst., vol. 33, no. 6, pp. 750–797, 2019. [Online]. Available:
https://doi.org/10.1007/s10458-019-09421-1

[29] G. Aguzzi, R. Casadei, and M. Viroli, “Towards reinforcement learning-
based aggregate computing,” in Coordination Models and Languages -
24th International Conference, COORDINATION 2022, Held as Part of
the 17th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2022, Lucca, Italy, June 13-17, 2022, Proceed-
ings, ser. Lecture Notes in Computer Science, M. H. ter Beek and
M. Sirjani, Eds., 2022, accepted for publication.

[30] B. Li, J. Li, K. Tang, and X. Yao, “Many-objective evolutionary
algorithms: A survey,” ACM Comput. Surv., vol. 48, no. 1, pp.
13:1–13:35, 2015. [Online]. Available: https://doi.org/10.1145/2792984

[31] R. Casadei, D. Pianini, M. Viroli, and D. Weyns, “Digital twins,
virtual devices, and augmentations for self-organising cyber-physical
collectives,” Applied Sciences, vol. 12, no. 1, 2022. [Online]. Available:
https://www.mdpi.com/2076-3417/12/1/349

[32] W. Li and W. Shen, “Swarm behavior control of mobile
multi-robots with wireless sensor networks,” J. Netw. Comput.
Appl., vol. 34, no. 4, pp. 1398–1407, 2011. [Online]. Available:
https://doi.org/10.1016/j.jnca.2011.03.023

[33] S. Sarkar and S. Misra, “Theoretical modelling of fog computing:
a green computing paradigm to support iot applications,” IET
Networks, vol. 5, no. 2, pp. 23–29, 2016. [Online]. Available:
https://doi.org/10.1049/iet-net.2015.0034

[34] D. Saha and A. Mukherjee, “Pervasive computing: A paradigm for the
21st century,” Computer, vol. 36, no. 3, pp. 25–31, 2003. [Online].
Available: https://doi.org/10.1109/MC.2003.1185214

[35] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003. [Online]. Available:
https://doi.org/10.1109/MC.2003.1160055

[36] K. Zhang, Z. Yang, and T. Basar, “Decentralized multi-agent
reinforcement learning with networked agents: recent advances,”
Frontiers Inf. Technol. Electron. Eng., vol. 22, no. 6, pp. 802–814,
2021. [Online]. Available: https://doi.org/10.1631/FITEE.1900661

[37] L. Panait and S. Luke, “Cooperative multi-agent learning: The state of
the art,” Auton. Agents Multi Agent Syst., vol. 11, no. 3, pp. 387–434,
2005. [Online]. Available: https://doi.org/10.1007/s10458-005-2631-2

[38] D. Rumelhart, G. Hinton, and R. Williams, “Learning internal
representations by error propagation,” in Readings in Cognitive
Science. Elsevier, 1988, pp. 399–421. [Online]. Available:
https://doi.org/10.1016/b978-1-4832-1446-7.50035-2

[39] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and
G. Monfardini, “The graph neural network model,” IEEE Trans.
Neural Networks, vol. 20, no. 1, pp. 61–80, 2009. [Online]. Available:
https://doi.org/10.1109/TNN.2008.2005605

[40] K. Tuyls and G. Weiss, “Multiagent learning: Basics, challenges,
and prospects,” AI Mag., vol. 33, no. 3, pp. 41–52, 2012. [Online].
Available: https://doi.org/10.1609/aimag.v33i3.2426

[41] R. S. Sutton and A. G. Barto, Reinforcement learning - an introduction,
ser. Adaptive computation and machine learning. MIT Press, 1998.

[42] A. K. Agogino and K. Tumer, “Unifying temporal and structural
credit assignment problems,” in 3rd International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2004).
IEEE Computer Society, 2004, pp. 980–987. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/AAMAS.2004.10098

[43] K. Tumer, A. K. Agogino, and D. H. Wolpert, “Learning sequences of
actions in collectives of autonomous agents,” in Proceedings of the first
international joint conference on Autonomous agents and multiagent
systems part 1 - AAMAS '02. ACM Press, 2002. [Online]. Available:
https://doi.org/10.1145/544741.544832

[44] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli,
and S. Whiteson, “Counterfactual multi-agent policy gradi-
ents,” CoRR, vol. abs/1705.08926, 2017. [Online]. Available:
http://arxiv.org/abs/1705.08926

	Copertina_postprint_IRIS_UNIBO(2)
	paper22-discoli-ac-rl-roadmap

