
ar
X

iv
:2

30
9.

04
92

9v
1 

 [
cs

.G
T

] 
 1

0 
Se

p 
20

23

Learning-based Incentive Mechanism for Task

Freshness-aware Vehicular Twin Migration

Junhong Zhang∗, Jiangtian Nie†, Jinbo Wen∗, Jiawen Kang∗, Minrui Xu†, Xiaofeng Luo∗, Dusit Niyato†, Fellow, IEEE
∗Guangdong University of Technology, China †Nanyang Technological University, Singapore

Abstract—Vehicular metaverses are an emerging paradigm
that integrates extended reality technologies and real-time sensing
data to bridge the physical space and digital spaces for intelligent
transportation, providing immersive experiences for Vehicular
Metaverse Users (VMUs). VMUs access the vehicular metaverse
by continuously updating Vehicular Twins (VTs) deployed on
nearby RoadSide Units (RSUs). Due to the limited RSU coverage,
VTs need to be continuously online migrated between RSUs to
ensure seamless immersion and interactions for VMUs with the
nature of mobility. However, the VT migration process requires
sufficient bandwidth resources from RSUs to enable online and
fast migration, leading to a resource trading problem between
RSUs and VMUs. To this end, we propose a learning-based
incentive mechanism for migration task freshness-aware VT
migration in vehicular metaverses. To quantify the freshness of
the VT migration task, we first propose a new metric named Age
of Twin Migration (AoTM), which measures the time elapsed of
completing the VT migration task. Then, we propose an AoTM-
based Stackelberg model, where RSUs act as the leader and
VMUs act as followers. Due to incomplete information between
RSUs and VMUs caused by privacy and security concerns, we
utilize deep reinforcement learning to learn the equilibrium
of the Stackelberg game. Numerical results demonstrate the
effectiveness of our proposed learning-based incentive mechanism
for vehicular metaverses.

Index Terms—Metaverse, vehicular twin, Stackelberg game,
Age of Information, deep reinforcement learning.

I. INTRODUCTION

The rapid advancement of immersive communication, such

as Virtual Reality (VR), Augmented Reality (AR), and ubiqui-

tous Artificial Intelligence (AI) has given rise to the vehicular

metaverse. Vehicular metaverses are expected to lead the

revolution of intelligent transportation systems by seamlessly

blending virtual and physical spaces, allowing for providing

immersive services for Vehicular Metaverse Users (VMUs)

(i.e., drivers and passengers within vehicles) [1]. Vehicular

Twins (VTs) are highly accurate virtual hybrid replicas that

cover the entire life cycle of vehicles and VMUs [2]. The VTs

are updated by sensing data from the surrounding environment

to achieve physical-virtual synchronization [3]. Through VTs,

VMUs can access the vehicular metaverse to enjoy a wide
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range of metaverse applications, such as AR navigation, virtual

education, and virtual games [2], [4].

To ensure seamless immersive experiences for VMUs in the

vehicular metaverse, resource-limited vehicles offload latency-

sensitive and computation-intensive tasks of updating VTs to

nearby edge servers in RoadSide Units (RSUs) [2]. However,

due to the limited coverage of RSUs and the mobility of

vehicles, each VT has to be migrated from the current RSU

to another to provide uninterrupted immersive services for

VMUs. Therefore, the task freshness of the VT migration,

i.e., the time it takes to complete the VT migration, is critical

to VMUs. To ensure VT migration efficiency, VMUs need

to purchase sufficient resources from RSUs for facilitating

VT migration, especially bandwidth resources. Without loss

of generality, the Metaverse Service Provider (MSP) is set as

the manager of RSUs, which is the sole provider of bandwidth

resources during VT migration. The MSP aims to optimize its

bandwidth selling price and maximize revenue from resource

trading with incomplete information. Existing work has been

conducted to optimize resource pricing and allocation based on

the incentive mechanism in the metaverse [5]–[7]. The authors

in [5] formulated a Stackelberg game joint user association and

resource pricing. The authors in [6] proposed a hierarchical

game-theoretic approach to study a reliable coded distributed

computing scheme in vehicular metaverses. However, they

ignore the VT migration issue caused by the mobility of

vehicles. Therefore, it is still challenging in tackling the

resource trading problem in VT migration.

To address the above challenges, in this paper, we propose a

new metric named Age of Twin Migration (AoTM) according

to the concept of Age of Information (AoI). Considering that

VMUs may be reluctant to disclose their private information

for privacy security during VT migration, we propose a

learning-based incentive mechanism between the MSP and

VMUs. The main contributions are summarized as follows:

• To quantify the freshness of the VT migration task, we

propose a new metric named AoTM according to the

concept of AoI for vehicular metaverses and apply it to

evaluate the immersion of VMUs.

• To improve VT migration efficiency under information

incompleteness, we formulate the Stackelberg game be-

tween the MSP and VMUs, in which the MSP acts as the

leader and VMUs act as followers.

• We utilize Deep Reinforcement Learning (DRL) to solve
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Fig. 1. A learning-based incentive mechanism framework for VT migration.

the Stackelberg game under incomplete information. Nu-

merical results demonstrate that the proposed learning-

based scheme can converge to the Stackelberg equilib-

rium and outperform baseline schemes.

II. SYSTEM MODEL

As shown in Fig. 1, edge-assisted remote rendering as a key

technology is applied in vehicular metaverses [5]. To construct

VTs for lower-latency and ultra-reliable metaverse services,

such as AR navigation, e-commerce, and virtual games, the

large-scale rendering tasks are offloaded to nearby edge servers

in RSUs with abundant resources (i.e., storage, bandwidth,

and computing) [2]. However, due to the dynamic mobility of

vehicles and the limited service coverage of RSUs [1], VTs

must be migrated from the source RSUs to the destination

RSUs for realizing fully immersive metaverse services. We

provide more details of the system model as follows:

• MSP: The MSP as the manager of RSUs can schedule

resources of RSUs to provide necessary resources (e.g.,

computing and bandwidth) for VMUs [5]. After being

authorized, the MSP can manage a number of com-

munication channels between the source RSUs and the

destination RSUs [5]. Besides, the MSP leverages sensing

data (e.g., traffic conditions and vehicle locations) sent

by VMUs to update VTs for providing ultra-reliable and

real-time metaverse services for VMUs.

• VTs: VTs are the digital replicas deployed in RSUs.

They cover the life cycle of vehicles and VMUs and act

as intelligent assistants managing metaverse applications

[2]. In addition, VTs can also analyze and predict their

VMUs’ behavior through a pre-trained machine learning

model. Note that we consider that each VMU has a

corresponding VT and the VT can be transmitted in the

form of blocks during migration.

• VMUs: Without loss of generality, VMUs refer to drivers

and passengers within vehicles. The widespread use of

VR, AR, and spatial audio devices enables VMUs to en-

joy metaverse services through Head-Mounted Displays

(HMDs) as well as AR windshields and side windows

[1]. Additionally, smart sensors on VMUs (e.g., cameras,

Inertial Measurement Units (IMU) suits) collect and

send sensing data (e.g., driver fatigue level and vehicle

locations) to the MSP for VT synchronization [2].

III. PROBLEM FORMULATION

In this section, to quantify the freshness of the VT migration

task, we first propose a new metric named AoTM, which

can evaluate the immersion of VMUs. Then, we design a

Stackelberg game model between the MSP and VMUs for VT

migration and analyze the game to prove the existence and

the uniqueness of Stackelberg equilibrium among the MSP

and VMUs [5], [8]. In this paper, we consider that one MSP

and a set N = {1, . . . , n, . . . , N} of N VMUs participate in

VT migration and all VTs of VMUs need to be migrated.

A. Age of Twin Migration

AoI has been widely utilized to quantify data freshness at

the destination [9]. It is defined as the time elapsed since

the latest received update was generated at its source, which

is a promising metric to improve the performance of time-

critical services [10]. Similarly, in vehicular metaverses, to

quantify the freshness of the VT migration task, we propose

a new metric named AoTM according to the concept of the

AoI, which is defined as the time elapsed between the last

successfully received VT block and the generation of the first

VT block in the VT migration.

We consider that the Orthogonal Frequency Division Mul-

tiplexing Access (OFDMA) technology is applied in the

system [5], which ensures that all communication channels

occupied by the source RSU and the destination RSU are

orthogonal. For VMU n ∈ N , given the purchased bandwidth

bn ∈ (0,+∞) from the MSP, the achievable task transmission

rate between the source RSU and the destination RSU is

γn = bn log2

(

1 + ρh0d−ε

N0

)

, where ρ, h0, d, ε, and N0

represent the transmitter power of the source RSU, the unit

channel power gain, the distance between the source RSU

and the destination RSU, the path-loss coefficient, and the

average noise power, respectively [5]. Therefore, for VMU

n, the AoTM of the VT migration task is

An =
Dn

γn
, (1)

following the pre-copy live migration strategy in [11], the

total migrated VT data Dn includes the information of system

configuration (e.g., CPU and GPU), historical memory data,

and real-time states of VMU n.

B. Stackelberg Game

In VT migration, the MSP is the sole bandwidth resource

holder and VMUs rely on bandwidth resources provided by the

MSP to migrate VTs between RSUs. As a result, a monopoly

market is formed, in which the MSP, as the monopolist, has

the pricing power of bandwidth and VMUs need to respond to

the price by deciding how much bandwidth to purchase. To be

specific, when the selling price of bandwidth is low, VMUs

may be willing to purchase more bandwidth for enhancing

immersive experiences. Conversely, VMUs are reluctant to



purchase when the selling price is high, resulting in poor

task freshness. Therefore, the selling price of bandwidth has

a significant impact on the immersion of VMUs.

To maximize the MSP’s profit and maintain its monopoly

power, the Stackelberg game can provide a powerful game

theoretical model that has been widely used by the monopolist

to strategically set the price. The Stackelberg game between

the MSP and VMUs consists of two stages. In the first stage,

the MSP as the leader decides the selling price of bandwidth

for its maximum utility. In the second stage, each VMU as

a follower determines the bandwidth demand to maximize

its utility. Note that the second stage of the game can be

formulated as a competitive game [6].

1) Utility formation in the VT migration: The utility of

VMU n is the difference between the profit corresponding

to its immersion and its cost of purchasing bandwidth. The

higher AoTM impacts the immersive experiences of VMUs

negatively, resulting in decreasing the immersion of VMUs [6].

Following [12], the immersion function of VMU n obtained

from the MSP is defined as Gn = αn ln (1 + 1/An), where

αn > 0 is the unit profit for the immersion of VMU n.

Therefore, the utility function of VMU n is

Un(bn) = Gn − p · bn, (2)

where p > 0 is the unit selling price of bandwidth. In the

follower stage, each VMU n maximizes its revenue Un(bn)
by deciding the best bandwidth demand to purchase. Thus, the

problem of maximizing the utility of VMU n is formulated as

Problem 1: max
bn

Un(bn)

s.t. bn > 0.
(3)

For the MSP, its utility is the difference between the sum of

bandwidth fees paid by all VMUs and the transmission cost

for VT migration tasks, which is affected by the unit selling

price of bandwidth and bandwidth demands of VMUs. Thus,

the utility of the MSP is

Us(p) =

N
∑

n=1

(p · bn − C · bn), (4)

where C > 0 is the unit transmission cost of bandwidth

for executing the VT migration task, which is proportional

to the amount of bandwidth sold to the VMUs. In the first

stage, considering that the bandwidth sold by the MSP has

a maximum bandwidth Bmax and the maximum bandwidth

pricing pmax, the MSP maximizes its revenue by deciding

a selling price that ensures the total bandwidth sales do not

exceed Bmax and the bandwidth price does not exceed pmax.

Thus, the problem of maximizing the utility of the MSP is

formulated as

Problem 2: max
p

Us(p)

s.t. 0 <
∑N

n=1bn ≤ Bmax,

bn > 0, ∀n ∈ {1, . . . , N},

0 < C ≤ p ≤ pmax.

(5)

2) Stackelberg equilibrium analysis: The Stackelberg game

is formulated by combining Problem 2 and Problem 1. We

seek the Stackelberg equilibrium to obtain the optimal solution

to the formulated game. In the Stackelberg equilibrium, the

MSP’s utility is maximized considering that the VMUs make

bandwidth demand strategies based on the best response, and

neither the MSP nor any VMU can improve the individual util-

ity by deviating from their strategies [5], [6]. The Stackelberg

equilibrium is defined as follows:

Definition 1. (Stackelberg Equilibrium): We denote b
∗ =

{b∗n}
N
n=1 and p∗ as the optimal bandwidth demand strat-

egy vector and the optimal unit bandwidth selling price,

respectively. Then, the strategies (b∗ = {b∗n}
N
n=1, p

∗) can be

Stackelberg equilibrium if and only if the following set of

inequalities is strictly satisfied:
{

Us (b
∗, p∗) ≥ Us (b

∗, p) ,

Un

(

b∗n, b
∗
−n

, p∗
)

≥ Un

(

bn, b
∗
−n

, p∗
)

, ∀n ∈ N .
(6)

In the following, we adopt the backward induction method

to prove the Stackelberg equilibrium [5].

Theorem 1. The sub-game perfect equilibrium in the VMUs’

subgame is unique.

Proof. We derive the first-order derivative and the second-

order derivative of Un(bn) with respect to bn as follows:

∂Un(bn)

∂bn
=

αn log2

(

1 + ρh0d−ε

N0

)

Dn + bn log2

(

1 + ρh0d−ε

N0

) − p,

∂2Un(bn)

∂b2n
= −

αn

(

log2

(

1 + ρh0d−ε

N0

)

)2

(

Dn + bn log2

(

1 + ρh0d−ε

N0

)

)2 < 0.

(7)

As the first-order derivative of Un(bn) has a unique zero point,

and the second-order derivative of Un(bn) is negative, the

VMU’s utility function Un(bn) is strictly concave with respect

to bn. Then, based on the first-order optimality condition, i.e.,
∂Un(bn)

∂bn
= 0, we can obtain the best response function of

VMU n, given by

b∗n =
αn

p
−

Dn

log2

(

1 + ρh0d−ε

N0

) . (8)

Therefore, the sub-game perfect equilibrium in the VMUs’

subgame is unique.

Theorem 2. There exists a unique Stackelberg equilibrium

(b∗, p∗) in the formulated game.

Proof. Based on Theorem 1, the MSP as the leader in the

Stackelberg game knows that there exists a unique Nash equi-

librium among VMUs under any given value of p. Therefore,

the MSP can maximize its utility by choosing the optimal p.

By substituting (8) into (4), we have

Us =

N
∑

n=1

(p− C)

(

αn

p
−

Dn

log2 (1 +
ρh0d−ε

N0

)

)

. (9)



Then, by taking the first-order derivative and the second-order

derivative of Us(p) with respect to p, respectively, we have

∂Us(p)

∂p
=

N
∑

n=1

(

−
Dn

log2 (1 +
ρh0d−ε

N0

)
+

αnC

p2

)

,

∂2Us(p)

∂2p
=

N
∑

n=1

−
2C · αn

p3
< 0.

(10)

Since the first-order derivative of Us(p) has a unique zero

point, i.e., p∗ =

√

C log
2 (1+

ρh0d−ε

N0
)
∑

N
n=1

αn
∑

N
n=1

Dn
, and the second-

order derivative of Us(p) is negative, Us(p) is strictly concave,

indicating that the MSP has a unique optimal solution to

the formulated game [8]. Based on the optimal strategy of

the MSP, the VMUs’ optimal strategies can be obtained

[6]. Therefore, the Stackelberg equilibrium can be obtained

uniquely in the formulated game.

IV. LEARNING-BASED INCENTIVE MECHANISM WITH

INCOMPLETE INFORMATION

In this section, we first introduce the DRL algorithm. Then,

we describe how to transform the Stackelberg game into a

learning task. Specifically, we model the Stackelberg game

between the MSP and VMUs as a Partially Observable Markov

Decision Process (POMDP) and design a DRL-based learning

algorithm to explore the optimal solution to the Stackelberg

model, where the MSP is the learning agent.

A. Deep Reinforcement Learning for Stackelberg Game

Due to the competitive effect, each VMU only has its local

information which is incomplete in the game and determines

the bandwidth strategies in a fully non-cooperative manner

[5]. DRL can be utilized to learn an optimal policy from past

experiences based on the current state and the given reward

without knowing any prior information. Here are the details

of the DRL formulation.

1) State space: At the current game round k ∈ K =
{0, . . . , k, . . . ,K}, the state space is defined as a union of the

current MSP’s pricing strategy and VMUs’ bandwidth demand

strategies, which is denoted as Sk , {pk, bk} .
2) Partially observable policy: To tackle the non-stationary

problem in the DRL system for facilitating VT migration, we

formulate the partially observable space for VT migration. The

MSP agent can only make decisions according to its local

observation of the environment. We define the observation

space ok of the MSP at the current game round k as a union of

its historical pricing strategies and VMUs’ bandwidth demand

strategies for past L rounds, given by

(11)ok , {pk−L, bk−L, pk−L+1, bk−L+1, . . . , pk−1, bk−1} .

Note that pk−L and bk−L can be generated randomly

during the initial stage when k < L. We consider historical

information because it enables the MSP agent to learn how

its strategy changes impact the game result of the current

time slot. When receiving an observation ok, the MSP agent

needs to take a pricing action pk to maximize its utility. Given

the lower bound cost C and the upper bound price pmax

for the pricing action, the action space can be represented as

pk ∈ [C, pmax], and the MSP’s policy can be represented as

πθ (pk | ok) → [C, pmax]. Note that we use a neural network

to represent the policy πθ and the value function Vπθ
(·), where

θ is the neural network parameter.

3) Reward: After the state transition, the MSP would gain

a reward based on the current state Sk and the corresponding

action pk. The reward function of the MSP can be defined as

R(Sk, pk) =







1, Uk
s ≥ Uk

best,

0, Uk
s < Uk

best,
(12)

where Uk
s is the current utility of the MSP in (4) and Uk

best is

the highest utility that the MSP has obtained until round k.

4) Value function: Given a policy πθ , the value function

Vπθ
(S) can measure the expected return when starting in S

and following πθ thereafter [13], which is defined as

Vπθ
(S) , Êπθ

[

K
∑

k=0

γkR (Sk, pk) | S0 = S

]

, (13)

where Êπθ
(·) is the expected value of a random variable given

that the MSP agent follows the policy πθ , and γ ∈ [0, 1] is

the reward discounting factor to reduce the weights as the time

step increases.

5) Actor-critic framework design: We leverage the popular

actor-critic framework and the Proximal Policy Optimization

method for policy iteration [8]. Following [13], at each training

iteration, we randomly sample experiences from the replay

buffer to update the network parameter. Then, Generalized Ad-

vantage Estimation [14] is used to compute variance-reduced

advantage function estimator A(S, p) that utilizes a learning

state-value function Vπθ
(S). Since the policy and the value

function share the same parameter θ of the neural network,

the loss function consists of the policy surrogate LCLIP (θ)
and the value function error term LV F (θ). Finally, to update

the policy and the value function, we utilize stochastic gradient

ascent to maximize the objective function as follows:

θe+1 = argmax
θe

1

|I|

∑

|I|

Êk

[

LCLIP
k (θe)− cLV F

k (θe)
]

,

(14)

LCLIP
k (θe) = Êk

[

min
(

rk(θe)A(Sk, pk),

fclip (rk(θe))A(Sk, pk)
)

]

,

(15)

LV F
k (θe) =

(

Vπθe
(Sk)− V targ

k

)2

, (16)

where

rk(θe) =
πθe

(pk|ok)

πθold
e

(pk|ok)
, (17)

A (Sk, pk) = − Vπθe
(Sk) +

K−1
∑

l=k

γl−kR(Sl, pl)

+ γK−kVπθe
(SK) ,

(18)



Algorithm 1: Proposed DRL-based Solution for VT

Migration

1 Initialize max round in an episode K, number of episodes
E, batch size I and network parameter θ;

2 for Episode e ∈ 1, . . . , E do
3 Reset environment state S0 and replay buffer BF ;
4 for Round k ∈ 0, . . . ,K do
5 MSP observes a state Sk and updates its observation

ok−1 into ok;
6 Input ok into MSP’s actor policy πθe and determine

the current price strategy pk;
7 VMUs determine bandwidth demands through (8);
8 Update Sk into Sk+1 and calculate reward Rk for

the MSP through (12). Then, update Uk

best when a
higher reward is obtained;

9 Store transition (ok, pk, Rk, ok+1) into BF ;
10 if k% |I | == 0 then
11 for m ∈ 1, . . . ,M do
12 Sample a random mini-batch of data with a

size |I | from BF to update the actor and
critic through (14);

13 end
14 end
15 end
16 end

and

fclip(rk(θe)) =











1− ǫ, rk(θe) < 1− ǫ,

1 + ǫ, rk(θe) > 1 + ǫ,

rk(θe), 1− ǫ ≤ rk(θe) ≤ 1 + ǫ.

(19)

Here, V targ
k is the total discount reward from time step k until

the end of the episode, θe and θe+1 are the policy parameter

in episode e and e + 1, θold
e represents the policy parameter

for sampling in episode e, c is a loss coefficient of the value

function, rk is the importance ratio, and I is the batch size of

sampled experiences for calculating policy gradients.

B. Algorithm Details

Motivated by the above analysis, the proposed DRL al-

gorithm details are illustrated in Algorithm 1. The time

complexity of the proposed DRL algorithm is determined by

the multiplication operations in a fully connected deep neural

network [8], which can be expressed as O
(

∑F
f=1 ǫf ǫf−1

)

,

where ǫf is the number of neural units in layer f and F is

the number of hidden layers.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the VT

migration system for vehicular metaverses and the proposed

DRL-based incentive mechanism through simulation experi-

ments. We first describe the experimental settings, followed

by the experimental results and analysis.

A. Experiment Settings

We consider that there is one MSP and the number of VMUs

N ∈ [1, 6]. Each VT has the data size Dn ∈ [100, 300] (MB)
and the immersion coefficient αn ∈ [5, 20]. The MSP’s

(a) The return of each episode. (b) The utility of the MSP.

Fig. 2. Convergence of DRL-based incentive mechanism.

maximum bandwidth, transmission cost, and maximum selling

price are set to 50MHz, 5, and 50, respectively. As for the

RSU parameters, the transmitter power of the source RSU ρ
is 40dBm, the unit channel power gain h0 is −20dB, the

distance between the RSUs d is 500m, the path-loss coeffi-

cient ǫ is 2, and the average noise power N0 is −150dBm.

The parameters of the DRL are selected through fine-tuning.

Specially, we set L = 4, D = 20, E = 500, K = 100,

M = 10, and lr = 0.00001 during experiments. Both the two

hidden layers of the neural network have 64 nodes.

B. Experiment Results

Figure 2 shows the convergence of the proposed DRL-

based incentive mechanism when there are two VMUs. We

set α1 = α2 = 5, D1 = 200MB, D2 = 100MB, and cost

C = 5. As shown in Fig. 2(a), the game return of each episode

converges to the maximum round, which indicates that the

MSP can always choose the optimal strategy in each round. In

Fig. 2(b), the utility of the MSP converges to the Stackelberg

equilibrium. Therefore, the DRL-based incentive mechanism

under incomplete information is as strong as the Stackelberg

game with complete information.

Figure 3 shows the performance of the proposed DRL-based

incentive mechanism. In Fig. 3(a) and Fig. 3(b), we study

the influence of the unit transmission cost. Specifically, we

study the unit transmission cost by changing it from 5 to 9
and consider that there are two VMUs whose VT data sizes

are 200MB and 100MB, and whose immersion coefficients

are both 5. From Fig. 3(a) and Fig. 3(b), we can see that

both the utilities and strategies of the MSP and VMUs in the

optimal solutions of the proposed scheme are approaching the

Stackelberg equilibrium, which demonstrates that the proposed

scheme can find the optimal solution under incomplete infor-

mation. As the unit transmission cost increases, the pricing

of the MSP also increases in Fig. 3(a). For example, when

the unit transmission cost is 5, the MSP sets the price at 25 to

incentive VMUs to perform VT migration. However, when the

unit transmission cost is 9, a higher price of 34 will be set. In

Fig. 3(b), we can observe that the total bandwidth strategy of

VMUs decreases when the unit transmission cost increases.

For example, when the unit transmission cost is 6, VMUs

purchase bandwidth resources of 27.9. While VMUs only pur-

chase bandwidth resources of 23.4 when the unit transmission

cost is 8. Both the utilities of the MSP and VMUs significantly

decrease due to the high cost of transmission in Fig. 3(a) and



(a) The utility and price strategy of the
MSP vs. Transmission cost.

(b) Total utility and bandwidth strat-
egy of VMUs vs. Transmission cost.

(c) The utility and price strategy of the
MSP vs. Number of VMUs.

(d) Average utility and bandwidth
strategy of VMUs vs. Number of
VMUs.

Fig. 3. The performance of the proposed DRL-based incentive mechanism.

Fig. 3(b). The reason is that when the transmission cost is high,

the MSP would increase the bandwidth price due to the cost

consideration, leading to a decrease in bandwidth purchased

by VMUs because of the high price. Furthermore, we compare

the proposed DRL-based scheme with random and greedy

schemes. In the random scheme, the MSP determines the price

randomly in each game round, while in the greedy scheme, the

MSP determines the best price by selecting from past game

rounds. In Fig. 3(a), we can find that our proposed scheme

outperforms the baseline schemes.

Next, we study the impacts of the number of VMUs in

Fig. 3(c) and Fig. 3(d). We set the data size of the VT as

100MB, and the immersion coefficient αn is 5. As shown in

Fig. 3(c), the utility of the MSP increases when the number of

VMUs increases. For example, the utility of the MSP is 7.03
when there are only two VMUs. When the number of VMUs

increases to 6, the MSP can obtain a higher utility of 20.35.

Note that the price of the MSP remains unchanged initially

and increases later. The reason is that when there are fewer

VMUs, the bandwidth resources of the MSP are sufficient,

but when the number of VMUs is too large, the bandwidth

of the MSP becomes insufficient. Therefore, the MSP needs

to increase the price of bandwidth to limit the purchase of

excessive bandwidth by VMUs. As shown in Fig. 3(d), the

average bandwidth purchased by VMUs remains unchanged

at first and decreases later. Due to the competition among

VMUs, the average utility of VMUs decreased by 12.8% as

the number of VMUs increases from 2 to 6.

VI. CONCLUSION

In this paper, we proposed a learning-based incentive mech-

anism for task freshness-aware VT migration in vehicular

metaverses. To quantify the task freshness of the VT migra-

tion, we proposed a new metric called AoTM according to

the concept of the AoI. Then, we formulated the resource

trading problem between the MSP and VMUs as a Stackelberg

game. Furthermore, we utilized DRL to solve the game under

incomplete information. Finally, numerical results demonstrate

the effectiveness of the proposed mechanism. In the future, we

will adopt more effective immersive metrics in conjunction

with AoTM to better evaluate the immersion of VMUs and

may develop a prototype system to evaluate our framework.

Besides, we aim to extend our model to scenarios with multiple

MSPs and VMUs.
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