
iCOIL: Scenario Aware Autonomous Parking Via
Integrated Constrained Optimization and Imitation Learning

Lexiong Huang1,2,∗, Ruihua Han1,3,∗, Guoliang Li1, He Li4, Shuai Wang1,†, Yang Wang1,†, and Chengzhong Xu4

Abstract— Autonomous parking (AP) is an emering technique
to navigate an intelligent vehicle to a parking space without any
human intervention. Existing AP methods based on mathematical
optimization or machine learning may lead to potential failures
due to either excessive execution time or lack of generalization.
To fill this gap, this paper proposes an integrated constrained
optimization and imitation learning (iCOIL) approach to achieve
efficient and reliable AP. The iCOIL method has two candidate
working modes, i.e., CO and IL, and adopts a hybrid scenario
analysis (HSA) model to determine the better mode under various
scenarios. We implement and verify iCOIL on the Macao Car
Racing Metaverse (MoCAM) platform. Results show that iCOIL
properly adapts to different scenarios during the entire AP
procedure, and achieves significantly larger success rates than
other benchmarks.

I. INTRODUCTION

Autonomous parking (AP) is a core task for intelligent
driving, which determines a sequence of control commands
to move the vehicle from its current position to a parking
space without any human intervention [1]–[4]. The next-
generation AP aims to save more human drivers’ parking
time by enlarging the AP range from several meters to
tens of meters [5], [6]. However, longer AP range requires
high adaptation in dynamic scenarios and fast generation of
collision-free trajectories. Optimization-based algorithms [1],
[6] suffer from high computational complexities and may lead
to potential failures due to excessive execution time. On the
other hand, deep learning algorithms [2]–[5] can generate
driving signals from input images in milliseconds using feed-
forward operations. But they may break down if the target
scenario contains data outside the distribution of their training
dataset. Consequently, currently there is no AP algorithm
that simultaneously achieves excellent generalization and high
computational efficiency.

This paper considers the integration of optimization and
learning methods and aims to realize intelligent switching
between the two methods in different scenarios. However, such
an integration involves the following technical challenges:

This work was supported by the Science and Technology Development
Fund of Macao S.A.R (FDCT) (No. 0081/2022/A2), the Guangdong Basic
and Applied Basic Research Project (No. 2021B1515120067), the Shenzhen
Science and Technology Program (No. RCB20200714114956153), and the
Cooperation Project between Shenzhen Institute of Advanced Technology and
Direct Drive Tech.

∗ Equal contribution
† Corresponding author: Shuai Wang (s.wang@siat.ac.cn) and Yang Wang

(yang.wang1@siat.ac.cn).
1 Center for Cloud Computing, Shenzhen Institute of Advanced Technol-

ogy, Chinese Academy of Sciences
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Department of Computer Science, University of Hong Kong
4 IOTSC, University of Macau

(a) Virtual simulation (b) Real-world testbed

Fig. 1: Implementation of iCOIL on MoCAM.

(1) Scenario uncertainty for learning algorithms. The sce-
nario can be complex (i.e., containing static and dynamic
objects), heterogeneous (i.e., containing non-IID data
with different lighting and weather conditions), and multi-
modal (i.e., can be images, point-clouds, or other sensory
data) [7]. This makes it difficult to determine whether a
given scenario poses a threat to learning algorithms.

(2) Scenario complexity for optimization algorithms. The
computational time of optimization is proportional to the
size of state-action space and the number of surround-
ing objects [8]. This makes it challenging to determine
whether a given scenario poses a threat to optimization.

(3) Real-time implementation of the AP system. This re-
quires highly efficient implementation of the learning and
optimization algorithms, and a fast switching mechanism
between two algorithms.

To address the above challenges, this paper proposes
integrated constrained optimization and imitation learning
(iCOIL), which serves as an efficient and reliable AP so-
lution. The iCOIL leverages CO to generate collision-free
trajectories with theoretical guarantee through mathematical
state-evolution models, and IL to mimic human experts’ logics
and actions through a deep neural network (DNN). To enable
transition between the CO and IL modes, iCOIL adopts a
hybrid scenario analysis (HSA) model that computes scenario
uncertainties based on information entropy and scenario com-
plexities based on geometries of ego-vehicle and obstacles.
The iCOIL solution is implemented as a robot operation
system (ROS) package and connected to Car Learning to Act
(CARLA) [9] via CARLA-ROS bridge. As such, the proposed
iCOIL-based AP system is validated on the Macao Car Racing
Metaverse (MoCAM) platform, which is a digital-twin system
that allows design and verification of AP through high-fidelity
virtual simulation (i.e, Fig. 1a) and transfers the result to the
real-world testbed (i.e., Fig. 1b) through ROS interfaces. We
also compare the success rate and parking time of iCOIL with
IL. Experimental results confirm the superiority of iCOIL. The
source codes will be released as open-source ROS packages.

ar
X

iv
:2

30
5.

13
66

3v
1

 [
cs

.R
O

]
 2

3
M

ay
 2

02
3

Fig. 2: The overall architecture of the proposed iCOIL-based AP system.

II. RELATED WORK

Learning-based algorithms can be viewed as black-box
inference mappings from input scenarios (i.e., a sequence of
images or point-clouds) to driving actions (i.e., throttle, brake,
steer, reverse) [2]–[5], [10], [11]. They do not make assump-
tions on the sensory and action datasets, but build brain-like
DNNs to directly learn from the datasets via back propagation
[10]. Such methods provide efficient feature extractions and
representations, as well as fast inference due to non-iterative
feed-forward operations. Learning-based algorithms can be
divided into reinforcement learning (RL) [3], [4], [10], [12]
and IL [2], [5], [11], [13], [14]. The RL algorithm allows
the intelligent vehicle to learn from experience by interacting
with the environment or other agents [10]. Nonetheless, the
RL-based approaches suffer from long training, work only
in confined scenarios, and are sensitive to sensor noises. IL-
based algorithms belong to supervised learning, which mimic
the experts’ driving policies by learning from demonstration
datasets [2], [5], [11]. However, the effectiveness of imitation
learning depends on the quality of the dataset and the general-
ization capability of the DNNs. To improve the quality of data,
the HG-DAGGER was proposed in [15] to support interactive
dataset collection from human experts in real-world systems.
On the other hand, to improve the generalization capability of
DNNs, conditional IL [11] and federated IL [16] have been
proposed for DNN selection and aggregation.

Optimization-based algorithms are hand-designed math-
ematical operations (mostly iterative) to minimize distances
between target and actual waypoints [1], [6], [17], [18]. This
can be realized through the model predictive control (MPC)
[1], which builds the relation between future and current states
using a finite horizon Markov decision process. Compared to
learning-based algorithms, optimization-based algorithms can
generate bounded actions, forcing the vehicle to move within
a safety region [18]. Compared to conventional heuristics

such as grid search and random sampling, optimization-based
algorithms can achieve higher driving performance since their
solution is guaranteed to be local or global optimal [17].
CO-based algorithms are constrained versions of optimization
algorithms for cluttered environments with obstacles, which
are more challenging to derive than the unconstrained counter-
parts, since the collision avoidance constraints are nonconvex
[1]. Furthermore, as the number of obstacles increases, these
algorithms would require longer execution time than learning
or heuristic algorithms [18]. Therefore, recent works on CO-
based algorithms mainly focus on how to resolve nonconexity
[1], [6] or accelerate computations [18].

III. THE ICOIL-BASED AP SYSTEM

The AP system architecture is shown in Fig. 2, which
is written as inference mapping f : X → A, where X =
{x1,x2, · · · } with xi being the ego-view images of the i-th
frame, and A = {a1,a2, · · · } with ai being the action vector
at the i-th frame containing throttle, brake, steer, and reverse
elements. At the i-th frame, the perception module (i.e., the
left hand side of Fig. 2) maps environments into images
xi via onboard cameras. The image processor (i.e., next to
the perception module) contains a bird’s eye view (BEV)
transformer yi = g(xi) and an object detector zi = h(yi),
where yi and zi are the vectors representing the BEV image
and the bounding boxes at the i-th frame, respectively. As
shown in Fig. 3, the function g transforms ego-view images
(i.e., Fig. 3a) into BEV images (i.e., Fig. 3b), and the function
h generates bounding boxes of obstacles (i.e., Fig. 3c). The
proposed iCOIL (i.e., in the middle of Fig. 2) contains IL
fIL(·), CO fCO, (·), and HSA fHSA(·) modules, which are
presented in detail below.

The IL module (i.e., the upper middle part of Fig. 2) maps
BEV images into actions, i.e., ai = fIL(yi|θ∗), where θ∗

is the pretrained DNN parameters. This θ∗ is obtained by

(a) The input ego-view images. (b) The generated BEV images. (c) The detected bounding boxes.

Fig. 3: The input data, generated BEV image, and detected boxes for the iCOIL-based AP system.

collecting the expert demonstrations and training a DNN on
that dataset. On the other hand, the CO module (i.e., the lower
middle part of Fig. 2) leverages the detected bounding boxes
zi to generate collision-free actions, i.e., ai = fCO(zi). This
fCO is obtained by solving the AP optimization problem for
minimizing a time efficiency cost under a set of constraints
on acceleration, velocity, kinetics, and collision avoidance.

The HSA module (i.e., at the center of Fig. 2) is a
function fHSA({xt}it=i−T) that computes the average scenario
uncertainty Ui and average scenario complexity Ci at frame i
over the past period of time (i.e., a dynamic time window from
t = i−T to t = i) and uses them as indicators for determining
the driving mode. If the average uncertainty (complexity)
exceeds a certain threshold, then the current scenario poses
a threat to the IL (CO) algorithm, and our AP system would
switch to the other mode for a higher reliability (efficiency).
Consequently, we can set fHSA({xt}it=i−T) = UiC

−1
i and

adopt the following conditions for mode switching:

f(xi) =

{
fIL (g(xi)|θ∗) , if fHSA({xt}it=i−T) ≤ λ
fCO (h(g(xi))) , if fHSA({xt}it=i−T) > λ

,

(1)
where λ is a predefined threshold to be fine-tuned empirically.

IV. THE ICOIL ALGORITHM DESIGN

A. IL

For the proposed IL module, the continuous driving actions
are converted to discrete values, so as to formulate IL as a
multi-category classification problem [2], [5], [11]. This make
it possible to leverage a DNN consisting of a feature extraction
network and a state-action network, where the former extracts
high dimensional features from images and the latter maps
features into actions. The feature extraction network adopts
three layers, and each layer has three units, i.e., convolution,
ReLU activation, and max pooling. The state-action network
has four fully connected layers followed by a soft-max layer
that outputs probabilistic actions. The action with the highest
probability is selected for actual execution at the ego-vehicle.
All parameters of the DNN are collectively denoted as θ.

Based on the above structure, the DNN training is an opti-
mization problem w.r.t. θ, with the objective of minimizing the
difference between the DNN outputs and the expert actions:

θ∗ = argmin
θ

∑
(x′

i,a
′
i)∈D

L (fIL (g(x
′
i)|θ) ,a′i) , (2)

where D denotes the training dataset, and L(·) is the cross
entropy function

L = − 1

|D|

M∑
j

A′
i,j log(f

Prob
IL,j (g(x′

i)|θ)) (3)

where |D| is the cardinality of D (i.e., the number of samples),
M is the number of classes after action discretization, A′

i,j

is the j-th element of a′i, and and fProb
IL,j (·) denotes the

probabilistic value of the j-th DNN output.

B. CO

The CO module leverages the Ackermann kinetics model
si+1 = u(si,ai) to estimate the trajectories si+1, · · · , si+H ,
where si denotes the location and orientation of ego-vehicle
at frame i obtained from h(g(xi)), and H is the length of
prediction horizon. With the above kinetics model, we can
derive function si+h+1 = vh+1(si, {at}i+h

t=i) for all h ∈
[0, H − 1], where v1 = u. The goal of AP is to move the
vehicle into the parking space using the minimum time. This
can be realized via minimizing the distance cost [1]

C({at}i+H−1
t=i) =

H−1∑
h=0

∥∥vh+1(si, {at}i+h
t=i)− s∗i+h+1

∥∥2 , (4)

where {s∗i } represent the list of target waypoints, e.g., the
shortest path from the current position to the target parking
space. On the other hand, the ego-vehicle is not allowed to
collide with any surrounding objects:∥∥vh+1(si, {at}i+h

t=i)− oh+1,k

∥∥ ≥ dsafe,k,∀h, k (5)

where oh,k is the position of the k-th obstacle at frame
i + h and dsafe,k is the safety distance related to the size of
obstacle k. Based on the above analysis, the collision-free AP
is formulated as the following CO problem [18]:

{a∗t }i+H−1
t=i = argmin

at∈A,∀t

{
C({at}i+H−1

t=i) : (5)
}
, (6)

where A is the boundary set for driving actions. The above
problem is nonconvex due to the functions {vh+1(·)} in both
objective and constraints. We convert the primal problem into
several convex optimization problems and solve them using the
open-source optimization software (e.g., CVXPY). The output
action at frame i is set to fCO (h(g(xi))) = a∗i .

TABLE I: Parameters for scenario complexity

Type Symbol Parameters
Ego-vehicle H length of prediction horizon
Ego-vehicle Na dimension of action space

Obstacle D0 most dangerous obstacle distance
Obstacle Dj,k distance of obstacle k at frame j

C. HSA

The HSA module needs to compute scenario uncertainty
Ui and scenario complexity Ci over the past T frames. In
particular, the scenario uncertainty measures the “confidence”
of IL, and is related to the probabilistic distribution of the
DNN outputs [19], [20]. For instance, even distributions indi-
cate larger uncertainties while non-even output distributions
indicate smaller uncertainties [19], [20]. Consequently, the
instant scenario uncertainty ωi at frame i is defined as the
entropy of the probabilistic distribution of the DNN outputs
ωi = −

∑M
j=1 pi,j log pi,j , where pi,j is the probability value

for action j at frame i. By summing up ωi over the past T
frames, we have

Ui =
1

T

T−1∑
h=0

ωi−h = − 1

T

T−1∑
h=0

M∑
j=1

pi−h,j log pi−h,j . (7)

On the other hand, the scenario complexity measures the
computational delay of CO, which is proportional to the
computational complexity for solving (6). By averaging the
computational complexity over the past T frames, the average
scenario complexity is [18]

Ci =
1

T

T−1∑
h=0

[
H

(
Na +

K∑
k=1

e−∥D0−Di−h,k∥

)]3.5
. (8)

where the parameters H,Na, D0, Dj,k are defined in Table I.
Interpretation of Ci: First, the power of 3.5 in equation (8)

indicates that the computational delay increases superlinearly
with the length of prediction horizon and the number of obsta-
cles. Second, the term e−∥D0−Dj,k∥ in equation (8) means that
only a part of obstacles may have impact on the computational
complexity, where D0 is the most dangerous obstacle position.
This is because the planning space is reduced if the obstacle
is very close, and the collision probability is close to zero if
the obstacle is far-away [8].

V. EXPERIMENTS

A. Implementation Details

The Macao Car Racing Metaverse (MoCAM) platform is
adopted to verify the performance of the proposed iCOIL-
based AP. MoCAM is a digital-twin system consisting of
a real-world sandbox and a high-fidelity virtual simulator
developed based on CARLA [9]. The iCOIL is implemented
as three Python ROS nodes (i.e., IL, CO, and HSA nodes),
and connected to MoCAM via CARLA-ROS bridge. Besides
MoCAM and iCOIL nodes, we also deploy BEV transformer
and object detector nodes, which are off-the-shelf open-source
software. Data sharing among all these registered nodes is
realized via ROS communications, where the nodes publish or
subscribe ROS topics that carry the information of ego-view

Fig. 4: The simulated AP scenario in CARLA.

(a) (b)

Fig. 5: Steering values of IL and human driver.

images, BEV images, bounding boxes, and control commands.
Besides the proposed iCOIL, we also realize the conventional
IL scheme [2] for comparison, which directly adopts a multi-
layer DNN for AP. All experiments are conducted on a desktop
with Intel i9 CPU and NVIDIA 3080 GPU.

B. Settings

We consider the map shown in Fig. 4, where the starting
point of ego-vehicle is randomly generated within the spawn
point region (i.e., green area), and the parking space is within
the goal region (i.e., yellow box). The AP task can be classified
into: easy level (i.e., there are only three static obstacles
marked in blue), normal level (i.e., there are three static
obstacles and two dynamic obstacles marked in red), and hard
level (i.e., all obstacles exist and we add additional noises
to the input images and bounding boxes). The adversarial
data can simulate the real-world uncertainties and verify the
robustness of the proposed iCOIL.

C. Validation of the Proposed iCOIL-based AP

We adopt MoCAM to generate the driving dataset for
training the IL DNN. We collect 5171 data samples (2624 for
forward-moving and 2547 for reverse-parking) and terminate
the training process after 300 epochs. The steering actions gen-
erated by the IL and the human driver are compared in Fig. 5.
It can be seen that the trained IL generates similar actions
to those of the human driver. However, since discretization is
applied to the action space, the action curve of IL is stepped
and less smooth than that of the human driver.

To verify the effectiveness of the iCOIL-based AP, a
complete parking process from the starting to end points is

(a) (b) (c) (d)

Fig. 6: Comparison of the parking processes and trajectories between iCOIL and IL. (a) The parking process of the iCOIL-based
AP. (b) The trajectory of the iCOIL-based AP. (c) The parking process of the IL-based AP. (d) The trajectory of the IL-based
AP. The red curve represents the CO mode and the yellow curve represents the IL mode.

Fig. 7: Mode switching based on HSA.

shown in Fig. 6a. It can be seen that the proposed iCOIL-
based AP successfully navigates the ego-vehicle to the target
parking space without any collision. The scenario uncertainty
generated by the HSA module during the above procedure
is shown in Fig. 7. The uncertainty fluctuates between 0 to
0.5 at the beginning, but after around 280 time stamps, it
drops to below 0.1 and keeps stable. This demonstrates the
excellent scene understanding capability of the proposed HSA.

Based on HSA, the iCOIL-based AP system performs mode
switching from CO to IL for improving the AP efficiency
as shown in Fig. 6b. The associated control commands over
time are shown in Fig. 7. The reverse button is turned on
after mode switching and the steering value is close to zero
after around 470 time stamps, meaning that the ego-vehicle
enters the parking space and moves backwards slowly to
complete the AP task. Note that a guard time with 20 time
stamps is added in our implementation to smooth the transition
between different modes. The above experiment demonstrates
the effectiveness of the proposed iCOIL-based AP.

D. Performance Comparison

This subsection compares the parking time and success rates
of the iCOIL and IL schemes. The parking time is defined
as the total amount of time from the starting point to the
parking space. The task is deemed as failed if the ego-vehicle
cannot reach the goal within a given time or collides with
other obstacles; otherwise successful.

The parking time and success rates under different levels
of difficulty are shown in Table II. For the easy level, iCOIL
achieves 94% success rate and the IL achieves 72% success
rate. But the parking time of IL is slightly shorter. For the
normal level, due to the consideration of dynamic obstacles,
the success rate declined for both methods. However, the
success rate of the IL drops significantly due to insufficient
generalization. A snapshot of parking failure with IL is shown
in Fig. 6c and 6d. In contrast, the success rate of iCOIL is not
much affected. This is because the iCOIL scheme adopts CO
for the collision avoidance, which generates more accurate
and safe actions than those of IL. As for the hard level,
the performance of IL is further degraded, since the sensing
uncertainty is enlarged. In all difficulty levels, the proposed
iCOIL always outperformed the IL in terms of success rate
metrics. Note that the success rate of IL could be enhanced
with more data and larger DNNs [2]. In this case, the gap
between IL and iCOIL could be smaller, but the iCOIL would
still outperform IL in corner case scenarios.

E. Sensitivity Analysis

Finally, we validate the parking performance of iCOIL
at different starting points. In particular, we consider close,
remote, and random starting points in Fig. 4 and the associated
results under different numbers of obstacles are shown in

TABLE II: Comparison of parking time and success rate

Easy Task
Method Average Max Min Success Ratio
iCOIL 26.02 27.21 24.89 94%
IL [2] 23.65 25.16 22.52 72%

Normal Task
Method Average Max Min Success Ratio
iCOIL 25.40 26.29 24.01 91%
IL [2] 25.81 26.54 23.77 36%

Hard Task
Method Average Max Min Success Ratio
iCOIL 25.72 26.70 24.58 92%
IL [2] 24.12 26.44 23.31 33%

Fig. 8: The parking time of iCOIL under different starting
points and numbers of obstacles.

Fig. 9: Comparison of parking time.

Fig. 8. For the close starting point case, the number of
obstacles has little impact on the parking time. However, as
for remote and random cases, the parking time increases as
the number of obstacles increases. This is because the starting
point may be close to the obstacles in such a case, which
significantly increases the parking time. Note that for the case
with random starting points, the fluctuation of parking time
is large, as the parking distance may vary significantly under
different moving trajectories.

Lastly, we test the execution frequency of iCOIL. The aver-
age frequencies of IL and CO are 75Hz and 18Hz, respectively.
This corroborates our theoretic analysis and demonstrates the
necessity of mode switching. Note that both frequencies can
meet the requirement of low-speed parking scenarios.

VI. CONCLUSION

This paper presented iCOIL, a scenario-aware AP solution
for achieving high efficiency and reliability by integrating
CO and IL. The iCOIL was implemented as a ROS package
and deployed in a real-time AP system. We validated the
iCOIL-based AP system in MoCAM and demonstrated its
effectiveness in various configurations. The iCOIL scheme

was shown to outperform the conventional IL in terms of the
success rate.

REFERENCES

[1] X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based collision
avoidance,” IEEE Transactions on Control Systems Technology, vol. 29,
no. 3, pp. 972–983, May. 2020.

[2] R. Chai, A. Tsourdos, A. Savvaris, S. Chai, Y. Xia, and C. P. Chen,
“Design and implementation of deep neural network-based control for
automatic parking maneuver process,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 33, no. 4, pp. 1400–1413, April.
2022.

[3] P. Zhang, L. Xiong, Z. Yu, P. Fang, S. Yan, J. Yao, and Y. Zhou, “Re-
inforcement learning-based end-to-end parking for automatic parking
system,” Sensors, vol. 19, no. 18, p. 3996, September. 2019.

[4] Z. Du, Q. Miao, and C. Zong, “Trajectory planning for automated park-
ing systems using deep reinforcement learning,” International Journal
of Automotive Technology, vol. 21, pp. 881–887, July. 2020.

[5] J. Ahn, M. Kim, and J. Park, “Autonomous driving using imitation
learning with look ahead point for semi structured environments,”
Scientific Reports, vol. 12, no. 1, p. 21285, December. 2022.

[6] Z. Han, Y. Wu, T. Li, L. Zhang, L. Pei, L. Xu, C. Li, C. Ma,
C. Xu, S. Shen et al., “Differential flatness-based trajectory planning
for autonomous vehicles,” arXiv preprint arXiv:2208.13160, 2022.

[7] S. Wang, C. Li, D. W. K. Ng, Y. C. Eldar, H. V. Poor, Q. Hao, and
C. Xu, “Federated deep learning meets autonomous vehicle perception:
Design and verification,” IEEE Network, pp. 1–10, December. 2022.

[8] J. Canny, The complexity of robot motion planning. MIT press, 1988.
[9] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,

“CARLA: An open urban driving simulator,” in Proc. CoRL, 2017, pp.
1–16.

[10] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. A. Sallab, S. Yo-
gamani, and P. Pérez, “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 6, pp. 4909–4926, June. 2022.

[11] J. Hawke, R. Shen, C. Gurau, S. Sharma, D. Reda, N. Nikolov, P. Mazur,
S. Micklethwaite, N. Griffiths, A. Shah et al., “Urban driving with
conditional imitation learning,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA), Paris, France, 2020, pp. 251–257.

[12] R. Han, S. Chen, and Q. Hao, “Cooperative multi-robot navigation in
dynamic environment with deep reinforcement learning,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA), Paris,
France, 2020, pp. 448–454.

[13] L. Tai, S. Li, and M. Liu, “A deep-network solution towards model-
less obstacle avoidance,” in 2016 IEEE/RSJ international conference on
intelligent robots and systems (IROS), Daejeon, Korea (South), 2016,
pp. 2759–2764.

[14] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. A. Theodorou,
and B. Boots, “Imitation learning for agile autonomous driving,” The
International Journal of Robotics Research, vol. 39, no. 2-3, pp. 286–
302, October. 2019.

[15] M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J. Kochenderfer,
“Hg-dagger: Interactive imitation learning with human experts,” in 2019
International Conference on Robotics and Automation (ICRA), Montreal,
QC, Canada, 2019, pp. 8077–8083.

[16] B. Liu, L. Wang, X. Chen, L. Huang, D. Han, and C.-Z. Xu, “Peer-
assisted robotic learning: a data-driven collaborative learning approach
for cloud robotic systems,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA), Xi’an, China, 2021, pp. 4062–4070.

[17] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of
motion planning techniques for automated vehicles,” IEEE Transactions
on intelligent transportation systems, vol. 17, no. 4, pp. 1135–1145,
April. 2016.

[18] R. Han, S. Wang, S. Wang, Z. Zhang, Q. Zhang, Y. C. Eldar, Q. Hao,
and J. Pan, “Rda: An accelerated collision free motion planner for
autonomous navigation in cluttered environments,” IEEE Robotics and
Automation Letters, vol. 8, no. 3, pp. 1715–1722, March. 2023.

[19] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian
deep learning for computer vision?” in Advances in Neural Information
Processing Systems, vol. 30, Long Beach, CA, USA, 2017.

[20] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncer-
tainty to weigh losses for scene geometry and semantics,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, Salt
Lake City, UT, USA, 2018, pp. 7482–7491.

	Introduction
	Related Work
	The iCOIL-based AP System
	The iCOIL Algorithm Design
	IL
	CO
	HSA

	Experiments
	Implementation Details
	Settings
	Validation of the Proposed iCOIL-based AP
	Performance Comparison
	Sensitivity Analysis

	Conclusion
	References

