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Research on protection of statistical databases from revela­
tion of private or sensitive information [Denning, 1982, ch. 6] has
rarely examined situations where domain-dependent structure
exists for a data attribute such that only a very few independent
variables can characterize it. Such circumstances can lead to
Diophantine (that is, integer-solution) equations whose solution can
lead to surprising or compromising inferences on quite large data
populations. In many cases the Diophantine equations are linear,
allowing efficient algorithmic solution. Probabilistic models can
also be used to rank solutions by reasonability, further pruning the
search space. Unfortunately, it is difficult to protect against this
form of data compromise, and all countermeasures have disadvan­
tages.

1. Two problems

Consider a university personnel database, and the
set of salaries of faculty. Suppose there are only
three rankE (assistant. associate, and full professor)
with salary the same for all members of a rank.
Suppose we know from reading the catalogue the
number of faculty at each rank, and suppose we
know from the annual financial report the total
amount of salary paid to professors (or equivalently,
the mean for the institution). Then we can write a
linear Diophantine (or integer-solution) equation in
three variables, and solve for the the salary associ­
ated with each rank. We will in general obtain a
finite set of possible values for each salary, which
can be pruned if we know additional im:ormation
such as reasonable limits on faculty salaries or the
restriction they be multiples of one thousand dol­
lars.

There is a kind of dual problem to this one. Suppose
we know the total tonnage of 'British naval vessels in
the South Atlantic, and suppose we also know from
published sources the tonnages of the only t~s of
ships owned by the British navy. We can then WrIte a
linear Diophantine equation and.solve for. all possible
fleet compositions. If we know information such as
bounds on the total number of ships in the British
fleet we can narrow the possibilities further.

These two examples represent what we call the
"unknown-values" and "unknown-counts" Diophan­
tine problems. respectively. (Or "Diophantine
compromises". but the latter word is mostly used for
individual data-item value revelations. and the infer­
ences here are about sets. though occasionally sets
of size 1.) They arise whenever the following condi­
tions all hold in regard to some attribute A and some
set S:
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1. A is numeric

2. A has only a small number of distinct values
for-the set S

3. we know the sum of ail the values of A for S (or
equivalently, the mean of the values and the size
of S)

4. we either know (a) the number of items having
each value of A for this set (the unknown-values
problem), or (b) the exact values that do occur
for A for this set (the unknown-counts)

5. the unknowns are drawn from a finite universe
having not "too many" members.

By "small" in (2) we mean on the order of 10 or less.
and by "too many" in (5) we mean on the order of
1000 or more. Situations that satisfy these restric­
tions arise usually with "artificial" attributes
representing invented cedes and measured proper­
ties of man-made objects. Often they involve joins,
either explicit or implicit. of a small relation with
unique-valued attributes representing fixed proper­
ties of objects with a larger relation representing
relationships or activities of those objects.

Mathematically:

N1 • V1 + N2· V2 + N3· V3 +.. .. = T

where the Vs are the possible data values, the N's
the number of occurrences of each. and T the total.
If the}!i's are known and the V's are unknown. we
have the unknown-values problem; if the V's are
known and the N's are unknown. we have the
unknown-counts. In order to ensure that this equa­
tion is Diophantine. since the Vs may be rational, we
should divide both sides by the greatest common
divisor of the Vs.



If rounding and/or truncation is used in calculating
T so that the result is not exactly the sum (as may
significantly occur with totals of large so::ts), we can
often infer the true sum since the greatest common
divisor of the V's divides the right side an. integer
number of times. We round T to the nearest integer
multiple of that divisor.

2. Multiple constraints .

Knowledge of the sum on some attribute is a linear
equality constraint, using the teminology of optimi­
zation. There are many additional ways of obtaining
both equality and inequality constraints on the
Diophantine solution. making protective counter­
measures for the database difficult. Of course, if we
obtain as many independent equations as variables
we can often determine them uniquely. But even
when we have more unknowns than equations the
Diophantine (integer) restriction itself can narrow
the possibilities to a small number.

V:e can briefly summarize the categories of addi­
tional equality constraints that may be available
(see [Rowe. in press] for more details of each except
the last two):

1. Additional moments on the data (e .g. standard
deviation), which give linear Diophantine equa­
tions for the unknown-counts case, nonlinear for
the unknown-values. The sum of the values can
be considered the zeroth moment.

2. Corresponding moments on attributes that
are in one-to-one relationship to the attribute of
interest (i.e. that show "extensional" functional
dependencies in both directions, functional
dependencies true only for a particular database
state), and hence have the same frequency
statistics. These give additional linear Diophan-
tine equations. '

3. A generalization of the preceding, correspond­
ing statistics on attributes that have an exten­
sional functional dependency in only one direc­
tion, to or from the attribute of interest. These
give linear Diophantine equations on new vari­
ables that relate by sums to the old variables.

4. Different factorizations of the same data, as in
multidimensional contingency tables of sums
(these give linear equations)

5. Statistics on unions of sets of interest,
whether directly or indirectly by inserts to the
database (these give linear equations)

6. If type checking is not enforced, moment cal­
culation routines can be applied to few-valued
nonnumeric attributes, giving equations like
those of item 3 (giving linear equations).

7: If transformations of data values (e.g. loga­
nthm, square root, reciprocal) can be applied
b.efore computing moments, Diophantine equa­
tions of the same form but generally different
coefficients are generated. These are linear for
the unknown-counts problem, nonlinear for the
unknown-values.
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8. Even multi-argument arithmetic operations on
data values can sometimes be exploited. For
instance, knowing the possible values for two
attributes allows calculation of the possible
values of their product, which if the former are
integers are not uniformly spaced. Another
example is knowledge of the proportion of items
having a certaln property in a set, when the size
of the set is not known. This is a "Diophantine
approximation" problem where we must find an a
and b such that alb is closer than some small
error E to some proportion p. All solutions form
series such that if alb is a solution, then so is
k*a/k*b for any positive integer k. For a ran­
dom proportion, the number of solution series
follows a binomial distribution, with the simplest
solution requiring on the average a denominator
of the square root of 2/E.

9. Joins can be used to create few-valued attri­
butes as mentioned in t.he last. section, but joins
can also be used to get many additional equalit.y
constraints on a set. If we know the mean of an
att.ribute of a relation, we can compare it to the
mean of the same attribute aft.er the relation
has been joined with another on some ot.her join
attribute(s). We can take subrelations of the
second relation, or use different second rela­
tions, or join on different attributes, to get a
variety of different equations, The equations are
(surprisingly) linear for the unknown-values
problem, but nonlinear for the unknown-counts
problem.

Additional inequality constraints can also prune the
solutions possibilities for a set of Diophantine equa­
tions (again see [Rowe, in press] for more details):

1. bounds on the frequency distribution of the
values for the unknown-counts problem, such as
the mode frequency or the frequency of the least
common item

2. bounds on the values for the unknown-values
problem, such as absolute maxima and minima
that it is impossible for values to go beyond

3. medians and other order statistics on the set,
which state how many items can lie in a certain
value range (useful for both unknown-counts and
unknown-values)

4. the number of items having certain values in
any superset containing the set of interest
(needed for both). Often we know the number of
items having particular values in the entire data­
base, and we can also sometimes perform an
easier Diophantine analysis (because of number­
theoretic peculiarities) on a superset.



3. Solving the equations

We can take all the constraints found by the
methods of the last section and find a finite set of
possible values for each variable by a variety of
methods. Fortunately. most of the abovementioned
equality constraints are linear. and there exist
sophisticated methods covered in [Chou and Collins.
1982] for finding solution vectors of matched vari­
able values for this information. We can then apply
inequality constraints successively, filtering out
those vectors inconsistent with them. The possible
values of the kth variable are then just the possible
kth vector components.

But our goal of finding all possible values for a vari­
able is less general, and we can take some shortcuts
in the above approach. Tn particular. we can tilter
out many possibilities a priori whenever we can
apply either of these rules:

1. In the Diophantine equation C1 * Xl + C2 • X2
+ C3 * X3 + ". = T, where the C's are constants
and X's are unknowns, find the pair of relatively
prime C's that have the smallest product. and
call them CJ and CK. Then for any other term 1,
Xl can take any integer value from 0 to (8 - (CJ •
CK) + CJ + CK - 1) / Cl (This says nothing about
larger values for Xl.) This follows from the
number theory result that for N > A • B - A-B.
there exist some integers X and Y such that A *X
+ B·Y = N.

2. In the Diophantine equation C1 • Xl + C2 * X2
+ C3 * X3 + ". = T, if for some I, XJ is divisible by
some integer F > 1 for all J not equal to I, then
(CI • Xl) mod F = T mod F for any solution value
Xl.

Various methods can be used for nonlinear Diophan­
tine equations too [Mordell. 1969]. General algo­
rithms do not exist, but there are many special­
purpose tools (e.g. analysis in modular arithmetic).
An exhaustive combinatorial search can be fallen
back on. since one can almost always find absolute
bounds on the integer unknowns.

Uilfortunately, it is very difiicult to analyze the
expected and worst-case time complexities of solu­
tion methods for the various Diophantine problems.
No satisfactory results appear to have been pub­
lished (though [Chou and Collins. 1982] do obtain
some results for space required for linear equa­
tions). This is a serious problem for protection
research because Diophantine inferences vary con­
siderably in effectiveness with small changes in the
coefficients involved (since the inferences come
from number theory, they can be very sensitive to
the lower-order bits of constants). To return to our
first example of the paper, if there are 13 assistant
professors. 7 associate. and 20 full. and their salary
sum is 11,200.000, and we assume possible salaries
are multiples of 551000. then we can use rule 1 above
and say that assistants can have any salary from 0
to (1200 - 140 + 20 + 7 - 1) I 13 = 83.5 thousands.
associates (1200 - 260 + 13 + 20 - 1) I 7 = 139.2
thousands. fulls (1200 - 91 + 13 + 7 - 1) I 20 =56.4
thousands. But if a new full professor is added to
the faculty. then all of a sudden we can apply rule 2
above and find that (13 • X) mod 7 = (-X) mod 7 =
1200 mod 7 = 3. X mod 7 = 4, and hence the only
values possible for assistant professor salaries are 4.
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11. IB, 25, 32. 39, 46, 53, ffO. 67, 74, and 81
thousands. Bounds can rule out possibilities, so if
say we know the range is 324,000 to 531.000, we can
infer a unique value of 825,000, whereas with those
same bounds before the professor was added we had
8 solutions.

The fact that the number of solutions to a Diophan­
tine problem can vary so widely (and even more so
with nonlinear Diophantine problems) means that
someone wishing to intentionally facilitate unwar­
ranted inferences (or a user with insert capability
wishing to compromise) could choose a set of values
or counts, perhaps just by fudging of true values,
that could help enormously. And note an "easy" set
of values or counts remains "easy" for any right­
hand side constant, though constraints affect the
actual number of solutions. Unfortunately, while
some "easy" sets of values are apparent on inspec­
tion, others are not.

4. Ranking solutions

We can often do more than just obtain possibilities
consistent with constraints. We can rank possibili­
ties by reasonableness, perhaps assigning probabili­
ties to quantify it. For instance, if an attribute
represents the number of children in an employee's
family. the value 10 is possible. but unlikely; so a
solution for the frequency of values in a subset that
has half of the employees with 10 children is highly
unlikely.

. A good general-purpose way of obtaining ranks for
the unknown-counts problem is possible when the
number of items having each particular value is
known for the database as a whole. Then the distri­
bution of values in any subset of the database can be
modelled by a multinomial distribution if we assume
independence of value occurrence, with probabilities
equal to frequencies of values in the full database.
Of course. knowledge of a particular database
domain may suggest other "nonlinear" ranking
methods which may supersede this. For example,
for our professor data we may think that the
difference between full and associate is probably
pretty close to the difference between associate and
assistant, and unlikely to be three or four times, or
one third or one fourth.

5. Multivariable-dependent attributes

Thusfar we have required attributes with relatively
few distinct numeric values. There is an important
generalization to attributes with perhaps many
values, but values all determined by a few indepen­
dent variables. Consider the salary policy for most
employees of Stanford Universily, roughly modell­
able as a logarithm of years of service, starting from
a certain "level". Thus there can be many different
employee salaries, but they can be explained by one
of ten or so values for "level" and a Variable for
number of years of service (Le., there is a func­
tional dependency from level and years to salary).
We can write an equation:

Ll ·log(KY) = T
which we can make Diophantine by dividing by the
greatest common divisor of the left hand side. So if



we know the levels and years for any subset contain­
ing all levels, and its salary sum, we can solve for
possibilities for the lJ and K. If we know more sub­
sets, we can narrow the possibilities further.

6. Countermeasures

Good countermeasures against these inferences are
hard. All methods have serious drawbacks.

Protection by limiting statistics computed on a set
of data is one possibility. but may require computa­
tionally expensive analysis, since nothing less than
attempting to solve every possible Diophantine situa­
tion in advance will do. Fortunately. however. the
checklist given in section 1 is not satisfied very
often, primarily because few-valued numeric attri­
butes are rare. But they do arise from time to time,
and when they do, little short of comprehensive
threat analysis will do. Note that query overlap con­
trols used to protect against a variety of classical
compromise methods [Denning. 1982. ch. 6] are use­
less here because strong inferences can be derived
merely from difierent queries on the same set, or
even sometimes a single query. Controls that
suppress statistics on particularly small sets are
some help. but since the power of Diophantine
methods is highly sensitive to the lower-order bits of
coefficients, this doesn't help very mUCh.

A better form of protection seems to be perturbation
of the data or query output, since this can aflect
low-order bits severely. The perturbations have to be
random, or the user might be able to discover the
perturbation by experiment and possibility elimina­
tion. and they have to be pseUdo-random as opposed
to truly random, or the user might zero in on true
values by asking the same query repeatedly. The
perturbations must also be sufficiently large that
user cannot just specify a small range of true values
for statistics, given the perturbed values, and inter­
sect all the results obtained from solving separately
a Diophantine equation set for cach possibility.
Some of these equation sets may be immediately
ruled out as impoSsible (e.g. anything with 4x + lOy
+ 18z = 101 because the sum of even numbers can't
be an odd number). while the equation set
corresponding to the true values of the means and
moments is always guaranteed to have a solution,
the solution corresponding to the true state of the
world.

A certain amount of query output perturbation may
occur automatically in a database system due to
rounding and/or truncation of statistics calculated
on large sets. However, this perturbation may be
quite systematic as opposed to random, and is likely
to vary considerably in magnitude with the sizes of
the sets being analyzed as well as the values being
analyzed, and thus rarely can offer certain protec­
tion.

A curious aspect of Diophantine inferences is that
they can still be possible even when the data is
encrypted and statistical aggregates cannot be cal­
culated directly. Assuming the encryption is on
each data attribute value and not on blocks of attri­
butes. the one-to-one nature of the encryption pro­
cess which is necessary for recoverability makes
encrypted data functionally dependent in both direc­
tions on the original data; hence we can use the
methods listed under equality constraint 2 of sec-
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tion 2, provided we know the mean of the encrypted
values, as we may quite easily in a public-key sys­
tem. The solution is only a frequency distribution,
and does not give correspondences between
encrypted values and true values. but often many of
these can be i6!ntified by inspection and methods
similar to the solution of simple substitution ciphers
by tables of English letter frequencies.

7. Conclusion

Diophantine inferences can pose an important
threat to the confidentiality of certain kinds of data.
Their power in specific cases is difficult to categorize
short of detailed number-theoretic analysis. Protec­
tion measures involving witholding of statistics are
weak in effect. and protection involving data or
answer perturbation seems to be the only real possi­
bility, with its concomitant disadvantages of degrad­
ing statistic quality. As best as we can tell, however,
no publishers of summary statistics have addressed
this type of compromise. including census agencies
which have been concerned with other types [Cox,
1980; Sande, 1983]. It seems important that they
become concerned.
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