
Abstract
In this paper, we describe a query system that provides vi-

sual relevance feedback in querying large databases. Our
goal is to support the process of data mining by representing
as many data items as possible on the display. By arranging
and coloring the data items as pixels according to their rel-
evance for the query, the user gets a visual impression of the
resulting data set. Using an interactive query interface, the
user may change the query dynamically and receives imme-
diate feedback by the visual representation of the resulting
data set. Furthermore, by using multiple windows for differ-
ent parts of a complex query, the user gets visual feedback
for each part of the query and, therefore, may easier under-
stand the overall result. Our system allows to represent the
largest amount of data that can be visualized on current dis-
play technology, provides valuable feedback in querying the
database, and allows the user to find results which, other-
wise, would remain hidden in the database.

Keywords:Data Mining, Visualizing Large Data Sets, Visu-
alizing Multidimensional and Multivariate Data, Visual
Query Systems, Interfaces to Database Systems

1. Introduction
The total amount of information in the world is estimated to

be doubling every 20 months and the size and number of da-
tabases is probably growing even faster. As computers affect
more and more aspects of modern society, one by-product is
the growing amount of information that is captured in a com-
puter-readable form. The automation of activities in all areas
including business, engineering, science, and government
produces an ever-increasing stream of data, because every day
new applications for computers arise, and even simple trans-
actions, such as paying by credit card or using the telephone,
are typically recorded using computers. Automated test series
in physics, chemistry and medicine generate large amounts of
data that are collected automatically via sensors and monitor-
ing systems. Even larger amounts of data are collected by sat-
ellite observation systems which are expected to generate one
terabyte of data every day in the near future [FPM 91].

The data of all areas mentioned so far are collected be-
cause people believe that it is a potential source of valuable
information providing a competitive advantage (at some

point). Querying and analyzing the data to uncover the valu-
able information hidden in the databases, however, is a diffi-
cult task. The growth in the size and number of existing da-
tabases far exceeds human abilities to analyze the data. If all
the data are to be analyzed at all, computer supported data
analysis will have to play an important role. Today, already
most of the data is stored in computers and an increasing
amount of the data is managed by database management sys-
tems. Their query languages allow people to query the data-
bases, but finding the interesting data often remains a prob-
lem. Even experienced database users may have difficulties
to find the hot spots. Since the user does not know exactly
the data and its distribution, many queries may be needed to
find them. The result for most queries will contain either less
data than expected, sometimes even no answers, so-called
‘NULL’ results, or more data than expected, at least more
than the user is willing to deal with. Thus, the data which
was once collected because it might be useful now may sit
useless in a data ‘dump’.

The need for supporting the process of querying and ana-
lyzing databases has been widely recognized and was even
ranked one of the most important topics of database research
for the 90s [SSU 90]. The US government, for example, spon-
sors large projects such as the Sequoia 2000 project [SFD 93]
to develop advanced data analysis techniques for very large
databases. Many companies also recognized the potential of
analyzing their databases. Banks and retail stores, for exam-
ple, analyze their transaction records to understand customer
habits better and thus tailor their marketing promotions ac-
cordingly. Banks also analyze loan and credit history to im-
prove their loan approval policies. On the one hand, over the
last years many tools and algorithms for data analysis have
been developed. It seems, however, that advanced techniques
for data analysis are not yet mature—at least for the flood of
data we are facing today. Since, on the other hand, the tech-
nology for generating, collecting and storing data is available,
the gap between the amount of data that is to be analyzed and
the amount of data that can be analyzed is growing.

2. Data Mining
The process of searching and analyzing large amounts of

data is also called ‘data mining’. The large collections of
data are the potential lodes of valuable information, but like

Supporting Data Mining of Large Databases
by Visual Feedback Queries

Daniel A. Keim, Hans-Peter Kriegel, Thomas Seidl
Institute for Computer Science, University of Munich

Leopoldstr. 11B, D-80802 Munich, Germany
{keim, kriegel, seidl}@informatik.uni-muenchen.de

http://kops.ub.uni-konstanz.de/volltexte/2009/7090
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-70904

in real mining, the search and extraction can be a difficult
and exhaustive process. Therefore, adequate and efficient
mining tools are essential for the mining to be successful. In
some sense, data mining is like the work of radiologists. It is
like scanning the database to identify phenomenons that
need to be looked at, showing the regular structure of the
data, but also helping to find anomalies.

2.1 Definition of Data Mining
‘Data Mining’ can be defined as the (non-trivial) process

of searching and analyzing data, helping to find implicit but
potentially useful information. Let D ={d1, ..., dn} be the
data set to be analyzed. Then, data mining can be described
as the process of finding a subset D’ of D and hypotheses
HU (D’, C) about D’ that a user U considers useful in an ap-
plication context C. This definition can be further formalized
e.g. by defining a hypothesis description language, a context
description formalism and so on. The user and his/her notion
of ‘usefulness’, however, can hardly be formalized since
‘usefulness’ not only depends on the changing knowledge of
the user and the application domain, but it also includes some
notion of creativity and users may not be able to define their
usefulness criteria. On the other hand, if a data mining tool
helps the user to find useful D’ and to find and verify hypoth-
eses, then it may not be important to have the hypothesis, the
context and so on formally specified. All these aspects are
present in the user’s mind who will also be able to express
and communicate his/her ideas towards other humans.

2.2 Related Research Areas
Our definition of data mining is quite a broad definition

and relates to a wide range of other research areas including
statistics (data analysis, cluster analysis), artificial intelli-
gence (knowledge discovery, machine learning), database
interfaces (data browsing, cooperative database interfaces)
and information retrieval. In the following, we give a brief
overview of these areas.

Simple statistical parameters such as average, variance or
correlation coefficients allow only special kinds of hypothe-
ses, namely those with D’ = D or D’ = Ri in the case where D

is partitioned into relations R1, ..., Rm (). More

complex statistical methods such as multidimensional clus-
ter analysis and mathematical taxonomy [DE 82] try to find
hypotheses about real subsets of the database

. An
exhaustive cluster analysis of multidimensional data would
require checking the relationships between all combinations
of dimensions for all subsets of data items which is computa-
tionally intractable for large data sets. Although most cluster
analysis algorithms use some kind of heuristics to reduce the
search space (e.g. [Hub 85]), for very large databases with
millions of data items, cluster analysis is not feasible without
human guidance. Furthermore, statistical methods do not

D Ri
i 1=

m

∪=

D′ D⊂ with D′ D« and D′ sufficiently large()

help to find single exceptional data, so-called hot spots. In
our context, we talk about hot spots if
or sufficiently small when compared to|D|.

In artificial intelligence, researchers are working in the re-
lated fields of knowledge discovery and machine learning
which can also be considered as data mining. Among the AI
techniques used in data mining are decision tree approaches,
inverted expert system approaches, probabilistic theories,
Bayesian statistics, neural networks and genetic algorithms.
In contrast to our work, in knowledge discovery the hypoth-
eses are usually rules or facts which are formally specified in
some high-level language [FPM 91].

Another area related to data mining are database query in-
terfaces. The ability to extract data satisfying a common
condition is like data mining in its ability to produce inter-
esting and useful hypotheses. The usefulness of the results,
however, largely depends on the user’s a priori knowledge
and intuition. Additionally, today’s query interfaces only al-
low queries to be issued in a one-by-one fashion providing
no possibilities to incrementally change a query, to express
uncertain and vague queries. Approaches to improve the
query interface include graphical database interfaces that al-
low the user to browse the data (e.g. FLEX [Mot 90]) and
cooperative database interfaces [Kap 82, ABN 92] that try
to give ‘approximate answers’ in cases where the query does
not provide a satisfactory answer (key ideas are already pre-
sented in [JKL 77] for the first time).

In the area of information retrieval, a lot of research has
been done to improve recall and precision in querying data-
bases of unstructured data such as (full) text. In this context,
distance functions for text, strings or descriptors [HD 80],
ranking functions [NMK 81] and weighted queries [SB 88]
have been examined. To improve the effectiveness of infor-
mation retrieval systems, the notion of relevance feedback
(using relevance assessments provided by the user) and ap-
proximate matching algorithms have been proposed
[Sal 88]. Although the work in information retrieval mainly
focuses on (full) text databases, we believe that it is an es-
sential prerequisite of our research.

2.3 Key Characteristics of Data Mining Tools
Before we describe our ideas to support data mining, in

this subsection we briefly mention the characteristics of data
mining tools that we consider to be the most important ones:
interactiveness and efficiency.

For data mining of very large databases to be successful in
the near future, we believe that it is essential to make the hu-
man being part of the data analysis process. It will be impor-
tant to combine the best features of humans and computers.
The intelligence, creativity and perceptual abilities of humans
which are unmatchable need to be supported by computers
which are best suited to do searching and number crunching.
A major research challenge is to find human-oriented forms of
representing large amounts of information. In today’s sys-

D′ D and⊂ D′ 1=

tems, the perceptual abilities of humans are only used to a very
limited ext.5end. Only few systems use vision and sound to
help the user in data analysis (see [SBG 90] for an example).

A second important characteristic of data mining tools is
efficiency. Efficiency is important for the algorithms to scale
up well enough when dealing with very large data volumes.
Although there is no universally agreed definition of ‘effi-
cient’, it has been stated that algorithms whose computation-
al requirements are of the same order as sorting [O(n logn)]
or better can be considered efficient [FPM 91]. Given hard-
ware improvements at the same rate as in the past, it is un-
likely that algorithms with a complexity that is substantially
higher than O(n logn) will be useful in dealing with data vol-
umes in the range of terabytes.

2.4 Outline of the paper
The rest of the paper is organized as follows: Section 3 pre-

sents our idea to provide visual feedback in querying large
databases. Section 4 illustrates the query specification and
visualization interface and introduces the notion of approxi-
mate joins. Furthermore, a larger example is presented illus-
trating the handling of complex queries. To be able for the
reader to mathematically understand how our visualizations
are created, in section 5 we briefly describe distance func-
tions, calculation of the relevance factors and the heuristics
used in the system. Section 6 summarizes our approach and
points out some of the open problems for future work.

3. The Basic Idea
As indicated by our definition, we view data mining as an

interactive hypotheses generation process. Our goal is to
challenge the data to ask questions, rather than asking ques-
tions to the data. In contrast to most other approaches to data
mining (c.f. section 2.2), our idea is to use the phenomenal
abilities of the human vision system which is able to analyze
compact to mid-size amounts of data very efficiently. It is
able to immediately recognize patterns in images which
would be very difficult (in some cases even impossible) and
at least very time-consuming if done by the computer. The
research challenge is to find adequate ways of visually pre-
senting multidimensional data to support the users in analyz-
ing and interpreting the data.

Visualization of data which has some inherent two- or
three-dimensional semantics has been done even longer
than computers exist. Since using computers for this pur-
pose, a lot of interesting and efficient visualization tech-
niques have been developed by researchers working in the
graphics field [EW 92]. Visualization of large amounts of
arbitrary multidimensional data, however, is a pretty new re-
search area. Researchers in the graphics/visualization area
are currently exploring techniques in different application
domains [FB 90, ID 90, LWW 90, MZ 92]. In most of the
approaches proposed so far, the number of data items that
can be visualized on the screen at the same time is quite lim-

ited (in the range of 100 to 1,000 data items), but it is a de-
clared goal to push this limit [Tre 92].

In dealing with databases consisting of tens of thousands to
millions of data items, our goal is to visualize as many data
items as possible at the same time to give the user the best pos-
sible feedback on the query. The obvious limit for any kind of
visualization is the resolution of current displays which is in
the order of one to three million pixels, e.g. in case of our 19
inch displays with a resolution of 1,024 x 1,280 pixels it is
about 1.3 million pixels. Our idea is to use each pixel of the
screen to give the user a visual feedback on the query allowing
him/her to easily focus on the desired data, understand the in-
fluence of various query components and find out why slight-
ly different queries have completely different results - or more
general, to support a better, easier and faster query specifica-
tion. The interactiveness of such a system is important. The
user should have the possibility to modify the query on-line
and to see the changes of the visualized data set immediately.
By exploring the data with such a system, the user may learn
more about the data than by issuing hundreds of queries.

Now, let us explain our ideas using a real world example. In
environmental science, researchers want to find correlations
between local weather parameters such as temperature, hu-
midity, direction and speed of the wind, solar radiation, pre-
cipitation and the air pollution by CO, SO2, NO2, ozone, etc.
They have large series of the weather and pollution parameters
being measured every hour or even every few minutes at mul-
tiple locations resulting in data volumes of about 10 MByte
even if only measured for one year at one location. Some ob-
vious correlations between parameters, e.g. a positive correla-
tion of temperature and solar radiation, can be easily found by
calculating average or sum values for specific periods of time
as well as their correlations. Other interesting aspects, howev-
er, such as a time-lagged increase of temperature and ozone, or
single exceptional values are difficult to find with traditional
analysis methods. Finding such interesting data by directly
querying the database is also very difficult, since in general,
none of the parameters for the query can be fixed in advance.

Using our query and visualization system, the user still has
to specify a query using a graphical query specification tool.
As a result of the query, the user does not only get the data
items fulfilling the query, but also a number of data items that
approximately fulfill the query. The approximate results are
determined using distance functions for each of the selection
predicates which are combined into the relevance factor. The
distance functions are datatype and application dependent
and must be provided by the application. Examples for dis-
tance functions are the numerical difference (for metric
types), distance matrices (for ordinal and nominal types),
lexicographical, character-wise, substring or phonetic dif-
ference (for strings) and so on. In case of our environmental
database, we simply use numerical differences.

Having calculated the distances for each of the selection
predicates, the distances are normalized and weighted be-

fore they are combined into the relevance factor. Relevance
factors may be calculated for all data items, but in general,
we do not want (or may not be able) to present all the data on
the screen. Therefore, a threshold restricting the number of
data items that are represented on the screen needs to be de-
termined. This can be done by simply presenting as many
data items as fit on the screen, by presenting a user given per-
centage of the data or by more intelligent reduction algo-
rithms (c.f. section 5.1). Then, the relevance factors are sort-
ed resulting in a one-dimensional distribution, ranking the
approximate responses according to their relevance. The
principle idea for visualizing the relevance factors is to map
them to colors and represent each data item by several pixels
being colored according to the relevance of the data item.
Since screens are typically two-dimensional displays, we
had to find an adequate way of arranging the colored rele-
vance factors. We tried several arrangements such as top-
down, left-to-right, centered, etc. and found that arrange-
ments with the highest relevance factors centered in the mid-
dle of the window seem to be the most natural. The absolute-
ly correct answers are colored yellow in the middle and the
approximate answers with colors ranging from green over
blue and red to almost black are rectangular spiral-shaped
around this region (c.f. figure 1a). In cases where distance
functions provide positive and negative distances, we also
allow different arrangements (c.f. figure 1b).

The resulting window for the overall result is always sim-
ilar to the upper left part of the visualization window pre-
sented in figures 4 and 5. It only provides feedback on the
amount of data fulfilling the query and on the distribution of
the approximate answers. This information may already be
very helpful for the user; however, to better support the data
mining process, it is necessary to relate the visualization of
the overall result to visualizations of the different selection
predicates. Therefore, we generate a separate window for
each selection predicate of the query. In these windows, we
place the pixels for each data item at the same relative posi-
tion as the overall result for the data item in the overall result
window. The separate windows for each of the selection
predicates provide important additional feedback to the user,
e.g. on the restrictiveness of each of the selection predicates
and also on single exceptional data items.

After having the visual feedback, the user may interactive-
ly change the query according to the impression from the vi-
sualized results. Using high-lighting of corresponding pix-
els in different windows or a projection of the visual
representation to specific color ranges, the user may further
explore the data helping him/her to relate the relevance fac-
tors in the different windows. By having the possibility to
get the attribute values corresponding to some specific color,
the user may better understand and interpret the visualiza-
tions. According to the discoveries made during this pro-
cess, the user may then incrementally change the query us-
ing sliders provided for each of the selection attributes.

As already indicated in the previous section, our approach
to data mining largely differs from the techniques used in sta-
tistics, artificial intelligence, database interfaces and infor-
mation retrieval. The most obvious difference is that we are
using visualization and coloration to support the data mining
process. In our approach, we try to adequately support the
excellent vision capabilities of humans which we believe to
be the most important factor in data mining. Additionally,
our technique is fast enough to be used in very large databas-
es. For simple queries and standard distance functions the
complexity is O(n logn) with n being the number of data
items. Obviously, query processing time is dominated by the
time needed for sorting. Furthermore, our technique is com-
pletely application-independent, and, in contrast to most oth-
er approaches to data mining, with our approach it is possible
to find single exceptional values which are difficult—maybe
even impossible—to find with traditional cluster analysis or
knowledge discovery methods.

4. The Query Specification and Visualization
Interface

The basic idea of our query and visualization interface is to
present as many data items as possible to the user to provide
visual feedback on the query and to allow easy exploration of
the database, to understand the influence of various query
components, and to find out why slightly different queries
have completely different results. In the following, we give a
brief overview of our VisDB system: query specification and
visualization components, facilities provided to modify que-
ries interactively, processing of complex queries and exam-
ples for the visualization of results for different queries.

4.1 Query Specification
The query specification interface we use for specifying

queries is a derivative of the GRAphical Database Interface
(GRADI) [KL 92]. Although GRADI was developed in the
context of a multimedia database management system, it is
generally useful for specifying SQL-like queries. GRADI
has the advantage of allowing direct access to all parts of
complex queries. For the purpose of query specification, the
user may also use traditional query languages such as SQL,
or other graphical user interfaces. Since the query specifica-
tion is largely independent from the rest of the VisDB sys-
tem, we describe it only briefly in the following.

When starting the VisDB system, first the user has to select
the database s/he wants to work with. After getting the Query
Specification window, the next step is to select the tables to be
used in the query. For each selected table a list with all at-
tributes will be displayed in a separate window and all ‘con-
nections’ involving at least one of the selected tables will ap-
pear in theConnections window. ‘Connections’ are joins
which are defined and named by the database designer (or the
user) prior to their actual use. It may have parameters. To spec-
ify the result list (projection), the user has to move the desired

attributes and operators (avg, sum, max, min, count) to theRe-
sult List. Now, only the condition part of the query remains to
be specified. Using connections, attributes of the selected ta-
bles, and operators provided by theTool Box, the query may be
built interactively using the mouse. To support an incremental
query specification process, we allow the user to specify all
parts of the query independently and to combine them at a lat-
er stage. In theQuery Representation window the query is dis-
played graphically. Each part of the query is represented by a
small box, simple conditions by a single, subqueries by a dou-
ble box, and the connecting lines are labeled with the type of
connection used. TheTool Box allows fast access to all func-
tions supported by the system. The functions are divided into
six groups: logical operators and basic elements, arithmetic
operators, comparison operators, nesting operators, set oper-
ators, and aggregate operators. The basic elementsCondition
andSubquery are necessary for the incremental query specifi-
cation process. To allow the user to express the relative impor-
tance of each of the selection predicates, weighting factors
may be defined by selecting condition or subquery boxes and
assigning weighting factors to them.

To further explain the query specification process, let us
go through an example. Assume, a user of the environmental
database (c.f. section 3) wants to find a correlation between
temperature, solar radiation and humidity on one hand, and
the ozone level on the other hand. According to his/her as-
sumption that there is a correlation between the parameters
with a time delay of 2 hours, the user may specify the follow-
ing query:

‘Select the temperature, solar radiation, humidity and ozone
level if at the same location the temperature is higher than 15°C
or the solar radiation is higher than 600 watt/m2 or the humid-
ity is lower than 60%, and between recording temperature and
ozone there is a time difference of two hours.’

The final result of the query specification for this query is
shown in figure 3. The details of the query specification pro-
cess are beyond the scope of this paper and are given in [KL 92].

4.2 Visual Feedback
The principle idea of the visualization of results has al-

ready been described in section 3. As a result for a query, not
only the absolutely correct answers are retrieved, but also
approximate ones. These are determined by calculating a
distance for each of the selection predicates and combining
them into the relevance factor. Instead of displaying the data
itself, we represent each data item by one, four or sixteen
pixels of which the color represents the relevance of the data
item. Mapping the relevance factors to colors corresponds to
the task of finding an adequate color scale for a single pa-
rameter distribution. The advantage of color over gray
scales is that the number of just noticeable differences
(JNDs) is much higher [LRR 92]. The main task in coloring
the relevance factors is to find a path through color space that
maximizes the number of JNDs, but, at the same time, is in-
tuitive for the application domain. In designing the system,

we tried many variations of the colormap to enhance the use-
fulness of our system and found experimentally that for our
application, a colormap with quite constant saturation, an in-
creasing luminosity (intensity) and a hue (color) ranging
from yellow over green, blue and red to almost black is a
good choice to depict the distance from the correct answers.

To get a useful visual representation, the relevance factors
are sorted in descending order and arranged in a window, the
highest relevance factors centered in the middle and the ap-
proximate ones in a rectangular spiral-shape around this re-
gion (see figure 1a). The sorting is necessary to avoid com-
pletely sprinkled images that would not help the user in
understanding the data. Overall result windows of different
queries only differ in the size of the areas with different col-
ors. They may even be completely yellow in cases where all
the data represent completely correct results or almost black
in cases where all the data are completely wrong results. To
give the user more feedback than the amount of correct an-
swers and the distribution of approximate answers, we addi-
tionally provide visualizations of the distances for each of
the (top level) selection predicates (c.f. figure 4). However,
in contrast to the overall result window, we do not sort the
distances, but keep the same ordering of data items as in the
overall result window. As a result, the pixels of the windows
are implicitly related by their position. To be more specific,
for every data item the colors representing the distances for
the different selection predicates are at the same relative po-
sition in each of the windows. The separate windows for the
different selection predicates provide important additional
information to the user. By the visual color impression of the
single screens, the user gets information on how restrictive
each of the selection predicates is, i.e. how many data items
fulfill a condition, how many fail to fulfill a condition, and
how close the data items are to fulfill each of the conditions.
Using the correspondence of pixels between the separate
windows denoted by their position, the user may also study
specific data items. If in one of the windows there is a color
spot in an area of different color, the user might check for
this specific data item in the other windows, or s/he might
even retrieve the values for the corresponding data item out
of the database.

In designing our system, we also experimented with other
arrangements of the data items on the screen. One idea was
to display the data in 2D or 3D with selected attributes as-
signed to the axis. However, with such kinds of arrange-
ments, we had the problem that on the one hand many data
items may be concentrated in some area of the screen while
other areas are virtually empty, and on the other hand many
data items are superposed and therefore not visible. Al-
though 2D or 3D visualizations may be very helpful, e.g. in
cases where the data have some inherent two- or three-di-
mensional semantics, we did not pursue this idea for several
reasons: One reason is that in most cases the number of data
items that can be represented on the screen at the same time

is quite limited. This was in contrast to our goal of providing
feedback for as many data items as possible on the screen. A
second reason is that in most cases where a 2D or 3D ar-
rangement of the data is straightforward, systems using such
arrangements have already been built. For spatial queries on
two-dimensional data, for example, a 2D visualization is ob-
viously the best support for querying the database, and basi-
cally all Geographical Information Systems provide such vi-
sual representations of the data. For all cases, however,
where no inherent two- or three-dimensional semantics of
the data and therefore no straightforward visualization ex-
ists, our representation can be of great value to provide visu-
al feedback in querying the database. Stimulated by 2D or
3D representations of the data, we got the idea to provide an
optional second method of visualization that includes some
feedback on the direction of the distance for distance func-
tions that provide positive and negative values. The basic
idea is to assign two attributes to the axis and to arrange the
relevance factors according to the direction of the distance;
for one attribute negative distances are arranged to the left,
positive ones to the right and for the other attribute negative
distances are arranged to the bottom, positive ones to the top.
Inside the regions, the data items with the relevance factors
sorted in an descending order are arranged from the middle
(yellow region) to the edges of the window (see figure 1b).

With this kind of representation, we do not represent the
distance of data items directly by its locations, but we denote
the absolute value of the distance by its color and the direc-
tion by its location relative to the correct answers (colored
yellow). An advantage is that each data item may be assigned
to one pixel and no overlays of data items with the same dis-
tances occur. In summary, it may be noted that maximizing
the number of visualized data items conflicts with arrange-
ments that have multiple attributes assigned to the axis.

4.3 Interactively Modifying the Query
When using our system, the possibility to dynamically

modify queries is important. Since modifications have a di-
rect impact on the visualization, the user will get an immedi-
ate feedback on the effects of the changes. The visualization
provides feedback on the amount of data retrieved, on the re-
strictiveness of the conditions, on the distribution of the dis-
tances for each selection predicate and on special data sets
the user might be interested in. For example, if the yellow re-
gion in the middle of each window is getting larger (shrink-
ing), more (less) data items fulfill the condition; if a window
is getting darker (brighter), the corresponding selection
predicate is getting more (less) restrictive; if the overall
structure of a window is changing, the distribution of dis-
tances for the corresponding selection predicate is changing
and so on. These visual indicators are a valuable help to
quickly understand the effects of query modifications and to
learn more about the data in the database, especially in ex-
ploring large databases with millions of data items.

In figures 4 and 5, the query visualization and modification
window of the ‘VisDB’ system is displayed. The window is
divided into the left portion, the ‘Visualization’ part and the
right portion, the ‘Query Modification’ part. In the ‘Visual-
ization’ part, the user receives a visual representation for the
overall result and for each selection predicate. The ‘Query
Modification’ part consists of sliders for the selection predi-
cates and weighting factors as well as some other options.
The color spectrum of each slider is just a different arrange-
ment of the colored distances and corresponds to the distribu-
tion of distances for the corresponding attribute. Inside each
slider, the lowest and highest value of the visualized data
items for the corresponding selection predicate are displayed.
Outside the color spectrums the minimum and maximum val-
ue of the attribute in the database are displayed to give the
user a feeling for useful query values or query ranges.

Below the sliders, several parameters are listed for each at-
tribute, namely the ‘number of results’, the attribute values of
a ‘selected tuple’, the attribute values corresponding to some
selected color range (‘first’ and ‘last of color’) and finally the
‘query range’ and the ‘weighting factors’. In the following,
we will describe how these parameters may help the user to
explore the database and to modify the query. Using the
mouse, the user may choose a specific color or color range in
any of the sliders to get the corresponding values of the at-
tribute in the ‘first’ and ‘last of color’ fields. The possibility to
get the specific values corresponding to the different colors
for each selection predicate makes it easier for the user to un-
derstand and interpret the visualization. In figure 5, for exam-
ple, the red region in the lower right window may be easily
identified by the user. To understand the meaning of this re-
gion, however, the user needs additional information relating
colors and attribute values. In this special case, the user easily
observes that data items with values in the range of about
71% - 73% for Humidity are quite good overall answers al-
though their values for Humidity are quite distant as indicat-
ed by the red color. An additional help for the user to under-
stand the visualization and to find hot spots is to select a
specific data item in one of the visualizations to get the data
item highlighted in all visualization parts and the values for
the attributes displayed in the ‘selected tuple’ field. The user
may use this option to focus on an exceptional data item or to
get an example for a data item from an interesting region in
one of the visualization parts. To focus on sets of data items
with a specific color, it is possible to select some color range
in one of the sliders to get only those data items displayed that

Figure 1: (a) normal arrangement, (b) 2D-arrangement

(a) (b)

have the selected color for the considered attribute. In the oth-
er visualizations the same data items are displayed allowing
the user to easily compare the values of the other attributes.

To allow an interactive query modification, the query pa-
rameters are represented graphically by the black lines in the
sliders and by the value of the upper and lower limit in the
‘query range’ field. The user may use the sliders to roughly
modify lower and upper limit of the query or s/he may di-
rectly change the values in the ‘query’ field (c.f. figure 5).
For numbers, the user may also choose a different type of
slider where the medium value and some allowed deviation
can be manipulated graphically (see rightmost slider in fig-
ure 4). Different types of sliders are provided for different
datatypes and different distance functions. Sliders for dis-
crete types, for example, reflect the discrete nature of the
data by allowing only discrete movements of the slider. Slid-
ers for non-metric types (ordinal and nominal datatypes)
may be, for example, enumerations of the possible values
with the possibility to select each of the values. Special slid-
ers may be designed for special datatypes and special dis-
tance functions, e.g. for strings with different distance func-
tions (c.f section 3). Below the query parameter field, the
weighting factors are represented graphically. Like the que-
ry parameters, the weighting factors may be directly manip-
ulated using the mouse.

On the left side of the query modification part, there is a col-
or spectrum for the overall result. Since the combined dis-
tance values have no inherent meaning, no values are as-
signed to the different colors. Instead of fields for a selected
tuple, selected colors, or the query values, the number of data
items in the database, the number of data items being dis-
played in the visualization (absolute value and percentage),
and the number of resulting data items are presented to the
user. Using a slider, the user may change the percentage of
data being displayed or the allowed range, in case the percent-
age is determined using the heuristics described in section 5.1
(see figure 5). Note that changing the percentage of data being
displayed may completely change the visualization since the
distance values are normalized according to the new range.

In the normal mode, the system recalculates the visualiza-
tion after each modification of the query. The user may also
switch to an ‘auto recalculate off’ mode where queries are
only recalculated on demand. This option is useful for large
databases or if complex distance functions are used, because
the recalculation for each modification may need a consider-
able amount of time. Another menu option provides the pos-
sibility to switch back to the query specification process,
thereby allowing structural changes or extension of the que-
ry, and to specify completely different queries.

4.4 Complex Queries & Approximative Joins
Up to this point, we have only considered the simplest types

of queries, namely one table queries with all selection predi-
cates being connected by the same boolean operator. In this

subsection, we will briefly describe how complex queries, i.e.
queries with the selection predicates being arbitrarily con-
nected (nested ‘AND’s and ‘OR’s), multiple table queries and
some types of nested queries may be supported in our system.

In dealing with complex conditions that consist of arbi-
trary boolean combinations of selection predicates, in the
first step the user gets only the visualization of the top level of
the boolean expression. In terms of the graphical representa-
tion of the query in the query representation window, it is the
leftmost logical operator with the corresponding selection
predicates. If one of the selection predicates itself consists of
a boolean expression, then the user may not understand how
the visualization of that part is generated since only one visu-
alization with the overall result for the part is displayed. To
be able to explore the impact of any query part, in the VisDB
system the user has the possibility to get a visualization and
query modification window for arbitrary subparts at any lev-
el of the boolean expression by simply double clicking to the
corresponding boolean operator in the query representation
window. The query representation window is available to the
user during the whole process of data mining to provide an
overview of the actual query, reflecting all changes made by
direct modifications, and to allow access to all parts of the
query. In general, the arrangement of data items in the upper
left part of the visualization representing the overall result of
the corresponding query part is the same arrangement as for
the overall result of the whole query. However, the user may
also examine the query part independently and use an option
to get the data items arranged according to the relevance fac-
tors calculated for the query part only. In our example query
(c.f. subsection 4.1), in the first step the visualization consists
of four parts: one for the overall result of the query and three
for the three parts connected by ‘AND’ (see figure 4). If the
user wants to see visualizations for each of the selection
predicates connected by ‘OR’, s/he might double click on the
‘OR’-box in the query representation window and, as a re-
sult, s/he will get another query visualization and modifica-
tion window for this subpart (see figure 5).

Another type of complex queries are multi table queries
which, in general, involve some kind of join. The totality of
data items that need to be considered in this case corresponds
to the cross product of all tables involved. Our idea to visually
support multi table queries is to consider all data items of the
cross product that approximately fulfill the join condition. As
for all other selection predicates, the user gets a separate win-
dow for the join condition with all data items of the cross
product that fulfill the join condition being yellow and the
others being colored according to their distance. In some cas-
es, e.g. if the tables are connected by foreign keys which are
designed to connect related data items, this may not be help-
ful since the distances on foreign keys may not have any se-
mantics. In such cases, only those data items that fulfill the
join condition should be considered and no visualization for
the join condition needs to be generated. In many other cases,

however, it is quite helpful to consider data items that approx-
imately fulfill join conditions. In our example from environ-
mental science, for example, we have a time- and a location-
related join condition which both may well be considered as
vague ones. Such approximative joins may even be crucial to
find the desired results if e.g. the time interval for measuring
the weather and air pollution parameters is different or if the
weather and the air pollution measurement station are not at
the same but at close-by locations. In these cases, join condi-
tions requiring time or location equality would provide only
very few or even no results though they would be quite help-
ful. Again, the distance functions used to determine the dis-
tance of the join tuples are user and application dependent
(c.f. section 3). For joins on numerical attributes, for exam-
ple, the numerical difference between the considered data
items from the two relations might be used as an approxima-
tion of the join condition to be fulfilled. In a similar way, the
distance functions for non-equijoins (a1 < a2) or parame-
trized (non-equi)joins (a1 - a2 < c) may be determined. Spe-
cial joins, e.g. to relate geographical locations (c.f. example
query), require more complex distance functions. In a differ-
ent context, other distance functions may be helpful, e.g. if
the user is only interested in one relation and in the number of
join partners that each data item of this relation has with an-
other relation, the user might use the inverse of that number
as the distance.

In the last part of this subsection, we briefly describe how
our visualization technique may support the user in dealing
with nested queries. As an example, we describe the case of
nested queries where the subquery is connected using ‘ex-
ists’ or ‘in’. In dealing with such types of queries, the user
may choose the outer relation(s) to be the basis for display-
ing the relevance factors of the results. Again, the user will
get a separate visualization part for each of the (top level) se-
lection predicates. In the visualization part corresponding to
the overall result of the subquery, the user gets yellow in case
the subquery condition is fulfilled and otherwise the color
corresponding to the distance of the data item most closely
fulfilling the subquery condition. The data item most closely
fulfilling the subquery condition can be determined by the
minimum distance in performing an approximate join of the
inner and the outer relation(s). Using this single value to be
displayed for the whole subquery, the user gets no feedback
on the distribution of distances for the approximative join
and on the other selection predicates that may be involved in
the subquery. For this reason, we provide the possibility to
select one single data item in the visualization window and
to get the complete subquery with all its selection predicates
including the join of inner and outer relation(s) presented in
a separate visualization and modification window. This way,
the user is viewing the impact of the subquery in the context
of a single data item from the outer relation(s). If the user is
more interested in the connections between inner and outer
relation(s), s/he might use the cross product of inner and out-

er relation(s) as a basis for displaying the relevance factors.
In this case, the user gets a better feedback on the amount
and distribution of distances for data items that only approx-
imately fulfill the join of inner and outer relation(s). Howev-
er, since we are dealing with the cross product, the totality of
data items that are considered is much larger and the per-
centage that can be displayed is correspondingly lower.

Note, that in most cases where negations are used (negated
conditions, NOT IN, NOT EXISTS etc.), no distance values
may be obtained and hence no coloring is possible. Excep-
tions are only negated comparison operators [not (a1 op a2)
with op ∈{ >, <, ≥ , ≤}] where the comparison operator may
be inverted. The problem of not having distinguishable val-
ues in case of negations is similar to the problem of nega-
tions in logic programming.

4.5 Examples and Applications
In this subsection, we discuss some example visualiza-

tions and applications. The visualizations presented in fig-
ures 4 and 5 have been produced by our prototype system us-
ing real world data taken from a large database of
geographical information.

The starting point of our description is the query example
presented in figure 3. In the visualization part of the query
modification and visualization window (c.f. figure 4), it can
be easily seen by the different colors dominating the visual-
izations that each of the selection predicates has a distinct
impact on the overall result. The visualization of the third se-
lection predicate displayed in the lower right part of the visu-
alization window, for example, is dominated by dark colors
which means that the selection predicate is quite restrictive.
The visualizations of selection predicate one and two are
much brighter. In case of the lower left window, this is clear
because it corresponds to the overall result of the ‘OR’-part
and all data items fulfilling one of the three selection predi-
cates are colored yellow. Note, that the corresponding win-
dow (lower left of figure 4) is identical with the upper left
window of figure 5. Figure 5 visualizes each of the three or-
connected selection predicates with the arrangement of data
items being the same as in figure 4.

Our query and visualization system is not only useful for
data mining tasks such as finding correlations between differ-
ent attributes, finding groups of similar data, and finding hot
spots, but also for other tasks such as similarity retrieval, find-
ing adequate query parameters and weighting factors, and
finding correspondences in different databases. Finding simi-
lar parts in a large CAD database is an example for the first two
of these tasks. In a CAD database of 3D-parts, it is not obvious
how similarity can be formally described. Usually, there are
quite many parameters (in a concrete application in mechani-
cal engineering we had 27 parameters) describing the parts,
and each of them might be important for a part to be similar. In
searching for similar parts in traditional CAD databases a que-
ry is issued using fixed allowances for some of the parameters.

As a result of the query, the user only gets the information
whether a data item fulfills all allowances or not. However, the
user might miss a part that exactly fits in all except one param-
eter and just misses to fulfill the allowance of that single pa-
rameter. Therefore, in similarity retrieval, it seems to be im-
portant to provide approximate responses and to allow the
user to adjust the allowances and weighting parameters. Our
system provides features that exactly support these tasks mak-
ing it a promising candidate to be used in similarity retrieval.
Another example for an interesting application of our system
are multi-database systems where it is often a problem to find
corresponding data items in multiple independent databases.
If a distance function for the two attributes to be joined can be
defined, our system will help the user to identify closely relat-
ed data items of the two databases and to find adequate param-
eters for approximately joining the databases.

5. Mathematical and Statistical Foundations
In this section, we briefly describe the mathematical and

statistical foundations of our visualization technique. As we
will see, the formulas used in calculating the relevance fac-
tors are of high importance for the visualizations to be useful.
Some issues such as the distance and weighting functions are
highly application dependent and the examples presented in
this paper are given such that the reader is able to understand
how we derived the images presented in figures 4 and 5.

5.1 Heuristics to Reduce the Amount of Data
to be Displayed

Since the number of data items that can be displayed on
the screen is limited by the number of pixels, we had to find
adequate heuristics to reduce the amount of data and to de-
termine the data items of which the distance shall be dis-
played. The exact way is to use a statistical parameter, name-
ly the α-quantile. Theα-quantile is defined as the lowest

valueξα with , where0 ≤ α ≤ 1,

F(x) is the distribution andf(x) the density function.
Let r be the number of distance values that can be dis-

played on the screen, #sp be the number of selection predi-
cates and n the number of data items in the database, then
only data items with an absolute distance in the range [0, p-
quantile] are chosen to be presented to the user where p
equals r/(n*(#sp+1)). If negative and positive distance val-
ues are used, the range of values presented to the user is giv-
en by [α0*(1-p)-quantile, (α0*(1-p) +p)-quantile] whereα0
is determined byα0-quantile = 0. In the special case of two
attributes assigned to the two axis (c.f. section 4.2), corre-
spondingly the combinedα-quantiles for two dimensions
may be used. In the case, when several pixels are used per
data item, the number of presentable data items needs to be
divided by the corresponding factor (4 or 16) and the quan-
tiles need to be adapted correspondingly.

F ξα() f x() dx
∞–

ξα

∫ α= =

More important than the number of data items that are dis-
played is the effect of the highest and lowest value of the
considered part of the data on the normalization. Theα-
quantiles are only the best choice if we want to present as
many data items as possible. Depending on the distribution
of values, in many cases it will be better to present less data
items, especially if the density function of the distance val-
ues has multiple peaks (see figure 2 for an example for two
density functions). If we have e.g. two groups of distance
values each being in different orders (see figure 2b), it may
be helpful to present only the values of the lower group to the
user since, in this case, the graduate differences within this
group are better enhanced by different colors. To implement
this heuristics, first we define the range [rmin, rmax] for the
number r of distance values that the user would like to get
displayed. Suppose, the data items xi are sorted according to

their distance di. Then, for each we cal-

culate , with z being a heuristically de-

termined data dependent constant in the range
. Then, we choose the data item with the

highestsi to be the last data item that is displayed. Although
at the first glance, the complexity of this heuristics seems to
be in the order ofz*(rmax- rmin), the algorithm can be easily
optimized to a complexity in the order of (z+rmax- rmin) by
successively calculating thesi.

5.2 Combining the Distances into the Relevance
To determine the combined distance for a complex query,

first the distance values are calculated for each selection
predicate of the query by the application dependent distance
functions as described in section 3. The combination of dis-
tances for the different selection predicates, however, is not
straightforward because the distances for the different selec-
tion predicates have to be considered with respect to the dis-
tances of the other selection predicates, and the combined
distance must be defined and meaningful globally. One
problem is that the values calculated by the distance func-
tions may be in completely different orders of magnitude
(e.g. in a medical application, a distance of 1g/dl for Haemo-
globin may be very large and a distance of 1,000 per dl for
Erythrocyte may be very small). A second problem is that
the relative importance of the multiple selection predicates
is highly user and query dependent.

The second problem can only be solved by user interaction
since only the user is able to determine the priority of the se-

xi xrmin
… xrmax

, ,{ }∈

si di dj–
j i z–=

i z+

∑=

2 z rmax rmin–«<

Figure 2: two density functions

(a) (b)

lection predicates. Therefore, in general, it is necessary to
obtain weighting factors (wj , j ∈ 1, …, #sp) representing the
order of importance of the selection predicates from the user.

The first problem can be solved by a normalization of the
distances. A simple normalization may be defined as a linear
transformation of the range [dmin, dmax] for each selection
predicate to a fixed range (e.g. [0, 255]). When experiment-
ing with this normalization, we found that in some cases it
may cause misleading results. A single data item, for exam-
ple, with an exceptionally high or low value may cause a
completely different transformation, even if the combined
distance of this data item is too high to be displayed. As a
consequence of the normalization, however, the correspond-
ing selection predicate may have little or no impact on the
overall answer resulting in a set of approximate answers
with a completely misleading visualization. Our idea to im-
prove the normalization is first to reduce the number of data
items to be displayed for each selection attribute to a number

that is proportional to . The inverse proportionality to

wj (wj ∈ [0, 1]) is important for the following reason: The
less a selection predicate is weighted, the higher is the prob-
ability that data with a greater distance for this selection
predicate are needed. Then, the data are normalized by trans-
forming the range [dmin, dmax] of the remaining data items to
a fixed range as described above.

In order to combine the independently calculated and nor-
malized distances of multiple selection predicates into a single
distance value, we successively calculate combined distances
for all subparts of the query, according to the structure of the
query. In this step, we use e.g. the weighted arithmetic mean
for ‘AND’-connected condition parts and the weighted geo-
metric mean for ‘OR’-connected condition parts. More exact-
ly, for each data item xi the combined distance is calculated as:

 in case of ‘AND’,

in case of ‘OR’.

Before a calculated combined distance is used as a param-
eter for combining other distances, it is also normalized as
described above. After calculating the combined distance
for the whole condition, the relevance factor is determined
as the inverse of that distance value. At this point it should be
mentioned, that for special applications other specific dis-
tance functions such as the Euclidean, Lp or the
Mahalanobis distance in n-dimensional space may be used
to combine the values of multiple attributes.

6. Conclusions
Data mining in very large databases is one of the big chal-

lenges that researchers in the database area are currently fac-
ing. The task is to efficiently allocate interesting data sets,

r
n wj×

Combined Distancei wj dij×
j 1=

#sp

∑=

Combined Distancei dij
wj

j 1=

#sp

∏=

i.e. hot spots, clusters of similar data, or correlations be-
tween different parameters. Our approach to support the data
mining process combines traditional database querying and
information retrieval techniques with new techniques of vi-
sualizing the data. Our ‘VisDB’ system allows to visualize
the largest amount of data that can be displayed at one point
of time on current display technology providing valuable
feedback in querying the database and allowing the user to
find results which, otherwise, would remain hidden in the
database. The interactivity of the system allows to focus on
interesting data providing a promising way to explore the
database efficiently. Our approach is independent from any
specific application area and requires no knowledge on the
application other than the distance and weighting functions.
In contrast to traditional cluster analysis or knowledge dis-
covery algorithms, no complete analysis of the data result-
ing in facts or rules in a high-level language is done by the
system. The user with his/her perceptual capabilities and
general knowledge is responsible for doing the analysis and
interpretation. As a result, the query performance is better
than in most other approaches to data mining making it fast
enough to be used for very large amounts of data.

The visualizations presented in figures 4 and 5 are generat-
ed by a prototype of our ‘VisDB’ system. The prototype has
been implemented to evaluate the concepts and design of our
query and visualization interface. The implementation of
some parts of the interface, especially the interactive modifi-
cation of queries and the screen layouts with two attributes
assigned to the axis, is not yet completed. Furthermore, in
interfacing to traditional database systems, we found that
tasks such as multidimensional search and incremental
changes of queries which are important for our system to
work fast enough, are not adequately supported. Additional-
ly, current systems do not provide access to the preliminary
results of query subportions. We are currently working on
techniques that allow our system to work fast enough despite
these problems. Our idea is to retrieve more data than neces-
sary in the beginning and to retrieve only the additional por-
tion of the data that is needed for a slightly modified query
later on. Additionally, multidimensional data structures that
support range queries on multiple attributes will be essential
to improve query performance.

In this paper, we have shown that for exploring large data
sets the principle ofincremental query refinement guided by
visual feedback can be very helpful for the user to discover
interesting data sets and to derive and verify hypotheses
about them. Our VisDB system, being built around this prin-
ciple, provides a simple and elegant but remarkably power-
ful way of supporting data mining in very large databases.

Note
For technical reasons, it was not possible to publish the

screen dumps in color in this proceedings. If you are inter-
ested, we would gladly forward the color pages to you.

Figure 3: Query Specification Window

References
[ABN 92]Anwar T. M., Beck H. W., Navathe S. B.:‘Knowledge Mining by

Imprecise Querying: A Classification-Based Approach’, Proc. 8th Int.
Conf. on Data Engineering, Tempe, AZ., 1992, pp. 622-630.

[DE 82] Dunn G., Everitt B.:‘An Introduction to Mathematical Taxono-
my’,Cambridge University Press, Cambridge, Mass., 1982.

[EW 92] Earnshow R. A., Wiseman N.:‘An Introduction Guide to Scientific
Visualization’,Springer, 1992.

[FB 90] Feiner S., Beshers C.:‘Visualizing n-Dimensional Virtual Worlds
with n-Vision’, Computer Graphics, Vol. 24, No. 2, 1990, pp. 37-38.

[FPM 91] Frawley W. J., Piatetsky-Shapiro G., Matheus C. J.:‘Knowledge
Discovery in Databases: An Overview’,in: Knowledge Discovery in Da-
tabases, AAAI Press, Menlo Park, 1991.

[HD 80] Hall P. A., Dowling G. R.:‘Approximate String Matching’,Proc.
6th Int. SIGIR Conf., in: SIGIR, Vol. 17, No. 4, 1983.

[Hub 85] Huber P. J.:‘Projection Pursuit’, The Annals of Statistics, Vol. 13,
No. 2, 1985, pp. 435-474.

[ID 90] Inselberg A., Dimsdale B.:‘Parallel Coordinates: A Tool for Visu-
alizing Multi-Dimensional Geometry’, Visualization‘90, San Francisco,
CA., 1990, pp. 361-370.

[JKL 77] Joshi A. K., Kaplan S. J., Lee R. M.:‘Approximate Responses from
a Data Base Query System: Applications of Inferencing in Natural Lan-
guage’, Proc. 5th Int. Joint Conf. on Artificial Intelligence (IJCAI), Bos-
ton, MA., 1977, pp. 211-212.

[Kap 82] Kaplan S. J.: ‘Cooperative Responses from a Portable Natural
Language Query System’, Artificial Intelligence, Vol. 19, 1982,
pp. 165-187.

[KL 92] Keim D. A., Lum V.:‘GRADI: A Graphical Database Interface for
a Multimedia DBMS’, Proc. Int. Workshop on Interfaces to Database Sys-
tems, Glasgow, England, 1992, in: Workshops in Computing, Springer.

[LRR 92]Levkowitz H., Robertson P., Rogowitz B.:‘Color Theory and
Models for Computer Graphics and Visualization’, Tutorial No. 5, Visu-
alization‘92, Boston, MA., 1992.

[LWW 90]LeBlanc J., Ward M. O., Wittels N.:‘Exploring N-Dimensional
Databases’, Visualization‘90, San Francisco, CA., 1990, pp. 230-239.

[Mot 90] Motro A.: ‘FLEX: A Tolerant and Cooperative User Interface to
Databases’, IEEE Trans. on Knowledge and Data Engineering, Vol. 2,
No. 2, 1990, pp. 231-246.

[MZ 92] Marchak F., Zulager D.: ‘The Effectiveness of Dynamic Graphics
in Revealing Structure in Multivariate Data’, Behavior, Research Meth-
ods, Instruments and Computers, Vol. 24, No. 2, 1992, pp. 253-257.

[NMK 81]Noreault T., McGill M., Koll M. B.:‘A Performance Evaluation
of Similarity Measures, Document Term Weighting Schemes and Repre-
sentations in a Boolean Environment’,in: Information Retrieval Re-
search, Butterworths, London, 1981.

[Sal 88] Salton G.:‘A Simple Blueprint for Automatic Boolean Query Process-
ing’, Inform. Processing & Management, Vol. 24, No. 3, 1988, pp. 269-280.

[SB 88] Salton G., Buckley C.:‘Term-Weighting Approaches in Automatic
Text Retrieval’,Inform. Processing & Management., Vol. 24, No. 5, 1988.

[SBG 90]Smith S., Bergeron D., Grinstein G.:‘Stereophonic and Surface
Sound Generation for Exploratory Data Analysis’,Proc. Conf. on Com-
puter and Human Interaction (SIGCHI), 1990, pp. 125-131.

[SFD 93]Stonebraker M., Frew J., and Dozier J.:‘The Sequoia 2000 Archi-
tecture and Implementation Strategy’, Sequoia 2000 Technical Report
93/23, University of California, Berkeley, CA., 1993.

[SSU 90]Silberschatz A., Stonebraker M., Ullman J. D.:‘Database Sys-
tems: Achievements and Opportunities’,Technical Report, No. TR-90-
22, Dept. of Computer Sciences, University of Texas at Austin, 1990.

[Tre 92] Treinish L. A., Butler D. M., Senay H., Grinstein G. G., Bryson S.
T.: ‘Grand Challenge Problems in Visualization Software’,Proc. Visual-
ization, Boston, Mass., 1992, pp. 366-371.

Air-Pollution at-same-locationWeather

Air-Pollution

Limits

Locations

Water-Pollution

Weather

NEW

Tables Weather

DateTime

Location

Humidity

Precipitation

Temperature

Solar-Radiation

DateTime

CO

SO2

NO2

Ozone

SO2-&-Dust

Air-Pollution at-same-locationWater-Pollution

Air-Pollution at-same-locationWeather

Air-Pollution at-same-time-asWater-Pollution

Air-Pollution at-same-time-asWeather

Air-Pollution over Limits

Air-Pollution with-time-diff(min) Water-Pollution

Air-Pollution with-time-diff(min) Weather

Air-Pollution with-distance(m)Water-Pollution

Result List
from Weather, Air-Pollution

Temperature > 15°C

AND

Air-Pollution Connections

Solar-Radiation > 600 watt/m2

Humidity < 60%

Air-Pollution with-time-diff(120) Weather

AND OR Condition Subquery

+ - * DIV MOD

= > < ≥ ≤

Exists not Ex. IN not IN ALL

∪ ∩  ⊆ ⊇

AVG SUM MAX MIN COUNT

Tool Box

Result List

Temperature Solar-Radiation Humidity

Query Representation

Ozone

OR

Query Specification

Visualization and Query Modification

Air-Pollution at-same-locationWeather

Result List
from Weather, Air-Pollution

Temperature > 15°C

AND

Solar-Radiation > 600 watt/m2

Humidity < 60%

Air-Pollution with-time-diff(120) Weather

OR

Figure 4: Query Visualization and Modification Window

Figure 5: Visualization of the ‘OR’-Part of the Query

overall
result ‘OR’-part

connection 2

objects

displayed

% displayed

upper limit

lower limit

select. tuple

last of color

first of color

350 230 420

weight

query

range

of results

min:
first:

--- ---

--- ---

0 0 -789120

68376

27224

? 5217 ?59

0

3437

1743

0.257

0.134

2619

2452

W. at-same-
location Air-P.

W. with-time-
diff(120) Air-P.

86400

Visualization and Query Modification

max:
last:

99038 1.000 527040
0.36220643 57660

Air-Pollution at-same-locationWeather

Result List
from Weather, Air-Pollution

Temperature > 15°C

AND

Solar-Radiation > 600 watt/m2

Humidity < 60%

Air-Pollution with-time-diff(120) Weather

OR

Query Representation

overall
result

Solar-

objects

displayed

% displayed

upper limit

lower limit

select. tuple

last of color

first of color

410 210 320

weight

query

range

of results

max:
last:

min:
first:

15.0

max max

600.0 min

60.0

40.0%

33.6 1247.8

68376

27224

30000

25000

5217

18.7

16.5

827.3

697.1

71.2

72.6

Temperature Humidity

Visualization and Query Modification

Radiation

100
74.6

1.000
0.362

1092 2312 1246

0
337.6

5.3- 18.6
9.4

	Text1: First publ. in: Proceedings / Tenth International Conference on Data Engineering, February 14 - 18, 1994, Houston, Tex. pp. 302-313
	Text2: Konstanzer Online-Publikations-System (KOPS)
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-70904
URL: http://kops.ub.uni-konstanz.de/volltexte/2009/7090

