A Common Framework for Classifying and Specifying
Deductive Database Updating Problems

(preliminary version)

Emest Teniente
Toni Urpf

Universitat Politecnica de Catalunya
Facultat d'Informatica
Pau Gargallo 5
08028 Barcelona - Catalonia
e-mail: [teniente/urpi] @lsi.upc.es

Abstract

Several problems may arise when updating a deductive database. Up to now,
the general approach of the research related to deductive database updating problems
has been to provide specific methods for solving particular problems. However, all
these methods are explicitly or implicitly based on a set of rules that define the
changes that occur in a transition from an old state of a database to a new, updated
state. Therefore, these rules provide the basis of a framework for classifying and
specifying these problems.

In this paper we propose to use the event rules [O1i91], which explicitly define
the insertions and deletions induced by an update, for such a basis. We also define
two interpretations of these rules which provide a common framework for
classifying and specifying deductive database updating problems such as view
updating, materialized view maintenance, integrity constraints checking, integrity
constraints maintenance, repairing inconsistent databases, integrity constraints
satisfiability or condition monitoring. Moreover, these interpretations allow us to
identify and to specify some problems that have received little attention up to now
like enforcing or preventing condition activation. By considering only a unique set
of rules for specifying all these problems, we want to show that it is possible to
provide general methods able to deal with all these problems as a whole.

July 1994

-135-

1 Introduction

Deductive databases generalize relational databases by including not only base facts and integrity
constraints, but also deductive rules. Using these rules, new facts (derived facts) may be derived
from facts explicitly stored. Among other components, deductive databases include an update
processing system that provides the users with a uniform interface in which they can request different
kinds of updates, i.e. updates of base facts, updates of derived facts, updates of deductive rules and
updates of integrity constraints.

Several problems may arise when updating a deductive database [Abi88]. During last years much
research has been devoted to different database updating problems like view updating [Dec90,
KM90, GL91, TA91, TO92], materialized view maintenance [CW91, HD92, U092, GMS93],
integrity constraints checking [BDM88, SK88, DW89, Kiic91, Oli91, GCM+94], integrity
constraints maintenance [CW90, ML91, Wiit93] or condition monitoring [RCB+89, HCK+90,
QWIl1lL

Up to now, the general approach of the research related to deductive database updating problems
has been to provide specific methods for solving particular problems. However, all these methods are
explicitly or implicitly based on a set of rules that define the changes that occur in a transition from an
old state of a database to a new one. Therefore, these rules provide the basis of a framework for
classifying and specifying these problems. We propose to use the event rules {Oli91], which
explicitly define the insertions and deletions induced by an update, for such a basis.

In this paper we define two interpretations of the event rules: the upward interpretation and the
downward one, which allow us to classify deductive database updating problems in two different
types: upward problems and downward ones. Upward problems are concerned with computing the
changes on derived predicates induced by a transaction which consists of a set of changes on base
facts. On the other hand, downward problems are concerned with determining the possible
transactions that satisfy a given set of changes on derived predicats. The following figure illustrates
this idea:

Derived predicates

Downward

Upward problems

problems

Base predicates

We show how to specify deductive database updating problems in terms of the upward and the
downward intepretations of the event rules. By considering only a unique set of rules for specifying
all these problems, we want to show that it is possible to provide general methods able to deal with

-136-

all these problems as a whole. Therefore, we could uniformly integrate view updating, materialized
view maintenance, integrity constraints checking, integrity constraints maintenance, condition
monitoring and other deductive database updating problems into an update processing system.

The interpretations reported here can be seen as parallel to the notions of backward and forward
reasoning [Kow83]. Their main differences rely on the fact that backward and forward reasoning are
defined in terms of deductive rules and are used for query processing, while upward and downward
interpretations are defined in terms of the event rules and are used for update processing.

Finally, it is important to point out that we are not proposing a new method for change
computation. What we propose is to use the event rules and their interpretation as a common
framework for classifying and specifying deductive database updating problems. A particular
implementation of these interpretations would produce a particular method for change computation.

This paper is organized as follows. Next section reviews basic concepts of deductive databases.
Section 3, shortly reviews and adapts the concepts of event, transition rules and event rules as
presented in [Oli91]. Section 4 describes the upward and downward interpretations of the event rules.
In section 5, we use these interpretations in order to classify and specify upward and downward
deductive database updating problems. Finally, in section 6 we present our conclusions and point out
future work. We assume the reader is familiar with logic programming [L1087].

2 Basic Definitions and Notation

In this section, we briefly review some definitions of the basic concepts related to first order
theories and deductive databases [GMN84, L1087, Ul188] and present our notation.

Throughout the paper, we consider a first order language with a universe of constants, a set of
variables, a set of predicate names and no function symbols. We will use names beginning with a

capital letter for predicate symbols and constants and names beginning with a lower case letter for
variables.

A term is a variable symbol or a constant symbol (that is, we restrict ourselves to function-free
terms). We assume that the possible values for the terms range over finite domains. If P is an m-ary
predicate symbol and t), ..., t,, are terms, then P(t,, ..., t,) is an atom. The atom is ground if every
t (=1, ..., m)is a constant. A literal is defined as either an atom or a negated atom.

A fact is a formula of the form:

P(ty, ..., ty) «

where P(ty, ..., t;,) is a ground atom.

-137-

A deductive rule is a formula of the form:
P(ty, ., ty) < Lya..AL, withm2>0,n21

where P(ty, ..., ty,) is an atom denoting the conclusion and L,, ..., L, are literals representing
conditions. P(t,, ..., t,) is called the head and L; A...A L, the body of the deductive rule. Variables
in the conclusion or in the conditions are assumed to be universally quantified over the whole
formula. If a condition is an atom, then it is a positive condition of the deductive rule. If a condition
is a negated atom, then it is a negative condition. The definition of a predicate P is the set of all rules
in the deductive database which have P in their head. We assume that the terms in the head are
distinct variables.

An integrity constraint is a formula that the deductive database is required to satisfy. We deal with
constraints in denial form:

«— Lian..AL, withn=21 =
where the L; are literals and all variables are assumed to be universally quantified over the whole
formula. More general constraints can be transformed into this form by first applying the range form

transformation [Dec89] and then using the procedure described in [L1T84].

For the sake of uniformity, we associate to each integrity constraint an inconsistency predicate
Icn, with or without terms, and thus they have the same form as the deductive rules. We call them
integrity rules. Then, we would rewrite the former denial as Ic1 <~ L; A ... AL,.

A deductive database D is a triple D = (F, DR, IC) where F is a set of facts, DR a set of
deductive rules, and IC a set of integrity constraints. The set F of facts is called the extensional part
of the deductive database and the sets DR and IC is called the intensional part.

We assume that deductive database predicates are partitioned into base and derived (view)
predicates. A base predicate appears only in the extensional part and (eventually) in the body of
deductive rules. A derived predicate appears only in the intensional part. Every deductive database
can be defined in this form [BR86].

As usual, we require that the deductive database before and after any updates is allowed [L1087],
that is, any variable that occurs in a deductive or integrity rule has an occurrence in a positive
condition of the rule.

-138-

3 Transition and Event Rules

In this section, we shortly review and adapt the concepts and terminology of events, transition and
event rules, as presented in [Oli91]. The event and transition rules, and their interpretation (described
in the next section) constitute the common framework for classifying and specifying deductive

database updating problems. In a later section, we will discuss the use of these rules for specifying
these problems.

3.1 Events

Let DO be a deductive database, T a transaction and D™ the updated deductive database. We say
that T induces a transition from DO (the old state) to D (the new state). We assume for the moment
that T consists of an unspecified set of base facts to be inserted and/or deleted.

Due to the deductive, T may induce other updates on some derived predicates. Let P be one of
such predicates, and let PO and P? denote the same predicate evaluated in DO and DM, respectively.

Assuming that a fact PO(C) holds in D9, where C is a vector of constants, two cases are possible:

a.1. P*(C) also holds in D (both P°(C) and PB(C) are true).
a.2. PA(C) does not hold in D (PO(C) is true but PP(C) is false).

and assuming that PP(C) holds in D", two cases are also possible:

b.1 PO(C) also holds in D° (both Po(C) and P?(C) are true).
b.2. PO(C) does not hold in D (P*(C) is true but Po(C) is false).

In case a.2 we say that a deletion event occurs in the transition, and we denote it by 8P(C). In
case b.2 we say that an insertion event occurs in the transition, and we denote it by 1P(C).

Thus, for example, if Works(employee, unit) is a derived predicate, 1Works(John,Sales) denotes

an insertion event coriesponding to predicate Works: Works(John,Sales) is true after the update and
it was false before.

Formally, we asscciate to each derived P an insertion event predicate 1P and a deletion event
predicate 6P, defined as:

(1) Vx(P(x) <> Pn(x) A =PO(x))
(2) Vx(OP(x) < POox) A =P(x))

where x is a vector of variables. From the above, we then have the equivalencies [Urp93]:

(3) Vx(Pn(x) & (Po(x) A =8P(x)) v 1P(x))
4) V(=P (x) & (—Po(x) A —1P(x)) v 8P(x))

-139-

If P is a derived predicate, 1P and 8P facts represent induced insertions and induced deletions,
respectively. We also use definitions (1) and (2) above for base predicates. In this case, 1P and SP
facts represent insertions and deletions of base facts, respectively. Therefore, we assume from now
on that T consists of an unspecified set of insertion and/or deletion base event facts.

3.2 Transition Rules

Let us consider a derived predicate P of the deductive database. The definition of P consists of the
rules in the deductive database having P in the conclusion. Assume that there are m (m> 1) such
rules. For our purposes, we rename predicate symbols in the conclusions of the m rules by Py,
P, change the implication by an equivalency and add the clause:

eoey

1

5) Po V P
i=1

Consider now one of the rules Pj(x) ¢> L; A ...aL_,. When this rule is to be evaluated in the
new state, its form is PP(x) <> LM} A .. ALN, where LY, (j = 1... n) is obtained by replacing the
predicate Q of L; by QN. Then, if we replace each literal in the body by its equivalent expression
given in (3) or (4) we get a new rule, called transition rule, which defines the new state predicate pn,

in terms of old state predicates and events.

More precisely, if L%, is a positive literal Qn(x;) we apply (3) and replace it by:
(on(xj) A SQj(Xj)) v le(Xj)
and if L% is a negative literal —Q(x;) we apply (4) and replace it by:
(ﬂon(xj) A le(xj)) v SQj(Xj)
After distributing A over v, we get the transition rule for P, whose body is expressed in
disjunctive normal form. Notice that there are 2K disjunctands (where k; is the number of literals in

the P?, rule) and that literals in each disjuctand can be of three types: old database literals, base event
literals and derived event literals.

Example 3.1: Consider the rule P;(x) <> Q(x) A =R(x). In the new state, this rule has the
form P, (x) ¢> QM(x) A —RP(x). Then, replacing QM(x) and —~RP(x) by their equivalent expressions
given by (3) and (4) we get:

P10 & [(QO(x) A =8Q(x)) v 1Q(X)] A [(-RO(x) A —1R(x)) v SR(x)]

and, after distributing A over v, we get the following transition rule:

-140-

Pn(x) & [(Qo(x) A =8Q(x) A —=RO(x) A =R(x)) v
(Qo(x) A =0Q(x) A 8R(x)) v
Q) A =RO(x) A =1R(X)) Vv
(1Q(x) A OR(x))]

The body of the transition rule for PP is a disjunctive normal form formed by the union of the
disjunctive normal forms corresponding to all P1,.

For simplicity of the presentation, we will omit the sub index when P is defined by only one rule.

3.3 Insertion and Deletion Event Rules

Let P be a derived predicate. Insertion and deletion event rules of predicate P are defined
respectively as:

(6) 1P(x) & PO(x) A =PO(x)
(7) OP(x) &> Po(x) A —PB(x)

where PP refers to the transition rule of P and P° refers to the current (old) state of the database. The
event rules define the induced changes that happen in a transition from an old state of a database to a
new, updated state.

We would like to point out that these rules can be .intensively simplified, as described in [Oli91,
U092, UOY%4]. However, for the purpose of this paper it is sufficient to consider them as expressed
above.

4. Interpretation of the Event Rules

The event rules define the induced changes that happen in a transition from an old state of a
database to a new, updated state. These rules can be interpreted in two different ways according to the
direction in which the equivalence is considered. As we will see, left implication defines the changes
on derived predicates induced by changes on base predicates. On the other hand, right implication
defines the changes on base predicates needed to satisfy changes on derived predicates. We call them
upward and downward interpretation, respectively.

We would like to point out that we are not proposing methods for evaluating the event rules, but
interpretations of them. Thus, a particular implementation of these interpretations could be based
either on a top-down or on a bottom-up query evaluation procedure.

-141-

4.1 Upward Interpretation

The upward interpretation of the event rules defines the changes on dertved predicates induced by
changes on base predicates. We assume that these changes on base predicates are given by a
transaction, which consists of a set of base event facts.

As stated before, the upward interpretation considers the left implication of the equivalence in the
event rules. Therefore, in this interpretation the event rules corresponding to a derived predicate P are
expressed in the following way:

P(x) « Pn(x) A =PO(x)
OP(x) « POo(x) A =P1(x)

whose intended meaning is that there will be an induced insertion (deletion) of a fact of P if the body
of its corresponding event rule evaluates to true in the transition. _

The result of upward interpreting an event rule corresponding to a derived predicate P (succinctly,
the upward interpretation of 1P(x) or 8P(x)) is a set of derived event facts. Each of them corresponds

to a change of a derived fact induced by the transaction.

To obtain this result, literals in the body of 1P and &P have to be interpreted in the following way.
Old database literals (P°(x) and —P?(x)) correspond to a query that must be performed in the current
(old) state of the database, while new database literals (P%(x) and —P™(x)) are handled by upward
interpreting the transition rule of predicate P.

To upward interpret a positive new database literal PP, literals in each disjunctand of the body of
PM must be interpreted as follows:

- An old database literal corresponds to a query that must be performed in the current state of
the database. If there are no solutions for this query, the disjunctand does not define any
induced change.

- A base event literal corresponds to a query that must be applied to the transaction. If there are
no solutions for this query, the disjunctand does not define any induced change.

- A derived event literal defines the induced changes on a derived predicate and, therefore, it
must be handled by upward interpreting its corresponding event rule. In the particular case of
a negative derived event, e.g. —1P(x), its upward interpretation corresponds to a condition
whose truth value is given by the result of the upward interpretation of 1P(x). This condition

will be true if the latter result does not contain any derived event fact and false otherwise.

-142-

The upward interpretation of a negative new database literal —P" corresponds to a condition whose
truth value is given by the upward interpretation of the corresponding positive new database literal, as

for negative derived events.
The following example illustrates the upward interpretation.

Example 4.1: Consider the following deductive database:

QA)
Q®B)
R(B)
P(x) < Q(x) A =R(x)

and assume a transaction T which consists of the deletion of the base fact R(B). In our notation,
T={8R(B)}. As it can be easily seen, this transaction induces only an insertion of the derived fact

P(B). We are going to show how the upward interpretation of the event rules of P defines this

induced insertion.

The event rule of P expressed in the upward interpretation is:

1P(x) « P(x) A =P9x)

Induced insertions on P are given by upward interpreting the literals in (PP(x) A —P9(x)). The first
literal is a new literal. Then, we have to consider the upward interpretation of its corresponding
transition rule: '

PR(x) - [(Q2(x) A =8Q(x) A =RO(x) A =1R(X)) Vv
(QO(x) A =8Q(x) A SR(x)) v
(1Q(x) A =RO(x) A m1R(x)) Vv
(1Qx) A 3R(x))]

Consider the second disjunctand of PB(x): QO(x) A =8Q(x) A OR(x). The first literal, Qo(x), is a
database literal and, thus, it corresponds to a query that must be performed in the current state of the
database. In this example, two possible values of x (x=A and x=B) exist such that Q(x) holds. On
the other hand, —=8Q(x) is a negative base event literal and, since no base event 8Q(X) belongs to the
transaction, this condition also holds. The third literal, SR(x), is a positive base event literal and since
the event R(B) belongs to the transaction, this query holds for x=B. Therefore, the whole

disjunctand evaluates to true for x=B and, thus, P?(x) holds for x=B.

The second literal in the insertion event rule is an old database literal, —PO(x), which holds for in
the current state for the value x=B that satisfies PP(x). Therefore, transaction T induces 1P(B). It can

be similarly seen that this transaction does not induce any other change. Thus, the result of upward
interpreting 1P(x) is the set { 1P(B) }.

-143-

4.2 Downward Interpretation

The downward interpretation of the event rules defines the changes on base predicates needed to
satisfy changes on derived predicates. We assume that these changes on derived predicates are given
by a set of derived event facts. In general, the downward interpretation may not be unique. That is,
several sets of changes on base predicates that satisfy changes on derived predicates may exist. Each
possible set constitutes a possible transaction that applied to the current state of the database will
accomplish the required changes on derived predicates.

As stated before, the downward interpretation considers the right implication of the equivalence in
the event rules. Therefore, in this interpretation the event rules corresponding to a derived predicate P
are expressed in the following way:

1P(x) = P(x) A =PO(x)
dP(x) — PO(x) A =P1(x)

whose intended meaning is that if there is an insertion (deletion) of a fact of P then it is necessary that

the body of its corresponding event rule evaluates to true in the transition.

The result of downward interpreting an event rule corresponding to a derived predicate P with
respect to a derived event fact 1P(X) or 6P(X) (succinctly, the downward interpretation of 1P(X) or
SP(X)) is a disjunctive normal form, where each disjunctand defines an alternative to satisfy a change
on this derived predicate!l. Each disjunctand may contain positive base events facts, which constitute
a possible transaction 1o be performed, and negative base events facts, representing requirements that
the transition must satisfy.

To obtain this result, literals in the body of 1P and 8P have to be interpreted in the following way.
Old database literals (P°(x) and —P9(x)) correspond to a query that must be performed in the current
(old) state of the database, while new database literals (P?(x) and —P?(x)) are handled by downward
interpreting the transition rule of predicate P.

To downward interpret a positive new database literal, literals in each disjunctand of the body of
P™ must be interpreted as follows:

1 Sometimes, no set ot changes of base predicates is obtained when considering the downward interpretation of a
derived event 1P (resp. 8P). In this case, two possible things may happen. First, P may (resp. may not) hold in the
current state of the database and, then, the requested change on P does not make sense since it is already satisfied.
Second, if P does not hold (resp. holds) and no set of changes on base events is obtained, the requested change on P can
not be satisfied by considering only changes of base facts. In this latter case, updates of the extensional database should
be considered in order to satisfy the requested change.

-144-

- An old database literal corresponds to a query that must be performed in the current state of
the database. If there are no solutions for this query, the disjunctand does not define any
alternative.

- A base event literal defines different alternatives of base fact updates to be performed, one for
each possible way to instantiate this event. Note that, as we consider finite domains, the
number of alternatives is always finite. In particular, a ground positive base event literal
corresponds to a change on a base fact that must be performed, provided that the event

definition is satisfied. Negative base event literals correspond to changes that must not be
performed.

- A derived event literal corresponds to a set of changes on a derived predicate, one for each
possible way to instantiate this event, that must be handled by downward interpreting its
corresponding event rule. The downward interpretation of a negative derived event is defined
as the disjunctive normal form of the logical negation of the result obtained by downward
interpreting the corresponding positive derived event.

The downward interpretation of a negative new database literal —P" is defined as the disjunctive
normal form of the logical negation of the result obtained by downward interpreting the
corresponding positive new database literal, as for negative derived events.

The downward interpretation of a set of event facts is defined as the disjunctive normal form of the

logical conjunction of the result of downward interpreting each event in the set.
The following example illustrates the downward interpretation.

Example 4.2: Consider again the same database as in example 4.1 :

Q(A)
Q(®B)
R(B)
P(x) « Q) A —=R(x)

and assume now that the insertion of the derived fact P(B) is requested. In our notation, 1P(B).

Intuitively, it can be seen that the change on base predicates needed to satisfy this change on P(B) is
OR(B). We are going to show how the downward interpretation of the event rules of P define this
change.

-145-

The insertion event rule of P expressed in the downward interpretation is:
1P(x) = PR(x) A =PO(x)

Then, changes on base predicates needed to satisfy 1P(B) are given by downward interpreting the
literals in (P(B) A =P°(B)). The second literal is an old database literal which holds in the current
state. On the other hand, the first literal is a new literal. Then, we have to consider the downward

interpretation of its corresponding transition rule:

PO(B) — [(QO(B) A —8Q(B) A —RO(B) A —tR(B)) v
(Q°(B) A =3Q(B) A 3R(B)) v
(1Q(B) A —=R°(B) A —R(B)) v
(1Q(®B) A SR(B))]

Consider the second disjunctand of this rule. The first literal, Q®(B) is a database literal which
holds in the current state. The second literal, —~0Q(B), is a negative base event and, thus, it
corresponds to a change that must not be performed. Finally, 8R(B) is a positive base event literal
and, thus, it corresponds to a base fact update that must be performed. Therefore, from this
disjunctand we obtain the alternative (OR(B) A —=0Q(B)). In a similar way, it can be seen that no

other alternatives are obtained by considering the other disjunctands.

Thus, the final result of downward interpreting 1P(B) is (SR(B) A =8Q(B)). Therefore, the
application of the transaction T={3R(B)} to the current state of the database will accomplish the

insertion of P(B).

5. Classifying and Specifying Deductive Database Updating Problems

In this section we show how to use the event rules and their interpretation for classifying and
specifying deductive database updating problems. First, we need to endow a derived predicate with a
concrete semantics. Many authors [DaW89, RCB89+, KiiC91] have proposed to express an
integrity constraint, a view (materialized or not) and a condition to be monitored as a derived
predicate. In all cases, they have the same form as a deductive rule, but a concrete interpretation.
Thus, in our example the derived predicate P can be expressed as:

Icl(x) « Qx)A—=R(x)
View(x) ¢« Q(x) A =R(x)
Cond(x) « Q(x) A =R(X)

where we consider that Icl, View and Cond are interpreted accordingly to their concrete semantics.

-146-

Furthermore, we assume that there exists a global inconsistency predicate Ic, defined as Ic «
Icl(xy),..., Ic « Icn(x,), where x;, 1 =1...n, is a vector of terms and n is the number of integrity
constraints. Notice that if Ic holds the database is inconsistent because some integrity constraint is
violated, whereas if Ic does not hold the database is consistent, that is, all integrity constraints are
satisfied.

The upward and downward interpretation of the event rules corresponding to Ic, View and Cond
allow us to classify the deductive database updating problems that have been addressed in the past
years. Moreover, these interpretations allow us to identify some deductive database updating
problems that, to our knowledge, have not been addressed up to now. This is summarized in Table
4.1. In the rest of this section, we will briefly review all these deductive database updating problems
and we will explain how can they be specified in terms of the upward and the downward

interpretations.
View Ic Cond
Upward P IC checking
Materialized view Condition
Interpretation SP maintenance IC violation removal monitoring
checking
1P Ensuring IC Enforcing condition
View updating satisfaction o
acuvation

. c o Repairing inconsistent DB
Downward oP View validation o Condition validation
IC satisfiability

Interpretation T, —P IC maintenance

Preventing side Preventing condition

T. —SP effects Maintaining DB activation
' inconsistency

Table 4.1

3.1 Upward Problems
5.1.1 Integrity Constraints Checking

There exists a large cumulative effort in the field of integrity constraints checking [BDM88, SK88,
DW89, Kiic91, 0O1i91, GCM+94]. The problem can be summarized in the following terms. Given a
consistent database staie and a transaction that consists of a set of base fact updates, the problem is to
determine incrementally whether this transaction violates the integrity constraints.

-147-

In our framework this problem can be specified as the upward interpretation of tlc, provided that
Ic© does not hold. The result of this upward interpretation is a set which either contains tc or is
empty. If Uc belongs to result then the transaction induces an insertion of Ic and, therefore, it violates

some integrity constraint. Otherwise, the transaction does not violate any integrity constraint.

Example 5.1: Consider a deductive database with the following predicates:

La (x) X is in labour age.

Works (x) x works for some company.

U_benefit (x) X receives an unemployment benefit.

Unemp (x) x is unemployed. Every person that is in labour age and does not work

is unemployed.

Icl Inconsistency predicate which states that all unemployees must receive
an unemployment benefit. -

Assume that the current content of the deductive database is the following:

La(Dolors)

U_benefit(Dolors)

Unemp(x) <« La(x) A ~Works(x)
Icl « Unemp(x) A =U_benefit(x)

Relevant transition and event rules associated to this database are:

tUnemp(x) <» Unemp®(x) A =Unemp©(x) -
dUnemp(x) <> UnempO(x) A =~Unemph(x)
Ucl < Iclt A =Icl©

Unemp™(x) <> [(La%x) A =8La(x) A ~Workso(x) A =1Works(x)) v
(La%(x) A —0La(x) A dWorks(x)) v
(1La(x) A =Works®(x) A =1tWorks(x)) v
(tLa(x) A dWorks(x))]

Ic1n < [(UnempO(x) A =8Unemp(x) A =U_benefito(x) A =1U_benefit(x)) v
(Unemp©(x) A =8Unemp(x) A OU_benefit(x)) v
(1Unemp(x) A —U_benefito(x) A —1U_benefit(x)) v
(1Unemp(x) A 6U_benefit(x))]

Assume a transaction T={3U_benefit(Dolors)}. The upward interpretation of 1lcl allows us to

determine whether a transaction violates this integrity constraint. In this case, both Ic1? and —Ic1©
hold and, therefore, the final result is {1cl}. Thus, Icl is violated and the transaction must be
rejected.

-148-

On the other hand, there is also another problem that belongs to this category. Given an
inconsistent database and a transaction that consist of a set of base fact updates, the problem is to
check whether these updates restore the database to a consistent state. In our framework this problem
can be specified as the upward interpretation of 8lc, provided that Ic® holds. In this case, the result of
this upward interpretation is a set which either contains 8lc or is empty. If 8lc belongs to the result,
then the transaction induces a deletion of Ic and, therefore, restores the consistency of the database.
Otherwise, the database keeps the inconsistency.

Notice that both problems can also be complementary specified as the upward interpretation of
—ilc and —0lc, respectively. Thus, while the upward interpretation of ilc checks whether the
transaction violates some integrity constraint, the upward interpretation of —lc checks whether the

transaction does not violate any integrity constraint. In a similar way, we can interpret —8lc.

5.1.2 Condition Monitoring

As stated before, general conditions can also be expressed as derived predicates. Condition
monitoring refers to the problem of incrementally monitoring the changes on a condition induced by a
transaction that consist of a set of base fact updates [RCB+89, HCK+90, QW91].

In our framework, changes induced in a given condition, Cond(x), are specified as the upward
interpretation of 1Cond(x) and 3Cond(x). The former, 1Cond(x), defines the changes meaning that
x satisfy the condition after the application of the transaction, but not before. The latier, 8Cond(x),

defines the changes meaning that x satisfy the condition before the application of the transaction, but
not after.

On the complemertary hand, the upward interpretation of —1Cond(x) and —8Cond(x) checks

whether the transaction does not induce any change on this condition.

5.1.3 Materialized View Maintenance

A view can be materialized by explicitly storing its extension in the extensional database. Given a
transaction that consists of a set of base fact updates, the materialized view maintenance problem
consists of incrementally determining which changes are needed to update accordingly the
materialized views [CW91, HD92, U092, GMS93].

In our framework, given a materialized view, View(x), the materialized view maintenance
problem is specified as the upward interpretation of 1View(x) and dView(x). The former, 1View(x),

defines the insertions that must be performed into the extension of the materialized view, while the

-149-

later defines the deletions. Thus, for instance, if 1View(X) belongs to the result of the upward

interpretation, then View(X) must be inserted into the extension of the materialized view

On the complementary hand, the upward interpretation of —tView(x) and —0View(x) checks

whether the transaction does not affect to this view.

5.2 Downward Problems

5.2.1 View Updating

View updating is concerned with determining how a request to update a view should be
appropriately translated into updates of the underlying base facts. In general, several translations may
exist and the user must select one of them. This problem has attracted much research during the last
years in relational [BS81, Kel86, LS91] as well as in deductive databases [Dec90, KM90, GLI1,
TA91, TO92].

In our framework, the view update problem can be specified as the downward interpretation of
1View(X) or dView(X), where View(X) is the derived fact to be inserted or deleted, respectively.
The former defines the possible sets of base fact updates that satisfy the insertion of View(X), while
the latter defines the possible sets of base fact updates that satisfy the deletion of View(X).

In general, a view update request consists of a set of insertions and/or deletions to be performed
on derived predicates. In this case, we have to consider the downward interpretation of the whole set
in order to obtain the translations that satisfy the view update request.

Example 5.2: Consider again the same database as in example 5.1, and assume now that the
view update dUnemp(Dolors) is requested. The downward interpretation of dUnemp(Dolors) allow
us to determine the possible translations that satisfy this request. Unemp@(Dolors) holds in the current
state. On the other hand, the downward interpretation of —~Unemp®(Dolors) is (6La(Dolors) v
1Works(Dolors)), which is the logical negation of the result of downward interpreting
Unemp™(Dolors). Therefore, the downward interpretation of dUnemp(Dolors) is (8La(Dolors) v
tWorks(Dolors)). Thus, the possible translations that satisfy the view update request are: T =
{6La(Dolors)} and T, = {iWorks(Dolors)}.

In principle, it may happen that some translations corresponding to a given view update request do
not satisfy the integrity constraints. For this reason, view updating is usually combined with integrity
constraints satisfaction. This could be done either by combining view updating and integrity

-150-

constraints checking or view updating and integrity constraints maintenance. Possible ways of
performing this combination will be explained in section 5.3.

The downward interpretation of 1View(X) or 6View(X) can also be used for specifying the
problem of view validation. This problem can be stated as follows. Given a derived predicate
View(x), the problem is to obtain at least one X for which some set of base fact updates that satisfies
1View(X) or dView(X) exists (notice that X must range over the domain of the terms in View). This
can be useful for providing the database designer with a tool for validating certain aspects of the
database definition. For instance, s/he could validate whether it is possible to reach a state with a non
empty view extension. Provided that View© does not hold, if there exists one X for which 1View(X)
defines a set of base fact updates, then, it is possible to reach such a state. Otherwise, it is not
possible.

5.2.2 Preventing Side Effects

Due to the -deductive rules, non desired updates may be induced on some derived predicates when
applying a transaction. We say that a side effect occurs when this happens. The problem of
preventing side effects [Ten92] is concerned with determining a set of base fact updates which,
appended to a given transaction, ensure that the application of the resulting transaction to the current
state of the database will not induce the undesired side effects. In general, several solutions may exist
and the user must select one of them.

Assume that we want to prevent that the application of a given transaction T will induce an
insertion or a deletion of a derived tact View(X). In our framework, this problem can be specified as
the downward interpretation of the set {T,-1View(X)} or {T,-~8View(X)}, respectively. The
former defines base fact updates needed to guarantee that the insertion of View(X) is not induced by
T, while the latter defines changes on base predicates needed to satisfy that the deletion of View(X) is
not induced. In general, if we want to prevent all possible side effects over View, we have to take
into account all possible values of X.

Example 5.3: Consider again the same database as in example 5.1, and assume now a
transaction T={1La(Maria)}. Intuitively, it can be easily seen that the application of T would induce

the insertion of Unemp(Maria). Assume that we want to prevent this side effect. The downward
interpretation of {1La(Maria),—-1Unemp(Maria)} defines resulting transactions that prevent this side
effect.

The downward interpretation of tLa(Maria) is 1La(Maria). On the other hand, to downward
interpret —1tUnemp(Maria) we have to take into account the logical negation of the downward

-151-

interpretation of the event rule corresponding to tUnemp(Maria). —Unemp©(Maria) holds in the
current state, while the downward interpretation of Unemp?®(Maria) is (tLa(Maria) A
—1Works(Maria)). Therefore, the final result of downward interpreting —tUnemp(Maria) is
(—tLa(Maria) v tWorks(Maria)).

As stated in secticn 4.2, the downward interpretation of a set of event facts is defined as the
disjunctive normal form of the logical conjunction of the result of downward interpreting each event
in the set. Therefore, the downward interpretation of {1La(Maria),~tUnemp(Maria)} is [(1La(Maria)
A —tLa(Maria)) v (1La(Maria) A 1Works(Maria))]. Thus, the only possible resulting transaction that
does not induce the insertion of Unemp(Maria) is T ={1La(Maria), \Works(Maria)}.

5.2.3 Repairing Inconsistent Databases

Sometimes it may happen that a database reaches an inconsistent state. In this case, it arises the
problem of repairing inconsistent databases [Ten92]. Given an inconsistent database state, the
problem is to obtain a set of updates of base facts which restore the database to a consistent state. In
general, several solutions may exist and the database administrator should select one of them.

In our framework, this problem can be specified as the downward interpretation of dlc, provided
that Ic® holds. Sets of base fact updates obtained by downward interpreting 8lc correspond to the
possible transactions that would induce a deletion of Ic and, therefore, that would restore database
consistency.

The downward interpretation of d0lc can also be used for integrity constraints satisfiability
[BDM&S]. This problem can be stated as follows. Given a set of integrity constraints and deductive

rules, the problem is to determine whether there exists a state of the extensional database that satisfies
all the integrity constraints.

In our framework, this problem can also be specified as the downward interpretation of dlc
provided that Ic© holds. If the downward interpretation of 8lc defines at least one transaction, then the
integrity constraints are satisfiable. Note that if Ic© does not hold, all constraints are already satisfied
in the current state of the database.

There is also another problem that belongs to this category. Given a set of deductive rules and
integrity constraints, the problem is to determine whether there exists a state of the extensional
database that violates some integrity constraint. This could be useful, for instance, in order to help the
database designer to define a database that may never reach an inconsistent state. We denote this

problem as ensuring integrity constraints satisfaction.

-152-

In our framework, this problem can be specified as the downward interpretation of ic. The
possible sets of base fact updates defined by this interpretation correspond to the possible ways of

turning the database into an inconsistent state. At definition time, the database designer should verify
whether the downward interpretation of tlc defines some transaction or not. If it does, an inconsistent

state may be reached. Otherwise, it may not.

5.2.4 Integrity Constraints Maintenance

There exists a large effort in the field of integrity constraints maintenance {CW90, ML91, Wiit93].
This problem can be summarized in the following terms. Given a consistent database state and a
transaction that violates some integrity constraints, the problem is to find repairs, that is, an additional
set of insertions and/or deletions of base facts to be appended to the transaction such that the resulting
update satisfies all integrity constraints. In general, there may be several repairs and the user must
select one of them. Eventually, no such repair exists and the original transaction must be rejected.

Given a transaction T, integrity constraints maintenance can be specified in our framework as the
downward interpretation of {T,—tlc}, provided that IcO does not hold. Thus, sets of base fact

updates defined by the downward interpretation of {T,—lc} correspond to possible transactions that

maintain database consistency.

In a similar way, the downward interpretation of a negative deletion event fact —8Ic allow us to
specify the problem of maintaining database inconsisténcy. Given an inconsistent database state and a
transaction T, the problem is to obtain an additional set of base fact updates to be appended to the
original transaction in order to guarantee that the resulting database state remains inconsistent. In our
framework, this problem can be specified as the downward interpretation of {T,—6Ic}, provided that
Ic® holds. Although we do not see any practical application of this problem, it can be naturally
classified and specified in the framework proposed in this paper.

5.2.5 Enforcing Condition Activation

As stated before, general conditions can also be expressed as derived predicates. Enforcing
condition activation refers 1o the problem of obtaining a set of changes of base facts that, if they were
applied to the current sate of the database they would induce an activation of a given condition.

In our framework, enforcing condition activation is specified as the downward interpretation of
1Cond(X) or Cond(X), where both correspond to the conditions to be enforced. The former defines
possible transactions that will induce X to satisfy the condition after their application, but not before.
The latter, defines possible transactions that will induce X not to satisfy the condition after their
application.

-153-

The downward interpretation of 1Cond(X) or 8Cond(X) can also be used for specifying the
problem of condition validation. Given a deductive database, the problem is to obtain at least one X
for which some set of base fact updates that satisfies 1Cond(X) or 6Cond(X) exists. This can be
useful for providing the database designer with a tool for validating certain aspects of the condition
definition. For instance, s/he could validate whether it is possible to find a transaction that will induce
the activation of a given condition.

5.2.6 Preventing Condition Activation

The downward interpretation of the event rules corresponding to a condition predicate allow us to
identify another database update problem. Given a transaction that consists of a set of base fact
updates, the problem is to find an additional set of insertions and/or deletions of base facts to be
appended to the original transaction such that it guarantees that na changes in the condition will occur
during the transition. We denote this problem as preventing condition activation.In general, several
solutions may exist and the user must select one of them.

Assume that we want to prevent that the application of a given transaction T will induce a change
on the condition Cond(X). In our framework, this problem can be specified as the downward
interpretation of {T,—1Cond(X)} or {T,~8Cond(X)}, respectively. The former defines base fact
updates needed to guarantee that the insertion of Cond(X) is not induced by T, while the latter defines
changes on base predicates needed to satisfy that the deletion of Cond(X) is not induced. In general,

if we want to prevent all possible activations of Cond, we have to take into account all possible values
of X.

5.3 Combining Upward and Downward Problems

In order to finish this section, we would like to comment several aspects concerning the upward
and downward interpretations of the event rules corresponding to integrity constraints, views and
conditions.

First of all, we would like to notice that upward problems can be combined among them. All of
them share a common starting-point (a transaction which consists of a set of base fact updates) and
aim at the same goal (to define the changes on derived predicates induced by this transaction). The
same reasons allow the combination of downward problems among them. Therefore, we can specify
more complex upward and downward problems by considering possible combinations of the
problems specified in sections 5.1 and 5.2.

-154-

For instance, we could combine materialized view maintenance, integrity constraints checking and
condition monitoring by upward interpreting the set {1View(x), d8View(x), 1Cond(x), 8Cond(x),
Uc}. We could also combine view updating with integrity constraints maintenance by downward
interpreting the set {1View(X), —tlc}.

Moreover, we could also combine upward and downward problems among them. Note that the
result of the downward interpretation is the same than the starting-point of the upward interpretation,
that is, a transaction which consists of a set of base fact updates. Therefore, we could first deal with
downward problems and, immediately after, use the obtained result for dealing with the upward
ones.

For instance, we could be interested on distinguishing between integrity constraints to be
maintained and integrity constraints to be checked, and on combining view updating with the
treatment of both kinds of constraints. In this case, we should first downward interpret the view
update and the set of integrity constraints to be maintained. Then, we should consider the resulting
transactions and upward interpret the set of integrity constraints to be checked to reject those resulting
transactions that violate some constraint in this set.

Finally, we would also like to notice that in our approach the specification of the upward and the
downward problems is the same when considering other kinds of updates like insertions or deletions
of deductive rules. In this case, we should first determine the changes on the transition and event

rules caused by the update and apply then our approach in the same way as explained in sections 5.1
and 5.2.

6. Conclusions and Further Work

In this paper, we have proposed to use the event rules as the basis of a common framework for
classyfing and specifying deductive database updating problems. In this sense, we have proposed
two interpretations of these rules which have allowed us to identify and to specify upward problems,
concerned with computing the changes on derived predicates induced by a transaction, and
downward problems, concerned with determining the possible transactions that satisfy a set of
changes on derived predicates.

Moreover, we have shown that upward and downward problems can be combined among them,
thus being able to define more complex deductive database updating problems.

By considering only a unique set of rules for specifying all these problems, we hope to have
shown that it is possible to provide general methods able to deal with all these problems as a whole.

-155-

Therefore, we could uniformly integrate view updating, materialized view maintenance, integrity
constraints checking, integrity constraints maintenance, repairing inconsistent databases, condition
monitoring, enforcing condition activation and other deductive database updating problems into an
update processing system.

We plan to extend the results presented in this paper in two different directions. First, we plan to
extend our previous work reported in [UO92, U094, TO92] by taking into account the ideas
proposed in this paper in order to provide an efficient implementation of the upward and the
downward interpretations. This could be useful for dealing with all these deductive database updating
problems in a real environment.

Second, we consider that the upward and the downward interpretations could also be used not
only for specifying deductive database udpating problems like we have proposed in this paper, but
also for specifying the methods proposed up to date for dealing with these problems. We believe that
this would help to provide a common framework for comparing all these methods.

Acknowledgements

We would like to thank Dolors Costal, Carme Martin, Enric Mayol, Antoni Olivé, Joan Antoni
Pastor, Carme Quer, Maria Ribera Sancho and Jaume Sistac for many useful comments and
discussions.

This work has been partially supported by the CICYT PRONTIC program project TIC94-0512.

References

[Abi88] Abiteboul, S. "Updates, a new frontier", Proc. ICDT 88, Springer, 1988, pp. 1-18.

[BDMS&S] Bry, F.; Decker, H.; Manthey, R.. "A Uniform Approach to Constraints Satisfaction
and Constraints Satisfiability in Deductive Databases", Int. Conf. on Extending
Database Technology (EDBT’88), Venezia, 1988, pp. 488-505.

[BR&6] Bancilhon, F.; Ramakrishnan, R, "An Amateur's Introduction to Recursive Query
Processing", Proc. ACM SIGMOD Int. Conf. on Management of Data, Washington
D.C,, 1986, pp. 16-52.

[BS81] Bancilhon, F; Spyratos, N. "Update Semantics of Relational Views", ACM
Transactions on Database Systems, vol. 6, num. 4, 1981, pp. 557-575.

[CWI0] Ceri, S.; Widom, J. "Deriving Production Rules for Constraint Maintenance", Proc.
of the 16th VLDB Conference, Brisbane, Australia, 1990, pp. 566-577.

[CWI1] Ceri, S.; Widom, J. "Deriving production rules for incremental view maintenance”,
Proc. of the 17th. VLDB Conf., Barcelona, 1991, pp 577-589.

-156-

[DW89]

[Dec89]

[Dec90]

[GLO91]

[GCM+94]

[GMNg4]

[GMS93]

[HCK+90]

[HD92]

[Kel86]

[KM90]

[Kow83]

[L1087]
[LIT84]

[LS91]

[MLO91]

Das,S.;Williams,H. "A path finding method for constraint checking in deductive
databases”, Data & Knowledge Engineering, 1989, No 4, pp. 223-224,

Decker, H. "The Range Form of databases or: How to avoid Floundering", Proc. 5th
OGAL, Springer-Verlag, 1989.

Decker, H. "Drawing Updates from derivations", Proc. of the 3rd Int. Conf. on
Database Theory (ICDT), Paris, 1990, pp. 437-451.

Guessoum, A.; Lloyd, J.W. "Updating Knowledge Bases II", New Generation
Computing, Vol. 10, 1991, pp. 73-100.

Garcia, C; Celma, M.; Mota, L.; Decker, H. "Comparing and Synthesizing Integrity
Checking Methods for Deductive Databases”, Proc. of the 10th ICDE, Houston,
USA, 1994, pp. 214-222.

Gallaire, H.; Minker,J.; Nicolas, J.M. "Logic and Databases: A Deductive Approach".
ACM Computing Surveys, Vol. 16, N° 2, 1984, pp. 153-185.

Gupta, A; Mumick, 1.S.; Subrahmanian, V.S. “Maintaining Views Incrementally”,
Int. Conf. on Management of Data (SIGMOD), Washington, 1993, pp. 157-166.

~ Hanson, E. N.; Chaabouni, M.; Kim, C.; Wang, Y. "A predicate matching algorithm

for database rule systems", Proc. ACM SIGMOD Conf. on Management of data,
Atlantic City, 1990, pp. 271-280.

Harrison, J. V.; Dietrich, S. " Maintenance of materialized views in a deductive
database: an update propagation approach”, in workshop on deductive databases,
JICSLP, Washington, 1992, pp. 56-65.

Keller, A.M. "Choosing Translator at View Definition Time". Proc. 12th VLDB
Conference, Kyoto, 1986, pp. 467-474.

Kakas, A.; Mancarella, P. "Database Updates through Abduction", Proc. of the 16th
VLDB Conference, Brisbane, Australia, 1990, pp. 650-661.

Kowalski, R. "Logic Programming". Information Processing 83, Elsevier Science
Publishers, 1983.

Lloyd, J.W. "Foundations on Logic Programming", 20 edition, Springer, 1987.

Lloyd, J.W.; Topor, R.W. “Making Prolog More Expressive”. Journal of Logic
Programming, 1984, No. 3, pp. 225-240.

Larson, J; Sheth, A. "Updating Relational Views Using Knowledge at View
Definiiion and View Update Time", Information Systems, Vol. 16, No. 2, 1991, pp.
145-168.

Moerkotte, G; Lockemann, P.C. "Reactive Consistency Control in Deductive
Databases", ACM Transactions on Database Systems, Vol. 16, No. 4, December
1991, pp. 670-702.

-157-

[O1i91]

[QWI1]

[RCB+89]

[SK88]

[TA91]

[Ten92]

[TO92]

[U1188]

[U092]

[Urp93]

[U09%4]

[Win90]

[Wiit93]

Olivé, A. "Integrity Checking in Deductive Databases", Proc. of the 17th VLDB
Conference, Barcelona, Catalonia, 1991, pp. 513-523.

Qian, X.; Wiederhold, G. "Incremental recomputation of active relational
expressions”, IEEE Trans. on knowledge and data engineering, Vol. 3, No. 3,
setember 1991, pp. 337-341.

Rosenthal, A.; Chakravarthy,S.; Blaustein, B.; Blakeley, J. "Situation monitoring for
active databases", Proc. of the 15th VLDB Conf., Amsterdam, 1989, pp. 455-464.

Sadri, F.; Kowalski, R. *“A Theorem-proving Approach to Database Integrity”, In
J.Minker (Ed.) "Foundations of Deductive Databases and Logic Programming",
Morgan Kaufmann Pub., 1988, pp. 313-362.

Torlone, R.; Atzeni, P. "Updating Deductive Databases with Functional
Dependencies”, 2nd Int. Conf. on Deductive and Object Oriented Databases
(DOOD'91), Munich, 1991, pp. 278-291.

Teniente, E. "El Métode dels Esdeveniments per z;l'actualitzacié de vistes en bases de
dades deductives”, PhD Thesis, Universitat Politecnica de Catalunya, Barcelona,
1992 (in catalan).

Teniente, E.; Olivé. A. "The Events Method for View Updating in Deductive
Databases"”, Int. Conf. on Extending Database Technology (EDBT’92), Vienna,
1992, pp. 245-260.

Ullman, J.D. "Principles of Database and Knowledge-Base Systems", Computer
Science Press, New York, 1988.

Urpi, T.; Olivé, A. "A Method for Change Computation in Deductive Databases”,
Proc. of the 18th VLDB Conference, Vancouver, Canada, 1992, pp. 225-237.

Urpi, A. "El Métode dels Esdeveniments per al calcul de canvis en bases de dades
deductives”, PhD Thesis, Universitat Politécnica de Catalunya, Barcelona, 1993 (in
catalan).

Urpi, T.; Olivé, A. "Semantic Change Computation Optimization in Active
Databases”, Proc. of the 4th Int. Workshop on Research Issues on Data Engineering-
Active Database Systems (RIDE -ADS'94), Houston, USA, 1994, pp. 19-27.

Winslett, M. "Updating Logical Databases”, Cambridge Tracts in Theoretical
Computer Science 9, 1990.

Wiithrich, B. "On Updates and Inconsistency Repairing in Knowledge Bases", Int.
Conf. on Data Engineering, Vienna, 1993, pp. 608 - 615.

-158-

